The American Psychiatric Association Practice Guideline for the Prevention and Treatment of Delirium

Appendices

Table of Contents
Appendix A. Clinical QuestionsA1
Appendix B. Search Strategies, Study Selection, and Search ResultsB1
General MethodsB1
Search StrategiesB1
Literature Flow DiagramsB6
Study SelectionB8
Data ExtractionB9
Risk of Bias AssessmentB9
Data Synthesis and AnalysisB10
Rating the Strength of Guideline Statements and the Body of Research EvidenceB11
Appendix C. Review of Research Evidence Supporting Guideline StatementsC1
Assessment and Treatment PlanningC1
Non-Pharmacological InterventionsC8
Pharmacological InterventionsC41
Transitions of Care
Appendix D. Evidence Tables for Individual Studies Supporting Guideline StatementsD1
Non-Pharmacological Interventions for Prevention of DeliriumD1
Non-Pharmacological Interventions for Treatment of DeliriumD32
Pharmacological Interventions for Prevention of DeliriumD41
Pharmacological Interventions for Treatment of DeliriumD95
Appendix E. Risk of Bias Ratings for Individual Studies Supporting Guideline Statements
Appendix F. Balancing of Potential Benefits and Harms in Rating the Strength of the Guideline
StatementsF1

Assessment and Treatment PlanningF1
Non-Pharmacological InterventionsF8
Pharmacological Interventions
Transitions of Care
Appendix G. Description of Additional Studies Reviewed G1
Additional Non-Pharmacological Interventions for Prevention of Delirium
Additional Pharmacological Interventions for Prevention of Delirium
Additional Pharmacological Interventions for Treatment of Delirium
Appendix H. Evidence Tables for Additional Studies ReviewedH1
Additional Non-Pharmacological Interventions for Prevention of Delirium
Additional Pharmacological Interventions for Prevention of Delirium
Additional Pharmacological Interventions for Treatment of Delirium
Appendix I. Considerations in Use of Guidelines to Enhance the Quality of Care
Assessment and Treatment Planning
Non-Pharmacological Interventions
Pharmacological InterventionsIé
ReferencesREF1

1 Appendix A. Clinical Questions

- 2 The following Key Questions (KQs) were developed by the Pacific Northwest Evidence-based Practice
- Center (EPC) in conjunction with APA practice guidelines staff and were registered in PROSPERO (ID
 CRD42020172961).
- 5 KQ 1. What is the evidence on benefits and harms of interventions to prevent delirium, including: 6 KQ 1a. Drug interventions compared with placebo? 7 KQ 1b. Drug interventions compared with each other? 8 KQ 1c. Non-drug interventions (e.g., environmental, pain management) compared with no 9 intervention (e.g., usual care)? 10 KQ 1d. Non-drug interventions compared with each other? 11 KQ 1e. Drug and non-drug interventions compared with each other? 12 KQ 2. What is the evidence on benefits and harms of interventions to treat delirium, including: KQ 2a. Drug interventions compared with placebo? 13 KQ 2b. Drug interventions compared with each other? 14 KQ 2c. Non-drug interventions (e.g., environmental, pain management) compared with no 15 16 intervention (e.g., usual care)? 17 KQ 2d. Non-drug interventions compared with each other? KQ 2e. Drug and non-drug interventions compared with each other? 18 19 KQ 3. Are there patient-level or setting factors that modify the effects (benefits or harms) of these 20 interventions? 21 KQ 3a. Demographics 22 KQ 3b. Co-morbidities and severity of underlying illness, such as dementia, traumatic brain 23 injuries, cancer, or patients who have undergone major surgery (factors include type of surgery 24 and duration of anesthesia); co-interventions (e.g., propofol, polypharmacy); hypoactive vs. 25 hyperactive delirium?
- 26 KQ 3c. Type of setting (e.g., acute care, hospice care, long-term care)

- 27 Appendix B. Search Strategies, Study Selection, and Search Results
- 28 General Methods
- 29 This guideline is based on a systematic search of available research evidence conducted by the EPC. The
- 30 methods for this systematic review followed the Agency for Healthcare Research and Quality (AHRQ)
- 31 Methods Guide for Effectiveness and Comparative Effectiveness Reviews (available at
- 32 https://effectivehealthcare.ahrq.gov/topics/cer-methods-guide/overview).

33 Search Strategies

34 Table B-1. MEDLINE literature search strategy with explanation of key search elements

Search term	Explanation
1 exp Confusion/ (13473)	Population
2 (confusion or confuse* or delirium or delirious or disorient*).ti,ab,kf. (63424)	
3 "altered consciousness".ti,ab,kf. (1033)	-
4 ((emergence or emergent or emerging or emerge or postanesthe* or postanaesthe* or	-
anesthe* or anaesthe*) adj3 (agitat* or excite*)).ti,ab,kf. (540)	
5 ("Memorial Delirium Assessment Scale" or "MDAS").ti,ab,kf. (530)	-
6 (prevent* or avoid* or treat* or intervention* or drug or medication* or pharmacologic*	Intervention
or nonpharmacologic* or psychosocial).ti,ab,kf. (7773407)	
7 (dt or pc or th).fs. (4889066)	
8 or/1-5 (68737)	Population terms
	combined
9 6 or 7 (9874700)	Intervention terms
· ·	combined
10 8 and 9 (34202)	Population terms +
	Intervention terms
11 (pediatric* or preschool* or toddler* or infan* or child* or adolescent*).ti. (1161267)	
12 10 not 11 (32487)	
13 (animal* or mouse or mice or rat* or dog* or canine or cow* or horse* or mare* or	
rabbit*).ti. (2055970)	
14 12 not 13 (31967)	Population +
	Intervention, limited to
	adult humans
15 (random* or control* or placebo or sham or trial or blind*).ti,ab,kw. (4661795)	
16 exp clinical trial/ (849614)	
17 14 and (15 or 16) (6289)	Line 14, limited to trials
18 observational study/ or comparative study/ (1917972)	
19 exp cohort studies/ (1947912)	
20 exp case-control studies/ (1050058)	_
21 (cohort* or case* or prospective or retrospective or observational).ti,ab,kw. (4494584)	_
22 or/18-21 (6816722)	_
23 case reports.pt. (2070898)	_
24 "case series".ti,ab,kf. (70549)	_
25 "case report".ti,ab,kf. (302812)	4
26 22 not (or/23-25) (5652367)	
27 14 and 26 (8555)	Line 14, limited to
	controlled
00 m d =	observational studies
28 meta-analysis/ or "systematic review"/ (180810)	4
29 (systematic or "meta analysis" or metaanalysis or medline or cochrane).ti,ab,kf.	
(472488) 30 14 and (28 or 29) (1491)	Line 14, limited to
30 14 aliu (20 01 29) (1491)	systematic reviews
31 17 or 27 or 30 (13069)	systematic reviews
	Total no data limit
32 limit 31 to english language (11680)	Total, no date limit

35 Table B-2. PsycINFO literatu	ure search strategy
---------------------------------	---------------------

- 36 Dates of search 1806 to January Week 3 2020
- Delirium/ (3250) 37 1
- 38 2 (confusion or confuse* or delirium or delirious or disorient* or agitat*).ti,ab. (39619)
- 39 3 "altered consciousness".tw. (350)
- 40 4 ((emergence or emergent or emerging or emerge or postanesthe* or postaneesthe* or anesthe* or anaesthe*) 41 adj3 excite*).tw. (9)
- 42 5 ("Memorial Delirium Assessment Scale" or "MDAS").tw. (106)
- 43 ("Confusion Assessment Method for the Intensive Care Unit" or "CAM ICU").tw. (84) 6
- 44 ("Intensive Care Delirium Screening Checklist" or "ICDSC").tw. (13) 7
- 45 ("Delirium Rating Scale" or "DRS R 98").tw. (198) 8
- 46 9 "Neecham Confusion Scale".tw. (23)
- 47 "Nursing Delirium Screening Scale".tw. (16) 10
- 48 or/1-10 (40056) 11
- 49 12 exp Schizophrenia/ (89432)
- 50 13 schizophreni*.ti,ab. (117908)
- 51 14 12 or 13 (122418)
- 52 15 11 not 14 (37692)
- 53 16 (pediatric* or preschool* or toddler* or infan* or child* or adolescent*).ti. (472850)
- 54 15 not 16 (35290) 17
- 55 18 (animal* or mouse or mice or rat* or rodent* or dog* or canine or cow* or horse* or mare* or rabbit*).ti,sh. 56 (399469)
- 57 19 17 not 18 (33893)
- 58 59 20 Treatment Outcome/ (33020)
- 21 Drug Therapy/ (134452)
- 60 22 (prevent* or avoid* or treat* or intervention* or drug or medication* or pharmacologic* or nonpharmacologic* or 61 psychosocial).tw. (1319300)
- 62 23 or/20-22 (1335276)
- 63 24 19 and 23 (13679)
- 64 25 (random* or controlled or placebo or sham or trial or blind*).ti,ab. (362222)
- 65 26 (cohort* or "case control" or prospective or retrospective or observational or longitudinal).ti,ab. (259602)
- 66 27 ("meta analysis" or "systematic review" or medline or cochrane).ti,ab. (53759)
- 67 28 or/25-27 (626757)
- 29 24 and 28 (2833) 68
- 69 Table B-3. EBM reviews - Cochrane Central Register of Controlled Trials literature search strategy
- 70 Date of search December 2019
- 71 _____
- 72 1 exp Confusion/ (676)
- 73 74 (confusion or confuse* or delirium or delirious or disorient* or agitat*).ti,ab,hw. (9881) 2
- "altered consciousness".ti.ab.hw. (39) 3
- 75 4 ((emergence or emergent or emerging or emerge or postanesthe* or postaneesthe* or anesthe* or anaesthe*) 76 adj3 excite*).ti,ab,hw. (18)
- 77 5 ("Memorial Delirium Assessment Scale" or "MDAS").ti,ab,hw. (82)
- 78 ("Confusion Assessment Method for the Intensive Care Unit" or "CAM ICU").ti,ab,hw. (190) 6
- 79 7 ("Intensive Care Delirium Screening Checklist" or "ICDSC").ti,ab,hw. (50)
- 80 ("Delirium Rating Scale" or "DRS R 98").ti,ab,hw. (92) 8
- 81 "Neecham Confusion Scale".ti,ab,hw. (11) 9
- 82 10 "Nursing Delirium Screening Scale".ti,ab,hw. (26)
- 83 or/1-10 (9966) 11
- 84 12 exp Schizophrenia/ (6816)
- 85 13 schizophreni*.ti,ab,hw. (16967)
- 86 14 12 or 13 (16969)
- 87 15 11 not 14 (9382)
- 88 16 (pediatric* or preschool* or toddler* or infan* or child* or adolescent*).ti. (107273)
- 89 17 15 not 16 (8335)

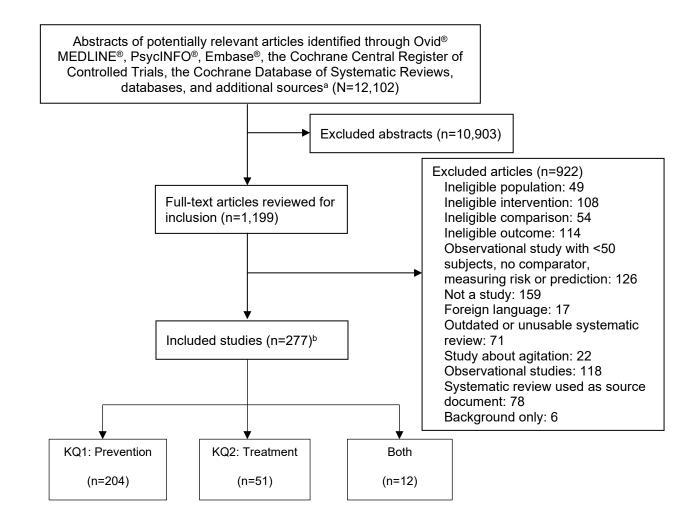
DRAFT January 25, 2024 NOT FOR CITATION

- 90 18 (animal* or mouse or mice or rat* or rodent* or dog* or canine or cow* or horse* or mare* or rabbit*).ti,sh. 91
 - (39514)
- 92 19 17 not 18 (8198)
- 93 20 Treatment Outcome/ (127605)
- 94 21 Drug Therapy/ (343)
- 95 22 (prevent* or avoid* or treat* or intervention* or drug or medication* or pharmacologic* or nonpharmacologic* or 96 psychosocial).ti,ab,hw. (1151550)
- 97 23 (dt or pc or th).fs. (337157)
- 98 24 or/20-23 (1193845)
- 99 25 19 and 24 (6979)
- 100 26 conference abstract.pt. (16743)
- 101 27 "journal: conference abstract".pt. (147924)
- 28 "journal: conference review".pt. (756) 102
- 29 "http://.www.who.int/trialsearch*".so. (126720) 103
- 104 30 "https://clinicaltrials.gov*".so. (142443)
- 26 or 27 or 28 or 29 or 30 (434586) 105 31
- 106 32 25 not 31 (4672)
- 33 limit 32 to medline records (2281) 107
- 108 34 32 not 33 (2391)
- 109 35 limit 34 to english language (1766)

110 Table B-4. EBM Reviews - Cochrane Database of Systematic Reviews literature search strategy

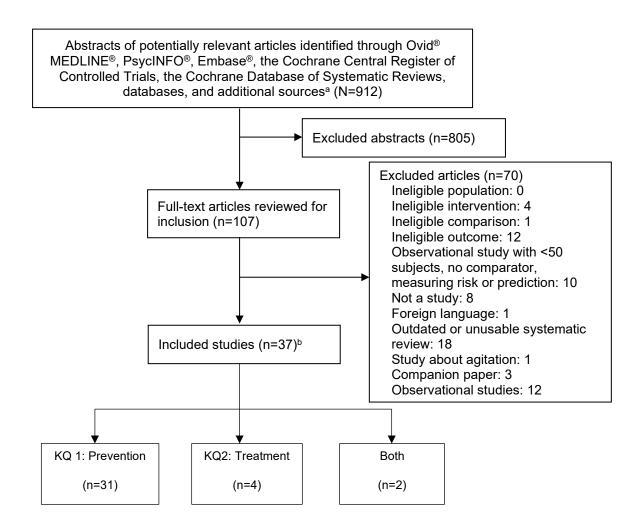
- 111 Dates of search 2005 to January 21, 2020
- 112 113 (confusion or confuse* or delirium or delirious or disorient* or agitat*).ti,ab. (85) 1
- 114 2 schizophreni*.ti,ab. (323)
- 115 3 (pediatric* or preschool* or toddler* or infan* or child* or adolescent*).ti. (1298)
- 116 4 (prevent* or avoid* or treat* or intervention* or drug or medication* or pharmacologic* or nonpharmacologic* or 117 psychosocial).ti,ab. (9151)
- 118 5 1 not (2 or 3) (65)
- 119 6 4 and 5 (60)
- 120 limit 6 to full systematic reviews (51) 7
- 121 Table B-5. EMBASE literature search strategy
- 122 _____
- 123 1. Confusion/exp
- 124 (delirium OR delirious):ti,ab,kw 2.
- 'altered consciousness':ti.ab.kw 125 3.
- 126 4. ((Emergence OR Emergent OR Emerging OR Emerge OR postanesthe* OR postanaesthe* OR anesthe* OR 127 anaesthe*) NEAR/3 (agitat* OR excite*)):ti,ab,kw
- 128 ('Memorial Delirium Assessment Scale' OR MDAS):ti,ab,kw 5.
- 129 ('Confusion Assessment Method for the Intensive Care Unit' OR 'CAM ICU'):ti,ab,kw 6.
- 130 7. ('Intensive Care Delirium Screening Checklist' OR ICDSC):ti,ab,kw
- ('Delirium Rating Scale' OR 'DRS R 98'):ti,ab,kw 131 8.
- 'Neecham Confusion Scale':ti,ab,kw 132 9.
- 133 10. 'Nursing Delirium Screening Scale':ti,ab,kw
- 134 11. #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 OR #9 OR #10
- 135 12. Schizophrenia/exp
- 13. schizophreni*:ti.ab.kw 136
- 137 14. #12 OR #13
- 138 15. #11 NOT #14
- 139 16. (pediatric* OR preschool* OR toddler* OR infan* OR child* OR adolescent*):ti
- 140 17. #15 NOT #16
- 141 18. (animal* OR mouse OR mice OR rat* OR rodent* OR dog* OR canine OR cow* OR horse* OR mare* OR 142 rabbit*):ti .sh.
- 143 19. #17 NOT #18
- 144 20. 'Treatment Outcome'/de
- 145 21. 'Drug Therapy'/de

- 146 22. (prevent* OR avoid* OR treat* OR intervention* OR drug OR medication* OR pharmacologic* OR 147
 - nonpharmacologic* OR psychosocial):ti,ab,kw
- 148 23. :Ink
- 149 24. #20 OR #21 OR #22 OR #23
- 150 25. #19 AND #24
- 151 26. (random* OR controlled OR placebo OR sham OR trial OR blind*):ti,ab ,kw.
- 152 27. 'Clinical Trial'/exp
- 153 28. #26 OR #27
- 154 29. #25 AND #28
- 155 30. 'limit 29 to english language'
- 156 31. 'observational study'/de OR 'comparative study'/de
- 157 32. 'cohort studies'/exp
- 33. 'case-control studies'/exp 158
- 159 34. (cohort* OR 'case control' OR prospective OR retrospective OR observational OR longitudinal):ti ab .kw.
- 160 35. #31 OR #32 OR #33 OR #34
- 161 36. term:it
- 162 37. ('case series' OR 'case report*'):ti,ab,kw
- 38. #35 NOT (#36 OR #37) 163
- 164 39. #25 AND #38
- 165 40. 'limit 39 to english language'
- 166 41. meta-analysis/de
- 167 42. 'systematic review'/de
- 168 43. (systematic OR 'meta analysis' OR metaanalysis OR medline OR cochrane):ti,ab,kw
- 169 44. #41 OR #42 OR #43
- 170 45. #25 AND #44
- 171 46. 'limit 45 to yr="2010 - 2020"'
- 172 47. 'limit 46 to english language'
- 173 48. #30 OR #40 OR #47
- 174 Table B-6. CINAHL literature search strategy
- 175 176 1. (MH Confusion+)
- 177 ((TI delirium OR AB delirium OR SU delirium) OR (TI delirious OR AB delirious OR SU delirious)) 2.
- 178 3. (TI "altered consciousness" OR AB "altered consciousness" OR SU "altered consciousness")



- 179 (((TI emergence OR AB emergence OR SU emergence) OR (TI emergent OR AB emergent OR SU emergent) 4. 180 OR (TI emerging OR AB emerging OR SU emerging) OR (TI emerge OR AB emerge OR SU emerge) 181 OR (TI postanesthe* OR AB postanesthe* OR SU postanesthe*) OR (TI postanaesthe* OR AB postanaesthe* OR SU postanaesthe*) OR (TI anesthe* OR AB anesthe* OR SU anesthe*) OR (TI 182 anaesthe* OR AB anaesthe* OR SU anaesthe*)) N3 ((TI agitat* OR AB agitat* OR SU agitat*) OR (TI 183 184 excite* OR AB excite* OR SU excite*)))
- 185 ((TI "Memorial Delirium Assessment Scale" OR AB "Memorial Delirium Assessment Scale" OR SU "Memorial 5. 186 Delirium Assessment Scale") OR (TI MDAS OR AB MDAS OR SU MDAS)) (439)
- 187 ((TI "Confusion Assessment Method for the Intensive Care Unit" OR AB "Confusion Assessment Method for the 6. 188 Intensive Care Unit" OR SU "Confusion Assessment Method for the Intensive Care Unit") OR (TI "CAM 189 ICU" OR AB "CAM ICU" OR SU "CAM ICU")) (349)
- 190 7. ((TI "Intensive Care Delirium Screening Checklist" OR AB "Intensive Care Delirium Screening Checklist" OR SU 191 "Intensive Care Delirium Screening Checklist") OR (TI ICDSC OR AB ICDSC OR SU ICDSC)) (109)
- ((TI "Delirium Rating Scale" OR AB "Delirium Rating Scale" OR SU "Delirium Rating Scale") OR (TI "DRS R 98" 192 8. 193 OR AB "DRS R 98" OR SU "DRS R 98")) (247)
- 194 (TI "Neecham Confusion Scale" OR AB "Neecham Confusion Scale" OR SU "Neecham Confusion Scale") (36) 9.
- 195 10. (TI "Nursing Delirium Screening Scale" OR AB "Nursing Delirium Screening Scale" OR SU "Nursing Delirium 196 Screening Scale") (42)
- 11. S1 OR S2 OR S3 OR S4 OR S5 OR S6 OR S7 OR S8 OR S9 OR S10 (20165) 197
- 198 12. (MH Schizophrenia+) (102926)
- 199 13. (TI schizophreni* OR AB schizophreni* OR SU schizophreni*) (110310)
- 200 14. S12 OR S13 (130102)
- 201 15. S11 NOT S14 (19394)
- 202 16. (TI pediatric* OR TI preschool* OR TI toddler* OR TI infan* OR TI child* OR TI adolescent*) (1044684)
- 203 17. S15 NOT S16 (18544)

- 18. (TI animal* OR TI mouse OR TI mice OR TI rat* OR TI rodent* OR TI dog* OR TI canine OR TI cow* OR TI norse* OR TI mare* OR TI rabbit*), sh. (6801219)
- 206 19. S17 NOT S18 (17860)
- 207 20. (MH "Treatment Outcome") (945755)
- 208 21. (MH "Drug Therapy") (30310)
- 209 22. ((TI prevent* OR AB prevent* OR SU prevent*) OR (TI avoid* OR AB avoid* OR SU avoid*) OR (TI treat* OR AB
 210 treat* OR SU treat*) OR (TI intervention* OR AB intervention* OR SU intervention*) OR (TI drug OR AB
 211 drug OR SU drug) OR (TI medication* OR AB medication* OR SU medication*) OR (TI pharmacologic*
 212 OR AB pharmacologic* OR SU pharmacologic*) OR (TI nonpharmacologic* OR AB nonpharmacologic*
 213 OR SU nonpharmacologic*) OR (TI psychosocial OR AB psychosocial OR SU psychosocial))
 214 (6784727)
- 215 23. ((MW dt) OR (MW pc) OR (MW th) OR (MW nu)) (4983222)
- 216 24. S20 OR S21 OR S22 OR S23 (9135995)
- 217 25. S19 AND S24 (11120)
- 218 26. ((TI random* OR AB random*) OR (TI controlled OR AB controlled) OR (TI placebo OR AB placebo) OR (TI 219 sham OR AB sham) OR (TI trial OR AB trial) OR (TI blind* OR AB blind*)) ,kw. (1683803)
- 220 27. (MH "Clinical Trial"+) (849102)
- 221 28. S26 OR S27 (2017548)
- 222 29. S25 AND S28 (1595)
- 223 30. "limit 29 to english language" (1448)
- 224 31. (MH "observational study") OR (MH "comparative study") (1917741)
- 225 32. (MH "cohort studies"+) (1947656)
- 226 33. (MH "case-control studies"+) (1049859)
- 34. ((TI cohort* OR AB cohort*) OR (TI "case control" OR AB "case control") OR (TI prospective OR AB prospective)
 OR (TI retrospective OR AB retrospective) OR (TI observational OR AB observational) OB (TI observational OB (TI observati) Observati) OB (TI observatio) Observatio) OB (TI observatio)
- 230 35. S31 OR S32 OR S33 OR S34 (4096950)
- 231 36. PT "case reports" (1971444)
- 37. ((TI "case series" OR AB "case series" OR SU "case series") OR (TI "case report*" OR AB "case report*" OR SU
 "case report*")) (364960)
- 234 38. S35 NOT (S36 OR S37) (3932204)
- 235 39. S25 AND S38
- 236 40. "limit 39 to english language"
- 237 41. (MH meta-analysis)
- 238 42. (MH "systematic review")
- 43. ((TI systematic OR AB systematic OR SU systematic) OR (TI "meta analysis" OR AB "meta analysis" OR SU
 240 "meta analysis") OR (TI metaanalysis OR AB metaanalysis OR SU metaanalysis) OR (TI medline OR
 241 AB medline OR SU medline) OR (TI cochrane OR AB cochrane OR SU cochrane))
- 242 44. S41 OR S42 OR S43
- 243 45. S25 AND S44
- 244 46. "limit 45 to yr="2010 2020""
- 245 47. "limit 46 to english language"
- 246 48. S30 OR S40 ŎR S47


247 Literature Flow Diagrams

248 Figure B-1. Literature flow diagram for initial literature search.

- ^a Additional sources include suggested references, reference lists, etc.
- 250 ^b 267 studies in 277 publications

251 Figure B-2. Literature flow diagram for updated literature search.

- ^a Additional sources include suggested references, reference lists, etc.
- 253 ^b 34 new trials and 3 cohort studies

254 Study Selection

- 255 Initial searches were conducted in Ovid® MEDLINE®, PsycINFO®, Embase®, Cochrane Central Register of
- 256 Controlled Trials, and Cochrane Database of Systematic Reviews from database inception through
- 257 October 2020 to identify studies eligible for this review, according to the criteria listed in Table B-7. An
- updated search was conducted using the same search strategies to identify studies through July 9, 2021.
- 259 Studies were selected for inclusion using pre-established criteria based on the KQs (see Appendix A) and
- 260 PICOTs (see Table B-7), which focused on the benefits and harms of interventions to prevent and treat
- 261 delirium. Studies with mixed populations, where interventions addressed both prevention and
- treatment of delirium, were included and classified separately. A third KQ assessed patient-level or
- 263 setting factors that modify the effects (benefits or harms) of the interventions, which included
- 264 demographics, comorbidities and severity of underlying illness, and type of setting.
- The population was restricted to adults (≥18 years old) at risk for delirium or with delirium. Studies that
- used Diagnostic and Statistical Manual (DSM) criteria were considered for inclusion, as well as studies
- that used a clinical diagnosis of delirium. Studies that assessed agitation, including post-operative
- agitation, were excluded if there was no DSM or clinical diagnosis of delirium. Inclusion was restricted to
- 269 English-language articles and interventions that were available in the United States.
- 270 A hierarchy-of-evidence approach was used in which observational studies with at least 50 participants
- 271 were included only if inadequate evidence was found in randomized controlled trials (RCTs) for primary
- 272 outcomes on any KQ. Given the substantial number of RCTs that were identified, observational studies
- 273 were only included to fill in gaps in the review.
- 274 For both the initial and updated searches, title and abstract were screened by an initial reviewer with
- excluded articles screened by a second reviewer. Full text review was conducted in duplicate. Any
- discrepant determinations in title/abstract or full text review were resolved by consensus with input
- 277 included from a third individual if consensus could not be reached.
- 278 Table B-7. Inclusion criteria by PICOTS element

PICOTS Element	Include	Exclude
Populations	Adults (≥18 years old) at risk for delirium or with	Children and adolescents
	delirium, including those on palliative care and at	(<18 years old), delirium
	end of life	tremens
Interventions	Drug interventions (e.g., antipsychotics,	No intervention
	cholinesterase inhibitors, sedatives, hypnotics,	
	analgesics, melatonin, over-the-counter	
	medications, complementary and alternative	
	medicine) and nondrug interventions (e.g.,	
	environmental, light therapy, pain management,	
	psychosocial interventions, reduction of	
	unnecessary medications)	

PICOTS Element	Include	Exclude
Comparisons	Placebo, no intervention (usual care), other drug	No comparison
	interventions, other non-drug interventions,	
	different doses, frequencies, or intensities of	
	interventions	
Outcomes	Incidence and severity of delirium, frequency of	None
	delirium episodes, duration of delirium, agitation,	
	re-admission or admission to hospital, quality of life	
	(including PTSD, cognitive decline, etc.), caregiver	
	burden, rescue medication use, length of stay in	
	hospital or ICU, mortality, adverse events ^a	
Duration	Any duration	None
Settings	Any setting, including inpatient, hospice, and nursing	None
	homes	
Study designs	RCTs, observational studies with N≥50, non-	Uncontrolled,
	randomized clinical studies with a comparator	observational study with
		no comparator

^aOutcomes for which Strength of Research Evidence was assessed are shown in **bold**.

Abbreviations. ICU=intensive care unit; N=number; PTSD=post-traumatic stress disorder; RCT=randomized
 controlled trial.

282 Data Extraction

- 283 Data were abstracted from included studies into evidence tables, including study and patient
- 284 characteristics and study results, with data verified for accuracy and completeness by a second team
- 285 member. Study and patient characteristics abstracted were: setting, eligibility criteria, age, percent
- 286 female, race, other population characteristics (baseline delirium, function, dementia, cancer, and
- admission for surgery), number of participants randomized and analyzed, whether the intervention was
- 288 for prevention or treatment, intervention characteristics, timing and duration of the intervention,
- 289 duration of follow-up, and funding source. Data abstracted for results were incidence, severity, and
- 290 duration of delirium, length of intensive care unit (ICU) and hospital stay, mortality, treatment-related
- adverse events, and additional outcomes identified in our PICOTS. Where trials reported more than one
- delirium measurement over the study period, a cumulative measure was reported if available.
- 293 Otherwise, a time point was used that either matched that reported in other similar studies or was the
- latest one reported. All study data were verified for accuracy and completeness by a second team
- 295 member.

296 Risk of Bias Assessment

- 297 Risk of bias ratings are included in evidence tables (see Appendix D) with specific factors contributing to
- 298 the risk of bias for each study shown in Appendix E. Predefined criteria were used to assess the risk of
- bias of included trials. RCTs were assessed based on criteria established in the Cochrane Handbook for
- 300 Systematic Reviews of Interventions (Furlan et al. 2015; Higgins et al. 2023) with observational studies
- assessed using criteria developed by the U.S. Preventive Services Task Force (Harris et al. 2001). Two
- team members independently assessed risk of bias and assigned an overall rating of low, moderate, or
- 303 high risk of bias, with disagreements were resolved by consensus.

- 304 Studies rated low are considered to have the least risk of bias, and their results are generally considered
- 305 valid. Low risk of bias intervention studies include a valid method for allocating patients to treatment,
- and similar patient characteristics across groups at baseline; blinding of patients, caregivers, and
- 307 outcome assessors to treatment received; low and non-differential dropout rates and clear reporting of
- 308 dropouts; and use of intention-to-treat analysis.
- 309 Studies rated moderate are susceptible to some bias, though not enough to invalidate the results. These
- 310 studies may not meet all the criteria for a rating of low risk of bias, but no flaw or combination of flaws is
- 311 likely to cause major bias. The study may be missing information, making it difficult to assess limitations
- and potential problems. The moderate risk of bias category is broad, and studies with this rating vary in
- their strengths and weaknesses. The results of some moderate studies are likely to be valid, while others
- 314 may be only possibly valid.
- 315 Studies rated high have significant flaws that imply biases of various types that may invalidate the
- 316 results. They have a serious or "fatal" flaw (or combination of flaws) in design, analysis, or reporting;
- 317 large amounts of missing information or very high attrition; discrepancies in reporting; or serious
- 318 problems in the delivery of the intervention. The results of these studies are at least as likely to reflect
- 319 flaws in the study design as to show true difference between the compared interventions. We did not
- 320 exclude studies rated high risk of bias a priori, but high risk of bias studies were considered less reliable
- 321 and given less weight than lower risk of bias studies when synthesizing the evidence, particularly when
- 322 discrepancies between studies were present.

323 Data Synthesis and Analysis

- 324 Evidence was analyzed according to KQs, using both qualitative (narrative) and where possible
- 325 quantitative (meta-analysis) methods. In both approaches, drug studies were grouped by setting (e.g.,
- 326 surgical, ICU, general inpatient), and non-drug studies by intervention type (single-component vs. multi-
- 327 component). For drug studies, within each setting, drugs of the same general class were assessed
- 328 together.
- 329 To determine whether meta-analysis could be meaningfully performed, we considered the quality of the
- 330 studies and the heterogeneity among studies in design, patient population, interventions, and
- 331 outcomes. Meta-analyses were conducted on outcomes of delirium incidence, severity, and duration,
- 332 ICU and hospital length of stay, and mortality, when there were at least two studies reporting the same
- 333 outcome.
- 334 DerSimonian and Laird random effects models were used for meta-analyses (Hardy and Thompson
- 1996), with heterogeneity assessed using both the χ^2 test and the I-squared (I²) statistic (Higgins and
- Thompson 2002). Small study effects (including potential publication bias) were analyzed using funnel
- plots and the Egger and Harbord tests, where there were at least 10 studies combined in meta-analyses.
- 338 For dichotomous outcomes, relative risks (RRs) and 95% confidence intervals (CIs) were calculated and
- 339 presented with the incidence in each group. RRs were calculated rather than absolute risk differences to
- 340 account for variation in the underlying risk for the outcome in different study populations. For
- 341 continuous outcomes, mean differences (MDs) were calculated (or standardized mean differences

- [SMDs] when outcome measures differed) as well as 95% Cls. When necessary, standard error was
- estimated from other measures of variance that trials reported. All analyses were performed using
- 344 STATA® 14.2 (StataCorp, College Station, TX). Selected forest plots for meta-analyses are included in the
- text, and additional forest plots for additional outcomes are available upon request.
- 346 The *a priori* plan for subgroup analysis included the population characteristics specified in KQ 3 in
- 347 Appendix A. For studies that could be combined, meta-analyses were stratified by factors such as
- 348 setting, type of surgery, or comparator. Meta-regression was used to calculate p-values for the
- 349 interaction between these factors and treatment in their effects on outcomes. Where individual trials
- analyzed subgroups within their study populations, these are reported as well.
- **351** Rating the Strength of Guideline Statements and the Body of Research Evidence
- 352 Each guideline statement is separately rated to indicate strength of recommendation and strength of
- 353 supporting research evidence as described in the Introduction and Guideline Development Process.
- 354 The Pacific Northwest EPC evaluated the strength of research evidence (SRE) of primary outcome-
- 355 intervention pairs using AHRQ methods (Berkman et al. 2015). Primary outcomes assessed were
- delirium incidence, severity, and duration, and adverse events.
- 357 Outcomes assessed for SRE were prioritized based on input from the American Psychiatric Association
- 358 (APA); these are footnoted and listed in bold in the Table B-7. PICOTS element. Based on this prioritized
- list, the SRE for comparison-outcome pairs within each KQ was initially assessed by one researcher for
- each clinical outcome by using the approach described in the AHRQ *Methods Guide for Comparative*
- 361 *Effectiveness Review* (Berkman et al. 2015). To ensure consistency and validity of the evaluation, the
- 362 ratings for SRE were dual reviewed for:
- Study limitations (low, medium, or high)
- 364 Rated as the degree to which studies for a given outcome are likely to reduce bias based 365 on study design and study conduct (reflected in risk of bias assessments).
- Consistency (consistent, inconsistent, or unknown/not applicable)
- 367Rated by degree to which studies find similar magnitude of effect (i.e., range sizes are368similar) or same direction (i.e., effect sizes have the same sign). When available,369measures of statistical heterogeneity in meta-analyses also contributed to assessments370of consistency.
- Measures of statistical heterogeneity in meta-analyses
- 372Rated as unknown (rather than not applicable) with downgrading of the SRE if only one373study was available. This evidence was not automatically assessed as "insufficient," but374instead, the SRE considered the sample size or number of events available for analysis.
- Directness (direct or indirect)

- 376 Rated by degree to which evidence assesses a) comparison of interest, with studies that
 377 directly compare included interventions b) in the population of interest, and c)
 378 measures a clinically important outcome of interest.
- Precision (precise or imprecise)
- 380 Rated based on the degree of certainty surrounding an effect estimate as it relates to a specific outcome. This may be based on sufficiency of sample size and number of 381 382 events, and if these are adequate, the interpretation of the confidence interval. 383 Thresholds of 400 analyzed patients were used for continuous outcomes, and 300 384 events were used for dichotomous outcomes to determine whether the Optimal Information Size (OIS) had been met. If the OIS was met, the 95% CI was evaluated 385 386 according to the criteria in the AHRQ Methods Guide for Comparative Effectiveness 387 Review (Berkman et al. 2015). The SRE was downgraded if either assessment indicated 388 imprecision.
- Publication bias (suspected or undetected)
- 390Rated based on whether funnel plots or statistical methods showed evidence of391selective publishing of research findings based on favorable direction or magnitude of392effects. If fewer than 10 studies were available to conduct such analyses, this domain393was rated as "unknown".
- By evaluating and weighing the combined results of the above domains, the bodies of research evidence
- 395 (specific outcome and intervention comparisons) were assigned an overall grade of high, moderate, low,
- 396 or insufficient according to a four-level scale that reflected the confidence or certainty in the findings
- 397 (Table B-8).
- 398 Table B-8. Definitions of the grades of overall strength of research evidence (Berkman et al. 2015)

Grade	Definition
High	We are very confident that the estimate of effect lies close to the true effect for this outcome. The body of evidence has few or no deficiencies. We believe that the findings are stable (i.e., another study would not change the conclusions).
Moderate	We are moderately confident that the estimate of effect lies close to the true effect for this outcome. The body of evidence has some deficiencies. We believe that the findings are likely to be stable, but some doubt remains.
Low	We have limited confidence that the estimate of effect lies close to the true effect for this outcome. The body of evidence has major or numerous deficiencies (or both). We believe that additional evidence is needed before concluding either that the findings are stable or that the estimate of effect is close to the true effect.

Insufficient	We have no evidence, we are unable to estimate an effect, or we have no confidence in
	the estimate of effect for this outcome. No evidence is available, or the body of
	evidence has unacceptable deficiencies, precluding reaching a conclusion.

- 399 The APA uses these same definitions for the overall strength of research evidence with the modification
- 400 that the *low* rating is used when evidence is insufficient because there is low confidence in the
- 401 conclusion and further research, if conducted, would likely change the estimated effect or confidence in
- 402 the estimated effect.
- In addition to assessing the SRE, the magnitude of effects were summarized according to thresholds of
 little to no difference, small, moderate, or large effects (Table B-9). These were applied regardless of the
- 405 statistical significance of the differences.

Magnitude	Absolute Difference	RR (or OR)	MD (days)	SMD (severity)
Little/no difference:	<5%	>0.81 to <1.2	<1.0	<0.2
Small	5% to 10%	1.2 to 1.4	>1 to 2.0	0.2 to 0.5
Moderate	11% to 20%	1.5 to 1.9	>2.0 to 3.0	>0.5 to 0.8
Large	>20%	≥2.0	> 3.0	>0.8

406 Table B-9. Categories of magnitude of difference or effect

- 407 *Abbreviations*. MD=mean difference; OR=odds ratio; RR=relative risk; SMD=standardized mean difference.
- 408 In reporting the results of studies on treatment of delirium, the word "response" is used to indicate that
- 409 the study reported the proportion of patients who either had no symptoms of delirium or did not meet
- 410 the threshold for delirium on the scales used, at study endpoint. Note that, in this report, the term
- 411 "significant" is used to describe statistically significant differences in the results, and the categories
- 412 above are used to describe the magnitudes of difference in findings.

- 413 Appendix C. Review of Research Evidence Supporting Guideline Statements
- 414 Assessment and Treatment Planning
- 415 Statement 1 Structured Assessments for Delirium
- 416 APA recommends (1C) that patients with delirium or who are at risk for delirium undergo regular
- 417 structured assessments for the presence or persistence of delirium using valid and reliable measures.
- 418 Support for this statement comes from the literature on delirium prevention and management, general
- 419 principles of assessment, and clinical care in psychiatric practice, from epidemiologic data on the
- 420 prevalence of delirium in non-community populations (e.g., hospitalized general medical patients,
- 421 critical care patients), and from data on the validation of delirium screening tools. Together, the
- 422 strength of research evidence is rated as low.
- 423 A detailed systematic review to support this statement is outside the scope of this guideline; however, a
- 424 less comprehensive search of the literature identified multiple studies and reviews advising clinicians to
- 425 engage in routine assessment and screening for delirium (Bush et al. 2017; Devlin et al. 2018; Kotfis et
- 426 al. 2018; Mart et al. 2021). In addition, delirium is under-detected, even by highly trained health care
- 427 professionals in acute care settings, unless screening is implemented using tools as used in validation
- 428 studies and including deliberate cognitive assessment (Bush et al. 2017; Carpenter et al. 2021; Devlin et
- 429 al. 2007; Geriatric Medicine Research Collaborative 2019; Grossmann et al. 2014; Kotfis et al. 2018;
- 430 Spronk et al. 2009). These findings also support this guideline recommendation.
- 431 Grading of the Overall Supporting Body of Research Evidence for Structured Assessments for Delirium
- 432 In the absence of a detailed systematic review on the topic of structured assessments for delirium, no
- 433 grading of the body of research evidence is possible.
- **434** Statement 2 Determination of Baseline Neurocognitive Status
- APA recommends (1C) that a patient's baseline neurocognitive status be determined to permit accurate
 interpretation of delirium assessments.
- 437 Support for this statement comes from the literature on delirium diagnosis and assessment and from
- 438 the definition of delirium itself, which states that delirium represents an acute departure from a
- 439 person's baseline attention and awareness (American Psychiatric Association 2022). Additionally, many
- delirium assessments, such as the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU),
- 441 include instructions or assessment items that state outright that the patient's symptoms must represent
- 442 a change from baseline cognitive functioning.
- A detailed systematic review to support this statement is outside the scope of this guideline; however, a
- less comprehensive search of the literature identified multiple studies and reviews that emphasized the
- 445 importance of baseline cognitive status for determining whether cognitive changes are present and
- reflective of delirium or some other pathology (Duggan et al. 2021; Fong and Inouye 2022; Grover and
- 447 Kate 2012; Kotfis et al 2018; Maldonado 2017; Meagher and Leonard 2008; Oh et al. 2017; Ospina et al.
- 448 2018). Without information on the patient's baseline cognitive status, the diagnosis of delirium can be
- 449 missed, as the clinician would be unable to tell whether the presenting symptoms represent an acute

- 450 change from normal (Oh et al. 2017). This is particularly true in patients who have some pre-existing
- 451 cognitive impairment. Baseline cognitive status upon hospital admission also may help determine the
- risk of incident delirium and duration during a hospital stay (Tsui et al. 2022), because patients with pre-
- 453 existing cognitive impairment are more likely to develop delirium and for delirium to persist. Similarly,
- 454 knowledge of a patient's baseline cognitive status is important for differentiating between delirium and
- dementia, as acute changes from baseline are more indicative of the former whereas slower, more
- 456 subtle changes reflect the latter (Fong and Inouye 2022).
- 457 Grading of the Overall Supporting Body of Research Evidence for Determination of Baseline Cognitive458 Status
- 459 In the absence of a detailed systematic review on the topic of baseline cognitive status determination,
- 460 no grading of the body of research evidence is possible.
- 461 Statement 3 Review for Predisposing or Contributing Factors

462 APA recommends (1C) that patients with delirium or who are at risk for delirium undergo a detailed

- 463 review of possible predisposing or contributing factors.
- 464 Support for this statement comes from the literature on delirium management, which underscores the
- 465 importance of resolving delirium precipitants as the primary intervention. Although not all contributing
- 466 factors to delirium will be modifiable, review of possible precipitants can help clinicians identify factors
- 467 amenable to change and implement interventions in a timely manner. Early intervention in delirium can
- 468 help reduce the risk of serious complications, such as dehydration, pneumonia, and falls, among others
- 469 (O'Hanlon et al. 2014). In some studies, timely intervention has also been associated with a reduction in
- 470 delirium duration (O'Hanlon et al. 2014).
- 471 A detailed systematic review to support this statement is outside the scope of this guideline; however, a
- 472 less comprehensive search of the literature on the management of delirium found numerous studies
- and reviews that emphasize the importance of identifying and reversing underlying causes and
- 474 contributors to delirium as a cornerstone of delirium treatment (Z. Jin et al. 2020; Maldonado 2017;
- 475 Mart et al. 2021; Mattison et al. 2020; Oh and Park 2019; Ospina et al. 2018; Wilson et al. 2020; see also
- 476 Statement 3, Implementation). This is especially important given that some underlying causes may be
- 477 life-threatening, such as intracranial hemorrhage, hypertensive crisis, electrolyte imbalance, hypoxemia,
- 478 and infection (Ospina et al. 2018).
- 479 Grading of the Overall Supporting Body of Research Evidence for Review of Predisposing or Contributing480 Factors
- 481 In the absence of a detailed systematic review on the topic of predisposing or contributing factors to
- 482 delirium, no grading of the body of research evidence is possible.
- 483 Statement 4 Review of Medications
- 484 APA recommends (1C) that a detailed medication review be conducted in patients with delirium or who
- 485 are at risk for delirium, especially those with pre-existing cognitive impairment.

- 486 Support for this statement comes from the literature on delirium risk, management, and prevention,
- 487 which underscores the importance of assessing medication use as a potential contributor to or
- 488 exacerbator of delirium.

489 A detailed systematic review to support this statement is outside the scope of this guideline; however, a 490 less comprehensive search of the literature on the risks, management, and prevention of delirium 491 highlights the importance of medication review. It has been estimated that as many as 39% of all cases 492 of delirium may be due to medication use (Adeola et al. 2018). Research on medication-related risk 493 factors for delirium has found a higher odds of delirium in patients treated with antipsychotics, 494 benzodiazepines, anticholinergics, opioids (especially when combined with benzodiazepines), and 495 polypharmacy (Aloisi et al. 2019; Duprey et al. 2021, 2022; Featherstone et al. 2022; Kang et al. 2019; 496 Kassie et al. 2017; Lee et al. 2022; Marquetand et al 2022; Reisinger et al. 2023; Rigor et al. 2020; Saljugi 497 et al. 2020; Shi et al 2022; Silva et al. 2021; Softy et al. 2023; Vacas et al. 2022; H. Zhang et al. 2021); 498 however, some of these associations may result from the use of these medications in patients with early 499 signs of delirium to address neuropsychiatric symptoms. In addition, medications such as antipsychotics 500 and benzodiazepines can increase the risk of adverse effects, including cardiac disturbances, falls, 501 cognitive impairment, cerebrovascular events, infection, and mortality (Johnson et al. 2017; Markota et 502 al. 2016). Although antipsychotic medications do not appear to decrease the incidence or duration of 503 delirium (Neufeld et al. 2016; Nikooie et al. 2019; see also Statement 8), they are sometimes used in an 504 effort to reduce behavioral symptoms of delirium. Once prescribed, these medications are often 505 continued after transfer of care and hospital discharge (Boncyk et al. 2021; Dixit et al. 2021; Flurie et al. 506 2015; Johnson et al. 2017; Lambert et al. 2021; see also Statements 14 and 15).

507 Deliriogenic medication use is even more concerning in patients with preexisting cognitive impairment 508 because some of these medications can exacerbate cognitive dysfunction and lead to poorer outcomes 509 for patients. For instance, anticholinergics are associated with increased memory and learning 510 impairment, with a greater magnitude of effect observed in people with preexisting cognitive dysfunction versus cognitively normal individuals (Taylor-Rowan et al. 2023). Benzodiazepines similarly 511 512 are associated with an increased risk of impairments in memory, learning, attention, and visuospatial 513 abilities especially with prolonged exposure in older adults (Markota et al. 2016; Picton et al. 2018). 514 Furthermore, patients with premorbid cognitive dysfunction are already at a greater risk of delirium 515 than cognitively healthy adults, likely due in part to the neurodegeneration and neuroinflammation 516 associated with cognitive decline (Davis et al. 2015; Prendergast et al. 2022). Exposure to potentially 517 deliriogenic medication in these patients further increases their vulnerability to delirium and could make 518 them more susceptible to poor outcomes associated with delirium, such as further cognitive 519 deterioration and dementia (Wilson et al. 2020).

520 Medication review is a necessary precursor to medication cessation or dose reduction. It can also be an 521 effective non-pharmacologic strategy to reduce unnecessary exposure to high-risk medication. Although 522 many studies of medication review and deprescribing have been conducted in ambulatory or long-term 523 care settings (Evrard et al. 2022), some studies have examined hospital settings or patients with delirium 524 or at risk for delirium. For example, in a large study of ICU patients (N=281), physician and nurse 525 education, medication review, and an antipsychotic discontinuation algorithm were associated with

- 526 reduced rates of antipsychotic continuation at transfer of care (*P*=0.014) and at hospital discharge
- 527 (P=0.024) (D'Angelo et al. 2019). Similarly, a pharmacist-led intervention (e.g., pharmacy surveillance
- 528 alerts and discontinuation/dose reduction plans) effectively reduced unnecessary exposure to high-risk
- 529 medications in hospitalized patients with delirium (Adeola et al. 2018). In contrast, in a study of 200
- adults age 18 or older who were admitted to an ICU with delirium, there was no impact of a
- 531 deprescribing initiative that used electronic alerts and pharmacist support to reduce use of
- anticholinergic medications and benzodiazepines (Campbell et al. 2019).
- 533 Medication review is often a component of multi-component non-pharmacologic interventions for
- patients at risk for delirium (Burton et al. 2021), and much of the literature on its effects in preventing
- 535 incident delirium come from studies of multi-component interventions. A pilot study of a nurse
- 536 intervention to prevent delirium in hospitalized older adults (N=50; Avendano-Cespedes et al. 2016)
- 537 found that a multifactorial intervention, which included medication review, was associated with a
- significantly lower incidence of delirium versus controls (3% vs. 12%, P=0.039), as well as lower delirium
- 539 severity (*P*=0.04). In a study of older adults with severe pancreatic encephalopathy, use of the Hospital
- 540 Elderly Life Program intervention—which included medication review and management—was
- associated with significantly lower incidence of delirium versus controls (4% vs. 17%, *P*=0.033 [Dong et
- al. 2020]). A multicenter RCT of a geriatric-focused multi-component intervention that included
- 543 medication review also reported a reduced incidence of delirium with the intervention versus usual care
- 544 (N=260; 9.4% vs. 14.3%, OR 0.63, 95% CI 0.29–1.35 [Hempenius et al. 2013]).
- 545 Fewer studies have examined medication review as an intervention in isolation, but existing evidence
- 546 suggests it could help reduce delirium prevalence, duration, and length of episodes. In a trial conducted
- 547 in the Netherlands (N=93) that assessed the effects of medication review on length of delirium, length of
- 548 stay, mortality, and discharge destination (van Velthuijsen et al 2018), delirium duration was shorter in
- 549 intervention patients versus controls (8.56 days vs. 15.47 days). Additionally, among intervention
- patients who were taking up to six medications, episodes of delirium were significantly shorter than in
- 551 controls taking up to six medications (MD 15.46 days, *P*<0.001).
- 552 Grading of the Overall Supporting Body of Research Evidence for Detailed Medication Review
- 553 In the absence of a detailed systematic review on the topic of detailed medication review for patients
- 554 with delirium or who are at risk for delirium, no grading of the body of research evidence is possible.
- **555** Statement 5 Use of Restraints
- 556 APA recommends **(1C)** that physical restraints not be used in patients with delirium, except in situations 557 where injury to self or others is imminent and only:
- after review of factors that can contribute to racial/ethnic and other biases in decisions
 about restraint;
- 560 with frequent monitoring; and
- with repeated reassessment of the continued risks and benefits of restraint use as
 compared to less restrictive interventions.

563 This recommendation is based on a focused review of the literature on the use of physical restraints in

patients with or at risk for delirium as well as the literature on precipitating and predisposing factors ofdelirium.

566 Physical restraints are often used to enhance patient safety, prevent self-extubation or tube 567 dislodgment, reduce the risk of falls, and protect staff from patient combativeness (Devlin et al. 2018). 568 However, there are no data from RCTs that support these benefits. Paradoxically, one post-hoc study 569 found greater rates of device removal or need for reintubation in patients who were physically 570 restrained (Rose et al. 2016). Several additional studies also reported rates of self-extubation of at least 571 80% despite the presence of physical restraints (Perez et al. 2019). Data on falls and restraint use is also 572 limited and likely dependent on the type of restraint used, with some studies including bedrails or 573 bed/chair alarms as forms of restraint (Abraham et al. 2022). Studies of falls and restraint use have also 574 been confounded by factors that could increase both types of events. For example, one study found 575 injurious falls occurred in individuals who had a mental status change in the prior 24 hours and that such 576 falls were associated with a greater length of stay in those who were physically restrained after the 577 mental status change (Francis-Coad et al. 2020). Another study found that patients with an order for 578 physical restraint fell more often than patients without such an order; however, many patients with an 579 order were not actually found to be restrained and the order for restraint may have been placed due to

- 580 a perceived increase in fall risk (Shorr et al. 2002).
- 581 In patients with delirium, use of physical restraints is generally not recommended because delirium can
- be caused by easily identifiable and correctable factors that can be avoided by thoroughly assessing for
- 583 contributing factors to the delirium (Smithard and Randhawa 2022). Use of restraints can also
- exacerbate agitation, heighten confusion, and lead to injury (Sharifi et al. 2021; Teece et al. 2020). Many
- 585 physical consequences of restraints have been reported and can include pressure ulcers, fractures,
- 586 cardiac arrythmias, musculoskeletal injuries, incontinence, asphyxiation, and potentially death from
- 587 strangulation (Sharifi et al. 2021). Rates of such events have not been well studied, but one prospective
- study found that neurovascular effects (e.g., redness, edema, color changes, reduced pulse strength)
 were greater in restrained limbs after 4 days of restraint than on the initial day of restraint (Ertuğrul and
- 590 Özden 2020).

591 Emotional harms of restraint have also been described. In one qualitative study of patients who had 592 been physically restrained in an emergency department, the experience was viewed as frightening and 593 dehumanizing, prompting a sense of helplessness, anxiety, and mistrust of health care as well as some 594 long-term psychological effects (Wong et al. 2020). A systematic review of PTSD in ICU settings identified 595 three studies that examined the association of PTSD and restraint use (Franks et al. 2021). One of these 596 studies (N=98) found that one-third of ICU survivors had symptoms of PTSD and that risk of PTSD 597 symptoms was greater in those who recalled being physically restrained during the admission (OR 6.04, 598 95% CI 2.21–16.33, P<0.001 [Hatchett et al. 2010]). Another study (N=114) also found use of physical 599 restraint to be associated with a greater risk of meeting criteria for PTSD when assessed 3 months after 600 ICU discharge (OR 6.27, 95% CI 1.66–23.67, P=0.007 [Zghidi et al. 2019]). A larger study (N=238) used 601 structural equation modeling to investigate relationships between PTSD and possible contributors; it

found that individuals who were physically restrained without being concomitantly sedated werepredisposed to develop PTSD symptoms (Jones et al. 2007).

A number of observational studies have suggested that use of physical restraints is associated with an increase in the likelihood of incident delirium (Maldonado 2017; McPherson et al. 2013; Mehta et al. 2015; Pan et al. 2018). However, this does not imply a causal relationship. Rather, underlying factors or unreported clinical observations may contribute both to a greater likelihood of restraint use as well as to a greater likelihood of delirium being recognized. Future clinical trials could help establish whether restraint-free approaches to care are feasible and could improve delirium outcomes (Flaherty and Little

- 610 2011).
- 611 When the potential benefits of using physical restraints appear to outweigh the harms, it is important to
- 612 consider whether any biases have been introduced into the clinical decision-making. Evidence suggests
- racial/ethnic bias may be present in the use of physical restraints among hospitalized or emergency
- 614 department patients (Wong et al. 2021). For example, a retrospective chart analysis of more than
- 615 195,000 patients with emergency department visits found a significant increase in the use of restraints
- among Asian patients (RR 0.71, 95% CI 0.55–0.92, *P*=0.009) and Black patients (RR 1.22, 95% CI 1.05–
- 617 1.40, *P*=0.007) compared to White patients (Schnitzer et al. 2020). Another large retrospective study
- 618 (Wong et al. 2021) examined use of restraints among 726,417 emergency department visits of which 1%
- 619 included an episode of physical restraint. Black individuals were more likely to be restrained than White
- individuals (adjusted OR 1.13, 95% CI 1.08–1.21), whereas Hispanic or Latino individuals (adjusted OR
 0.78, 95% CI 0.70–0.88) had lower odds of being restrained compared with non-Hispanic individuals
- 621 0.78, 95% CI 0.70–0.88) had lower odds of being restrained compared with non-Hispanic individuals
 622 (Wong et al. 2021). Female patients also had lower odds of being restrained (adjusted OR 0.75, 95% CI
- 623 0.71–0.79 as compared to male patients [Wong et al. 2021]). Differences in the likelihood of restraint
- 624 use were also noted based on housing (patients who were homeless had adjusted OR 1.35, 95% CI 1.14–
- 625 1.16 as compared to those with housing) and insurance status (as compared to patients with private
- 626 insurance, patients with Medicaid had adjusted OR 1.55, 95% Cl 1.45–1.67 and those with Medicare had
- adjusted OR 1.67, 95% CI 1.54–1.82) (Wong et al. 2021). A retrospective study of 4,410,816 encounters
- 628 in Northern California included 6,369 encounters (5,554 unique patients) in which physical restraint was
- 629 used (Walia et al. 2023). Black patients and patients with other or unknown race/ethnicity had higher
- odds of restraint (adjusted OR 1.11, 95% CI 1.02–1.21 and adjusted OR 1.52, 95% CI 1.34–1.72,
 respectively) whereas Asian patients had lower odds (adjusted OR 0.75, 95% CI 0.66–0.85) as compares
- to White patients (Walia et al. 2023). Another analysis of 12,229 emergency department patient visits
- focused on patients 16 and older with diagnoses of aggression or agitation who received either chemical
- 634 or physical restraints used (Conteh et al. 2023). This study found Hispanic patients, as compared to
- 635 White patients, were less likely to receive physical restraints (*P*=0.044, 95% CI 0.467–0.989) or a dose of
- 636 a chemical restraints (*P*=0.008, 95% CI -0.359 to -0.053) (Conteh et al. 2023). However, this study
- 637 differed from the other emergency department samples in noting no statistically significant differences
- 638 when comparing Black patients to White patients on the likelihood of restraint use.
- 639 In studies that focused on restraint use during psychiatric emergency encounters, one study of more
- 640 than 32,000 emergency department encounters reported significantly higher odds of restraint use
- among Black (adjusted OR 1.22, 95% CI 1.01–1.48, P<0.001) and Hispanic patients (adjusted OR 1.45,

- 642 95% CI 1.22–1.73, P<0.01) compared with White patients (Carreras Tartak et al. 2021). Another
- 643 retrospective study of 12,977 emergency psychiatric evaluations observed that Black patients were
- more likely to be physically (adjusted OR 1.35, 95% Cl 1.07–1.72) or chemically (adjusted OR=1.33, 95%
- 645 CI 1.15–1.55) restrained than White patients (Smith et al. 2022).
- 646 Limited research has examined potential bias in the restraint of patients with delirium, but existing
- 647 studies are consistent with this pattern. In the National Inpatient Sample, a de-identified all-payors
- 648 database of acute care hospital discharges in the United States, restraints were used in 0.7% of overall
- 649 hospitalizations and 7.4% of patients with a diagnosis of encephalitis. In an adjusted model in the
- 650 sample as a whole, Black individuals had a greater likelihood of restraint than White individuals (OR 1.3,
- 651 95% CI 1.2–1.4), and men had a greater likelihood of restraint than women (OR 1.4, 95% CI 1.4–1.5)
- 652 (Luccarelli et al. 2023). The same sample included 991,605 patients noted to have dementia with
- behavioral disturbances, with physical restraints being used in 6.5%. Individuals who were restrained, as
- compared to unrestrained, were more likely to be Black (15.2% vs. 11.8%, *P*<0.01), males (59.0% vs.
- 45.8%, P<0.01), and younger in age (mean age ± standard error: 78.7 ± 0.25 vs. 79.9 ± 0.34, P<0.01)
- 656 (Singh et al. 2023).
- Factors other than race, ethnicity, gender, or age can also introduce bias into decisions related to
- 658 restraint. For example, a retrospective cohort study of general medical patients in Canada (Reppas-
- 659 Rindlisbacher et al. 2022) observed 2.6-fold the risk of physical restraint use among patients who did not
- 660 prefer English as their dominant language compared with patients who did prefer English (27.9% vs.
- 661 11.7%, adjusted RR 2.61, 95% CI 1.40–4.85).
- 662 Grading of the Overall Supporting Body of Research Evidence for Use of Restraints
- 663 In the absence of a detailed systematic review on the topic of restraint use in a patient with delirium, no 664 grading of the body of research evidence is possible.
- **665** *Statement 6 Person-Centered Treatment Planning*
- APA recommends (1C) that patients with delirium have a documented, comprehensive, and person-
- 667 centered treatment plan.
- 668 Support for this statement comes from the literature on delirium management and risk factors, which
- 669 underscores the complexity of delirium and the importance of accounting for individual variability in
- 670 symptoms, illness severity, and contributors when selecting appropriate treatments.
- 671 A detailed systematic review to support this statement is outside the scope of this guideline; however, a
- 672 less comprehensive search of the literature did not find evidence on the specific benefits of treatment
- 673 planning in patients with delirium. Nevertheless, best practices in clinical care and available information
- 674 on the risks and management of delirium demonstrate the need for a comprehensive, personalized
- 675 approach to treatment planning.
- Delirium has multiple etiologies, heterogenous phenotypes, and according to a recent systematic
- 677 literature review, 33 predisposing and 112 precipitating risk factors (Ormseth et al. 2023); because of
- this, management can be challenging and needs to be individualized (Devlin et al. 2018; Mart et al. 2021;

- 679 Ormseth et al. 2023). Multi-component non-pharmacologic treatments are the primary management
- tool for treating delirium (Mart et al. 2021; Oh and Park 2019) and evidence for those approaches is
- 681 described in Appendix C, Statement 7.
- 682 Person-centered treatment planning can include consideration of how family and caregivers can be
- 683 incorporated into care, as appropriate (Kukreja et al. 2015). A systematic review and meta-analysis of
- 684 family and caregiver interventions for delirium found family-caregiver involvement in delirium
- 685 management is associated with reduced length of hospital stay (10 days intervention vs. 14 days control,
- 686 *P*=0.005) and reduced levels of family anxiety (McKenzie and Joy 2020). Although more research is
- 687 needed to better understand the effects of including informal carers in delirium treatments, for some
- 688 patients with delirium, family and caregivers could be valuable in providing patients support, functional
- assistance, and reassurance (McKenzie and Joy 2020; Pandhal and Van Der Wardt 2022).
- 690 Grading of the Overall Supporting Body of Research Evidence for Person-Centered Treatment Planning
- 691 In the absence of a detailed systematic review on the topic of person-centered treatment planning for
- 692 patients with delirium, no grading of the body of research evidence is possible.
- 693 Non-Pharmacological Interventions
- 694 Statement 7 Multi-Component Non-Pharmacological Interventions
- 695 APA recommends (1B) that patients with delirium or who are at risk for delirium receive multi-
- 696 component non-pharmacological interventions to manage and prevent delirium.
- 697 In general, non-pharmacological interventions have been shown to prevent delirium in at-risk
- 698 populations but have not shown a consistent effect in reducing duration or severity of delirium once it is
- 699 present. Importantly, however, these studies of non-pharmacological interventions have key limitations
- and should be interpreted cautiously. For example, studies have extensive differences in the extent to
- which components are delivered and how they are operationalized in various hospital settings. Studies
- differ in the specific combination of interventions used in each trial, and interventions are also
- combined differently in the study arms. In some instances, overlaps between intervention and
- treatment as usual groups are not well-defined, whereas in in other instances, the same intervention
- has been implemented in different ways. These features of the study designs make it difficult to know
- the extent to which an intervention was actually provided. In addition, most of the interventions would
- be impossible to deliver in a blinded fashion, and few studies included procedures to ensure fidelity and
- completion of interventions, further complicating a robust analysis of the data. Other interventions,
- such as family involvement, may take place regardless of study participation. Finally, several elements of
- care may be unrecognized and could have an effect but have not been studied, observed, or controlled
- 711 for (e.g., having a private vs. a shared room).

712 Non-Pharmacological Interventions for the Prevention of Delirium

- 713 A systematic review conducted by the Pacific Northwest EPC assessed outcomes from multi-component
- and single-component non-pharmacological interventions among clinical trials designed to prevent
- 715 delirium. For both multi-component and single-component interventions, treatment groups had a
- significantly lower incidence of delirium than control groups. However, results were not significant for

- subgroups of general inpatient, home care/long-term care, or ICU populations. A Cochrane review of
- 718 multi-component interventions for the prevention of delirium similarly found a lower incidence of
- 719 delirium with treatment versus control (Burton et al. 2021). Analyses of studies of ABCDEF bundle
- 720 interventions found significant improvements in delirium symptoms compared with control patients, but
- this was highly dependent on the extent to which the patients completed every element of the bundle
- 722 (Balas et al. 2022; Barnes-Daly et al. 2017; Pun et al. 2019; Sosnowski et al. 2023). Hospital Elder Life
- 723 Program (HELP) interventions similarly demonstrated a reduction in delirium incidence with treatment
- (Chen et al. 2017; Hshieh et al. 2018; Inouye et al. 2000; Y.Y. Wang et al. 2020). Subgroup analyses
- 725 looking for effects of multi-component interventions by their specific interventions were generally not
- 726 significant.

727 Multi-Component Interventions

- The EPC systematic review identified 23 RCTs that are described in 26 publications (Abbasinia et al.
- 729 2021; Avendano-Cespedes et al. 2016; Boockvar et al. 2020; Boustani et al. 2012; Caplan et al. 2006;
- 730 Chen et al. 2011, 2017; Dong et al. 2020; Guo et al. 2016; Hamzehpour et al. 2018; Hempenius et al.
- 731 2013, 2016; Hosie et al. 2020; Khan et al. 2013; Moon and Lee 2015; Lapane et al. 2011; Lundström et al.
- 732 2005, 2007; Rice et al. 2017; Rood et al. 2021; Siddiqi et al. 2016; Stenvall et al. 2012; Verloo et al. 2015;
- 733 Y.Y. Wang et al. 2020; Watne et al. 2014; Young et al. 2020) and that compared a multi-component non-
- pharmacological intervention with usual care for the prevention of delirium. Sample sizes varied widely
- but were predominantly less than 200 subjects. Four trials were conducted in the United States, eight in
- 736 Europe, three in China, two in Taiwan and Australia each, and one each in Iran and South Korea. Six trials
- 737 were conducted post-operatively, with types of surgeries including cardiac, abdominal, orthopedic,
- oncologic, and other procedures. Other trials included seven conducted in general inpatient settings,
- three in ICUs, four in nursing home or home care settings, and one in a palliative care setting. A majority
- 740 of the trials had a moderate risk of bias.
- 741 Evidence also included outcomes from a Cochrane review of multi-component non-pharmacological
- 742 interventions (Burton et al. 2021). Additionally, studies on ABCDEF care bundles and from HELPs were
- also considered (Balas et al. 2022; Barnes-Daly et al. 2017; Chen et al. 2017; Hshieh et al. 2018; Inouye
- et al. 2000; Pun et al. 2019; Sosnowski et al. 2023; Y.Y. Wang et al. 2020), although they did not meet
- 745 inclusion criteria for the formal systematic review.

746 Overview of study characteristics

- 747 Interventions were a mix of behavioral and other types of interventions, with a mean of six interventions
- 748 (range 2 to 11; see Table C-1). Behavioral intervention studies included: sensory interventions (9 trials),
- orientation interventions (10 trials), cognitively stimulating activities (8 trials), and increasing self-
- 750 /independent care (3 trials). Other types of interventions included: early mobilization (15 trials), early
- 751 removal of urinary catheter (7 trials), avoidance of restraints (3 trials all of which also removed urinary
- catheters early), avoidance or reduction of certain medications (10 trials), sleep aids or promotion of
- 753 good quality sleep (10 trials), scheduled liquid intake to avoid dehydration (13 trials), nutritional
- assistance or scheduled oral food intake (13 trials, 11 of which also scheduled liquid intake), and
- 755 monitoring for infection (7 trials), need for transfusion (1 trials), need for oxygen (4 trials), need for pain
- 756 medications (7 trials). In the majority of trials (11 trials), interventions were delivered by nursing staff

- and, in other studies, multidisciplinary teams, research staff, or geriatric specialists were used. Only
- three trials involved family members in delivering the interventions. All control interventions were usual
- care of the hospital or facility where the trial was conducted and may have involved portions of the
- 760 multi-component interventions but were not utilized as consistently as in the intervention groups.

DRAFT January 25, 2024 NOT FOR CITATION

761 Table C-1. Components in multi-component intervention trials for the prevention of delirium

						oile	nts ^d				e	
Author Year Trial Name	Setting Country	RF	Family ^a	Sensory ^b	Orient	Early mobile	♦Restraints	Planned intake ^e	↓Rxs ^f	Cognitive activities	\mathbf{T} Self-care [§]	Sleep ^h
Abbasinia et al.	ICU			Х	Х	Х		Х	Х			Х
2021	Iran											
Avendano-	Inpatient	Х	Х	Х		Х	Х	Х	Х			
Cespedes et al. 2016	Spain											
Boockvar et al.	Nursing home	Х			Х	Х		Х		Х		
2020 HELP-LTC	U.S.											
Boustani et al.	Inpatient						Х		Х			
2012, Khan et	U.S.											
al. 2013												
e-CHAMPS trial												
Caplan et al.	Inpatient	Х										
2006	Australia											
The REACH-												
OUT trial												
Chen et al.	Inpatient				Х	Х		Х		Х		
2011	Taiwan											
mHELP												
Chen et al.	Postop				Х	Х		Х				
2017	Taiwan											
mHELP												
Dong et al.	Inpatient	Х		Х		Х		х	Х	Х		Х
2020	China											
mHELP												
Guo et al. 2016	Postop			Х	Х		Х			Х		
	China						<u> </u>					
Hamzehpour et	ICU	Х				Х		х				Х
al. 2018	Iran											
Hempenius et	Postop	Х		Х	Х	х			Х			Х
al. 2013, 2016	The											
LIFE trial	Netherlands											

DRAFT January 25, 2024 NOT FOR CITATION

Author Year Trial Name	Setting Country	RF	Family ^a	Sensory ^b	Orient	Early mobile	↓ Restraints ^d	Planned intake ^e	↓Rxs ^f	Cognitive activities	\mathbf{T} Self-care [§]	Sleep ^h
Hosie et al.	Palliative	Х	Х	Х	Х	Х		Х				Х
2020	Australia											
PRESERVE Pilot												
Study												
Moon and Lee	ICU	Х		Х	Х	Х	Х	Х	Х			Х
2015	S. Korea											
Lapane et al.	Nursing home	Х							Х			
2011	U.S.											
GRAM software												
Lundström et	Inpatient	Х									Х	
al. 2005	Sweden											
Lundström et	Postop	Х				Х	Х	Х			Х	Х
al. 2007,	Sweden											
Stenvall et al.												
2012												
Rice et al. 2017	ICU	Х						Х	Х	Х		Х
mHELP	U.S.											
Rood et al.	ICU			Х	Х	Х				Х		Х
2021	The											
	Netherlands											
Siddiqi et al.	Nursing home	Х		Х		Х		Х				Х
2016	U.K.											
Stop Delirium!												
Verloo et al.	Home care	Х		Х	Х	Х		Х	Х	Х	Х	Х
2015	Switzerland											
Y.Y. Wang et al.	Postop	Х	Х		Х	Х	Х	Х	Х	Х		Х
2020	China											
t-HELP												
Watne et al.	Postop	Х				Х		Х	Х			
2014	Norway											
Oslo												
Orthogeriatric												
Trial												
Young et al.	Inpatient			Х	Х	Х		Х		Х		
2020	U.K.											

^a Family was involved in the delivery of the intervention.

763 ^b Such as glasses, hearing aids, good lighting, noise avoidance

- 764 ^c Such as date, time, location, reason for being there
- 765 ^d Either physical restraints or catheter
- ^e Daily scheduled oral or IV administration of fluids (liquids) and/or nutritional assistance
- ^f Decreased use or avoidance of use of psychotropic medications, opioids, anticholinergics, sedatives, and other
- 768 drugs that may increase risk of delirium or sedation
- 769 ^g Increase patient's independent care for self, preferably to baseline
- ^h Sleep aids such as ear plugs and/or eye masks, and decreased noise and light at night
- 771 *Abbreviations*. e-CHAMPS=enhanced Care for Hospitalized older Adults with Memory Problems; GRAM=Geriatric
- 772 Risk Assessment MedGuide; HELP=Hospital Elder Life Program; HELP-LTC=Hospital Elder Life Program-Long Term
- 773 Care; ICU=intensive care unit; LIFE=Liaison Intervention in Frail Elderly; mHELP=modified Hospital Elder Life
- Program; REACH-OUT=Rehabilitation Of Elderly And Care At Home Or Usual Treatment; RF=risk factor analysis; t HELP=tailored Hospital Elder Life Program.
- 776 *Source*. Abbasinia et al. 2021; Avendano-Cespedes et al. 2016; Boockvar et al. 2020; Boustani et al. 2012; Caplan et
- al. 2006; Chen et al. 2011, 2017; Dong et al. 2020; Guo et al. 2016; Hamzehpour et al. 2018; Hempenius et al. 2013,
- 778 2016; Hosie et al. 2020; Khan et al. 2013; Moon and Lee 2015; Lapane et al. 2011; Lundström et al. 2005, 2007;
- 779 Rice et al. 2017; Rood et al. 2021; Siddiqi et al. 2016; Stenvall et al. 2012; Verloo et al. 2015; Y.Y. Wang et al. 2020;
- 780 Watne et al. 2014; Young et al. 2020.

- 781 The weighted mean age of patients across these prevention trials was 77 years old, with 23 studies
- having a mean age 65 or older. Most patients were female (mean 56%; range 27% to 76%). Only six U.S.
- or U.K. based trials reported race: three of these studies had a majority of White participants, two
- included a population that was 59.5% White and 47% Black, and one trial included population that was
- 785 35.2% Black, 33.3% White, 29.7% Hispanic, and 1.8% Other. Six trials reported that participants had
- dementia at baseline (range from 4.5% to 52.5%). All trials that reported baseline functional status
 described patients as being within normal levels of functioning as measured by the Charlson
- 788 Comorbidity Index, the Glasgow Coma Scale, the Acute Physiology and Chronic Health Evaluation
- 789 (APACHE II), the Functional Independence Measure, or another function scale. In addition to the DSM-IV
- 790 and DSM-5 criteria, four different measures were used to diagnosis delirium in the trials: three versions
- of the CAM (CAM, CAM-ICU, and Confusion Assessment Method-Nursing Homes [NH-CAM]), a modified
- 792 Organic Brain Syndrome scale, Delirium Observational Scale, and Neelon-Champagne Confusion scale
- 793 (NEECHAM). Although the goal of these studies was prevention of delirium, only three trials specifically
- rescluded individuals with delirium at baseline, eight trials did not report on the presence of delirium at
- 795 baseline, and six trials reported the presence of delirium at baseline in 1% to 30% of participants.
- 796 *Effect of multi-component interventions on delirium incidence*
- 797 Regarding delirium outcomes, 23 trials (described in 24 publications) reported incidence of delirium
- 798 (Abbasinia et al. 2021; Avendano-Cespedes et al. 2016; Boockvar et al. 2020; Boustani et al. 2012;
- 799 Caplan et al. 2006; Chen et al. 2011, 2017; Dong et al. 2020; Guo et al. 2016; Hamzehpour et al. 2018;
- 800 Hempenius et al. 2013, 2016; Hosie et al. 2020; Khan et al. 2013; Lundström et al. 2005, 2007; Rice et al.
- 801 2017; Rood et al. 2021; Siddigi et al. 2016; Stenvall et al. 2012; Verloo et al. 2015; Y.Y. Wang et al. 2020;
- 802 Watne et al. 2014; Young et al. 2020), which was measured at discharge from hospital in five trials, at a
- specific follow-up time in five (3–480 days, 4 trials ≤30 days), during the acute illness in one, and with
- 804 unclear timing in one. At baseline, two trials enrolled some patients with delirium (29.5% [Watne et al.
- 805 2014] and 26.3% [Lundström et al. 2007]) and did not exclude these individuals when reporting delirium
- 806 prevalence at endpoint.
- 807 In a pooled analysis of 21 trials, the intervention groups had a significantly lower incidence of delirium
- 808 compared with usual care (N=6,527; 25.1% vs. 28.0%, RR 0.74, 95% CI 0.61–0.89, I²=70.3%) (see Figure
- 809 C-1). Although subgroup analyses all favored the interventions and subgroup analyses of patients in
- post-operative settings favored the intervention group (8 trials, N=1,685; RR 0.66, 95% CI 0.47–0.92,
- 811 I²=70%), analyses stratified by setting for the general inpatient population (7 trials, N=2,373; RR 0.77,
- 812 95% CI 0.48–1.22, I²=74%), home care or long-term care patients (3 trials, N=482; RR 0.77, 95% CI 0.39–
- 813 1.55, I²=47%), or patients in the ICU (4 trials, N=2,034; 36.3% vs. 37.9%, RR 0.82, 95% CI 0.60–1.12,
- 814 I²=39.2) did not show a statistically significant difference between intervention and control groups.
- 815 Overall, the findings did not indicate a strong potential for publication bias.

816 Figure C-1. Delirium incidence with multi-component interventions versus usual care stratified by

817 population or setting.

Setting and Author, Year	Incidence Measure	Assessment Time (days)	Treatmen n/N	tControl n/N		Risk Ratio (95% CI)
Home or LCF Boockvar, 2020	CAM	During acute illness	41/114	33/105	1	1.14 (0.79, 1.66)
Siddigi, 2016	CAM	480 days	3/75	6/85	- F	0.57 (0.15, 2.19)
Verloo, 2015	CAM	30 days	4/51	10/52	-1	0.41 (0.14, 1.22)
Subgroup		191311111111111111	48/240	49/242		0.77 (0.39, 1.55)
(l ² = 46.8%, p = 0.144)					1	
ICU						
Abbasinia, 2021	CAM-ICU	POD 2	2/30	4/30 .		0.50 (0.10, 2.53)
Hamzehpour, 2018	NEECHAM	7 days	20/50	30/50		0.67 (0.44, 1.00)
Rice, 2017	CAM	Unclear	3/59	7/66		0.48 (0.13, 1.77)
Rood, 2021	CAM-ICU	Unclear	361/924	327/825	•	0.99 (0.88, 1.11)
Subgroup (1 ² = 39.2%, p = 0.176)			386/1063	368/971	1	0.82 (0.60, 1.12)
Inpatient						
Avendano-Cespedes, 2016	PAM	16 days	3/21	12/29	1	0.35 (0.11, 1.07)
Boustani, 2012	CAM	Cumulative until D/C		70/225		1.08 (0.82, 1.43)
Caplan, 2006	CAM	Cumulative until D/C		2/34 -		0.49 (0.07, 3.30)
Chen, 2011	CAM	Unclear	0/102	12/77		0.03 (0.00, 0.50)
Dong, 2020	CAM	Cumulative until D/C	2/50	9/53 -	•	0.24 (0.05, 1.04)
Lundström, 2005	DSM-IV	3 days	123/400	82/400	•	1.50 (1.18, 1.91)
Young, 2020	CAM	10 days	24/343	33/370		0.78 (0.47, 1.30)
Subgroup		100000000000	221/1185	220/1188		0.77 (0.48, 1.22)
(l ² = 73.8%, p = 0.001)					1	
Palliative						
Hosie, 2020	DSM-V	7 days	4/20	8/25	+	0.63 (0.22, 1.78)
Postop	CAM	Unclear	13/197	27/180		0.44/0.22.0.02
Chen, 2017 Guo, 2016	CAM-ICU	3 davs	10/67	25/80		0.44 (0.23, 0.83)
Hempenius, 2013	DOS	POD 10 or D/C	12/127	19/133		0.48 (0.25, 0.92) 0.66 (0.33, 1.31)
Lundstrom, 2007		Cumulative until D/C		73/97	1	0.73 (0.59, 0.90)
Y. Y. Wang, 2020	CAM	Unclear	4/152	25/129 -	_ T	0.14 (0.05, 0.38)
Watne, 2014	CAM	Cumulative until D/C		86/166	- A	0.95 (0.76, 1.17
Subaroup	0/101	Samalative ditar b/S	175/808	255/785	1	0.59 (0.41, 0.83)
(l ² = 74.9%, p = 0.001)						0.00 (0.11, 0.00)
P-value for interaction (meta	aregression): p	= 0.7628				
Overall	100 C.A.		834/3316	900/3211	4	0.74 (0.61, 0.89)
(l ² = 70.3%, p = 0.000)			1001001011110			
				0.0019531	1 51	2
					a 13 - 2000 Ali	Seren e
				Favors intervent	tic	tion Favors of

- 818 Abbreviations. CAM=Confusion Assessment Method; CAM-ICU=Confusion Assessment Method for the Intensive
- 819 Care Unit; CI=confidence interval; D/C=discharge; DOS=Delirium Observation Screening; DSM-IV=Diagnostic
- Statistical Manual, 4th Edition; ICU=intensive care unit; LCF=long-term care facility; NEECHAM=Neelon-Champagne
 confusion scale; OBS=Organic Brain Syndrome Scale; POD=post-operative day; postop=post-operative.
- 822 Source. Abbasinia et al. 2021; Avendano-Cespedes et al. 2016; Boockvar et al. 2020; Boustani et al. 2012; Caplan et
- 823 al. 2006; Chen et al. 2011, 2017; Dong et al. 2020; Guo et al. 2016; Hamzehpour et al. 2018; Hempenius et al. 2013;
- Lundström et al. 2005, 2007; Rice et al. 2017; Rood et al. 2021; Siddiqi et al. 2016; Verloo et al. 2015; Y.Y. Wang et
- 825 al. 2020; Watne et al. 2014; Young et al. 2020.

- 826 One trial additionally reported that the point-prevalence of delirium at discharge was 15% in the
- tailored, family-involved HELP intervention group compared with 26% in the usual care group (*P*=0.01)
- 828 (Watne et al. 2014). Two other trials examined a geriatric specialist ward intervention that involved
- 829 individualized care with re-organization tasks and increasing self-care tasks (Lundström et al. 2005,
- 2007). In these trials, none of the patients with dementia (N=18 and 63) had delirium on day 7 or at
- discharge, whereas usual care groups included four of 18 and 15 of 63 patients with delirium,
- 832 respectively (Lundström et al. 2005, 2007).
- 833 In addition to the Pacific Northwest EPC systematic review, a Cochrane review (Burton et al. 2021)
- demonstrated generally the same outcomes as described in this section. In the Cochrane review, the
- 835 authors found moderate-certainty evidence regarding the benefit of multi-component non-
- pharmacological interventions for the prevention of delirium in hospitalized, non-ICU adults (14 studies;
- 837 N=3,693). Specifically, interventions were estimated to reduce delirium incidence by 43% compared to
- usual care (10.5% incidence with treatment vs. 18.4% in the control group, RR 0.57, 95% CI 0.46–0.71,
- 839 l²=39%).
- 840 Effect of multi-component interventions on delirium severity
- 841 Nine trials reported the severity of delirium in those who developed it (Abbasinia et al. 2021; Avendano-842 Cespedes et al. 2016; Boockvar et al. 2020; Dong et al. 2020; Hamzehpour et al. 2018; Hempenius et al. 843 2013; Hosie et al. 2020; Watne et al. 2014; Young et al. 2020), with four trials reporting delirium severity 844 at a specific time point (7–30 days), three trials the median value of delirium severity until discharge, 845 and one trial reporting the highest severity of delirium during the acute illness. Three trials used the 846 Delirium Rating Scale-Revised-98 (DRS-R-98) to measure delirium severity, three used the CAM-Severity scale (CAM-S), two used the Memorial Delirium Assessment Scale (MDAS), and one trial used the 847 848 NEECHAM. In a pooled analysis there was no difference in severity of delirium between the intervention and usual care groups (8 trials, N=1,362; SMD 0.43, 95% CI -0.49–1.36, I²=93%). However, when 849 850 stratified by setting, the interaction term was significant (P=0.029). One trial conducted in nursing 851 homes examined individuals who were suspected of having an onset of an acute illness or change in condition within the prior 24 to 48 hours and found no significant differences in delirium severity 852 853 between the control group and those receiving an adapted version of HELP in Long-Term Care (HELP-854 LTC) on the CAM-S (Boockvar et al. 2020). In contrast, one of the trials conducted in non-surgical 855 hospital settings reported that significantly more patients in the usual care group had severe delirium, 856 reflected by a score of 18 or higher on the MDAS, as compared with a group that received tailored, 857 family-involved HELP (9.6% vs. 1.5%, P=0.008 [Y.Y. Wang et al. 2020]). Another trial (N=60) also reported 858 a lower severity of delirium in those receiving the HELP intervention compared with usual care, but the 859 difference did not reach statistical significance and study ratings used the Richmond Agitation and 860 Sedation Scale (RASS), which has problematic measurement properties and does not specifically assess 861 delirium (Abbasinia et al. 2021). In a group of patients treated with the Roy adaptation model, which 862 addresses physiological and behavioral effects of delirium, an ICU study found a significantly lower 863 severity of delirium on the NEECHAM scale compared with patients who received usual care (mean 864 23.27 vs. 19, MD -0.59, 95% CI -1.17 to -0.01 [Hamzehpour et al. 2018]).

In the Cochrane review, evidence was very uncertain as to the effect on delirium severity (N=147; SMD 0.49, 95% CI -1.13–0.14, I²=64% [Burton et al. 2021]).

- 867 Effect of multi-component interventions on delirium duration
- 868 Six trials (in 7 publications) reported the duration of delirium in those who developed it (Avendano-
- 869 Cespedes et al. 2016; Guo et al. 2016; Lundström et al. 2007; Rood et al. 2021; Stenvall et al. 2012;
- 870 Watne et al. 2014; Young et al. 2020). In a pooled analysis, the interventions resulted in a significantly
- shorter duration of delirium compared with usual care (6 trials, N=1,483; MD –0.70, 95% CI -1.53–0.13,
- 872 I²=87.1%). An additional trial that reported on individuals with co-occurring dementia also found a
- 873 shorter duration of delirium in the intervention group as compared to usual care (Lundström et al.
- 874 2007).
- 875 In the Cochrane review, there was low-certainty evidence that multi-component non-pharmacological
- 876 interventions resulted in a small reduction (i.e., approximately 1 day) in the duration of a delirium
- episode (N=351; MD -0.93, 95% CI -2.01–0.14 days, I²=65% [Burton et al. 2021]).
- 878 *Effect of multi-component interventions on ICU and hospital length of stay*
- 879 Four trials reported the length of stay in the ICU (Abbasinia et al. 2021; Chen et al. 2017; Moon and Lee
- 2015; Rood et al. 2021). In a pooled analysis, the length of ICU stay was not significantly different
- 881 between groups (4 trials, N=2,309; MD -0.18, 95% CI -0.61–0.24, I²=16.3%); however, one of the studies
- 882 reported higher rates of ICU re-admission during the same hospitalization in the usual care group
- compared with the intervention group (16% vs. 5%, *P*=0.05 [Moon and Lee 2015]).
- Nine trials (in 11 publications [Boustani et al. 2012; Caplan et al. 2006; Chen et al. 2011; Dong et al.
- 885 2020; Khan et al. 2013; Lundström et al. 2005, 2007; Stenvall et al. 2012; Y.Y. Wang et al. 2020; Watne et
- al. 2014; Young et al. 2020]) reported data on the length of hospital stay. In a pooled analysis, length of
- 887 hospital stay was significantly shorter in the intervention groups compared with usual care, with a small
- statistically significant difference (11 trials, N=4,489; MD -1.88 days, 95% CI -3.88–0.12, I²=95%). Results
- 889 were statistically significant for trials in general inpatients (6 trials, N=1,923; MD -2.88 days, 95% CI -5.37
- to -0.39, l²=92.8%), but was not significant for the trials conducted in post-operative patients (4 trials,
- 891 N=817; MD -1.39 days, 95% CI -5.89–3.11, I²=97.2%).
- In the Cochrane review, low-certainty evidence also suggested a small reduction in hospital length of
 stay compared to usual care (N=3,351; MD -1.30 days, 95% CI -2.56 to -0.04 days, I²=91% [Burton et al.
 2021]).

895 *Effect of multi-component interventions on mortality and adverse events*

- Twelve trials (in 15 publications) reported mortality (Boustani et al. 2012; Caplan et al. 2006; Hempenius
- et al. 2013, 2016; Khan et al. 2013; Moon and Lee 2015; Lundström et al. 2007; Rood et al. 2021; Siddiqi
- et al. 2016; Stenvall et al. 2012; Verloo et al. 2015; Y.Y. Wang et al. 2020; Watne et al. 2014; Young et al.
- 899 2020). In terms of deaths from any cause, a pooled analysis of 11 trials did not find a significant
- 900 difference between groups (N=4,439; 27.0% vs. 26.5%, RR 1.00, 95% CI 0.85–1.18, I²=34.0%). An
- additional trial was not able to be incorporated into the pooled analysis but reported no deaths in either
- 902 group (Y.Y. Wang et al. 2020). One trial conducted in a long-term nursing home facility that also

- 903 provided short-term post-operative rehabilitation reported the hazard ratio (HR) for mortality
- 904 separately for home residents (long-term care) and new admits (short-term care). For interventions
- 905 compared with usual care the HR for mortality of in-home residents was 0.89 (95% CI 0.73–1.08) and for
- 906 new admits was 0.88 (95% CI 0.66–1.16 [Lapane et al. 2011]).

907 Eight trials reported adverse events (Boustani et al. 2012; Hempenius et al. 2013; Hosie et al. 2020; 908 Lapane et al. 2011; Lundström et al. 2007; Rood et al. 2021; Y.Y. Wang et al. 2020; Watne et al. 2014), 909 with six reporting no differences between groups in complications (Boustani et al. 2012; Hempenius et 910 al. 2013), hospitalizations due to adverse events (Lapane et al. 2011), and total number of adverse 911 events (Hosie et al. 2020; Rood et al., 2021; Y.Y. Wang et al. 2020). In contrast, two trials reported 912 significant differences between the intervention and usual care groups in specific adverse events. In a 913 study of early mobilization, scheduled liquid intake to avoid dehydration, scheduled nutritional 914 assistance, avoidance and/or reduction of certain medications, and oxygen monitoring to prevent 915 hypoxia, urinary tract infections (UTI) occurred less frequently in the intervention group (16% vs. 25%, 916 P=0.05), whereas falls occurred slightly more frequently in the intervention group (9% vs. 7%, P=0.05) 917 (Watne et al. 2014). Another study reported significantly lower frequencies of decubitus ulcers (8.8% vs. 918 22.1%, P=0.010), UTIs (31.4% vs. 51.0%, P=0.005), sleeping problems (27.5% vs. 45.4%, P=0.009), and 919 falls (11.8% vs. 26.8%, P=0.006) in the intervention group receiving care in a specialized geriatric ward 920 that included early mobilization compared with the usual care group (Lundström et al. 2007). An 921 additional study that was not included in the systematic review also found more adverse events with 922 early mobilization in the ICU setting (Patel et al. 2023).

- 923 In the Cochrane review, the authors found little or no effect of interventions on inpatient mortality (10
- studies, N=2,640) compared to usual care (5.2% in the intervention group vs. 4.5% in the control group,
 RR 1.17, 95% CI 0.79–1.74, I²=15%) (Burton et al. 2021).

926 *Effect of multi-component interventions on other outcomes*

- Six trials (N=1,259) reported on admission or readmission to the hospital (Boockvar et al. 2020; Boustani et al. 2012; Caplan et al. 2006; Hempenius et al. 2016; Rood et al. 2021; Siddiqi et al. 2016). Three trials
 reported no differences between the intervention and usual care groups in readmission rates within 30 days (18.6% vs. 16.4%, *P*=0.53 [Boustani et al. 2012]) or 90 days (23% vs. 18%, OR 1.32, 95% CI 0.69–2.53
 [Hempenius et al. 2016]) of discharge or within 28 days from the end of rehabilitation (21% vs. 24%, *P*value not reported [Caplan et al. 2006]). Another trial reported similar readmission rates (11% vs. 10%, *P*=0.69) between the intervention and control groups but did not specify the duration of follow-up
- observations (Rood et al. 2021). Two trials conducted in nursing home residents reported no differences
- 935 in the time to hospital admission between the intervention and usual care groups (STOP Delirium
- 936 intervention: HR 0.72, 95% Cl 0.38–1.36 [Siddiqi et al. 2016] and HELP-LTC intervention: 14% vs. 17%,
- 937 *P*=0.52 [Boockvar et al. 2020]). In the Cochrane review, multi-component non-pharmacological
- 938 interventions were associated with little to no difference in new admissions to long-term care at the
- 939 time of hospital discharge (N=536; RR 0.77, 95% CI 0.55–1.07 [Burton et al. 2021]).
- 940 Three trials found no significant difference between groups in quality of life or functional measures. One
- found no differences between groups in quality of life as measured by the Short Form survey 36 Item

- 942 (SF-36) Physical Functioning or Mental Health subscales (OR 1.02, 95% CI 0.56–1.86 and OR 0.80, 95% CI
- 943 0.50–1.40) or the SF-36 General Health scale (OR 0.84, 95% Cl 0.50–1.40) (Hempenius et al. 2013).
- Another found no differences between groups on the EuroQol-5 Dimension (mean 0.42, standard
- deviation [SD] 0.39 with the intervention vs. mean 0.38, SD 0.42 in the control group [Siddiqi et al.
- 2016]). One trial reported that there was not a significant difference between the intervention and usual
- 947 care groups in risk for decline in daily function (OR 1.19, 95% CI 0.70–2.02), increased need for care
- assistance (OR 0.93, 95% CI 0.52–1.65), or return to independent pre-operative living situation (OR 2.02,
- 949 95% CI 0.84–4.87) (Hempenius et al. 2013, 2016).
- 950 Three trials measured depressive symptoms using the Geriatric Depression Scale, with conflicting
- 951 findings. In a study conducted in China, the scale was rescaled so that higher scores reflect fewer
- 952 depressive symptoms (Chen et al. 2011). This study found that the control group's score worsened
- significantly more than the intervention group's score (mean change -4.4 vs. -0.3, *P*<0.001 [Chen et al.
- 954 2011]). The other trials, conducted in the United Kingdom and Australia, reported that the difference
- 955 between groups was not significant at 1 month (mean 8.84 vs. 8.17, *P*=0.63 [Caplan et al. 2006] and
- 956 mean 4.7 vs. 4.2, *P*-value not reported [Young et al. 2020]) or 6 months (mean 7.80 vs. 7.14, *P*=0.62
- 957 [Caplan et al. 2006]). The trial conducted in the United Kingdom also reported no differences in anxiety
- 958 as measured by the clinical anxiety scale at 1 month (mean 16.8 vs. 16.9 [Young et al. 2020]).
- 959 Five trials (N=888) reported on cognitive decline in patients after receiving the intervention (Chen et al.
- 960 2011; Dong et al. 2020; Hempenius et al. 2016; Verloo et al. 2015; Y.Y. Wang et al. 2020). Four trials
- 961 reported significantly more decline in the usual care group than the intervention group when measured
- with the Mini-Mental State Evaluation (MMSE; mean at follow-up 23.81 vs. 25.06, *P*=0.15 [Verloo et al.
- 2015] and mean change from baseline -1.4 vs. -0.4, *P*=0.05 [Chen et al. 2011]) or the Short Portable
- 964 Mental Status Questionnaire (7.0% vs. 0.8%, P=0.009 [Y.Y. Wang et al. 2020]) and 4% vs. 24.5%, P=0.012
- 965 [Dong et al. 2020]), whereas the other trial reported no differences between groups (14.1% vs. 23.1%,
- 966 OR 1.83, 95% CI 0.74–4.56 [Hempenius et al. 2016]).
- 967 Several trials reported on the use of or avoidance of other specific interventions. Although findings were
- 968 not statistically significant, one trial reported less use of restraint in the intervention group compared
- 969 with usual care (9% vs. 17%), and another trial reported more orders to discontinue the use of restraints
- 970 in the intervention groups compared with usual care (5% vs. 0%) (Boustani et al. 2012). One trial
- 971 reported similar re-intubation rates (7% vs. 7%, *P*=0.99) between the intervention and control groups
- 972 (Rood et al. 2021) as well as similar rates of physical restraint use (37% vs. 40%, *P*=0.43). Five trials
- 973 reported on the use of other medications but in heterogeneous ways. Only one study reported
- 974 statistically significant findings: 15% vs. 42% received sedatives (*P*=0.008) and 31% vs. 62% received
- 975 opioids (*P*=0.004) in the intervention and control groups, respectively (Lundström et al. 2007). Two
- 976 others found a reduced use of other medications in the intervention group as compared to usual care
- 977 but the decrease was not statistically significant; the mean number of medications prescribed per
- 978 participant during study was 8.7 vs. 9.1 in one trial (Siddiqi et al. 2016) with 33% vs. 48% of patients
- 979 receiving "neuroleptics" in the other trial (Avendano-Cespedes et al. 2016). Additionally, one study
- 980 reported more orders to discontinue use of anticholinergics in the intervention group (49% vs. 31%

[Boustani et al. 2012]). Finally, one study reported that the use of benzodiazepines was similar in the
intervention group compared with usual care (43% vs. 41% [Avendano-Cespedes et al. 2016]).

983 Effects of the ABCDEF Bundle

The ABCDEF bundle represents an evidence-based method of coordinated, holistic, multidisciplinary
care designed to optimize patient outcomes in delirium (Marra et al. 2017; Mart et al. 2019). The bundle
interventions are largely non-pharmacologic in nature but do include some overlap with principles of
good pharmacology practice (e.g., avoiding benzodiazepines, deprescribing whenever possible). Studies
of ABCDEF bundles did not meet criteria for inclusion in the systematic review but nonetheless offer

- 989 important information about the effectiveness of non-pharmacological approaches to managing
- delirium. The specific elements of the ABCDEF bundle are described in Table 6, under Statement 7,
- 991 Implementation.
- 992 In the largest ABCDEF study to date, with over 15,000 participants from 68 academic, community, and
- 993 Veterans Administration ICUs in 29 states and Puerto Rico, Pun and colleagues (2019) found widespread
- 994 symptom improvement with patients who completed every element of the bundle. Notably, patients
- 995 with complete bundle performance had a higher likelihood of ICU discharge (adjusted HR 1.7, CI 1.05–
- 1.30), higher likelihood of hospital discharge (adjusted HR 1.19, Cl 1.01–1.40), lower risk of death at any
- time (adjusted HR 0.32, CI 0.17–0.62), and lower risks of next-day mechanical ventilation use (adjusted
- 998 OR 0.28, 95% CI 0.22–0.36), coma (adjusted OR 0.35, 95% CI 0.22–0.56), delirium (adjusted OR 0.60, CI
- 999 0.49–0.72), and need for physical restraints (adjusted OR 0.37, CI 0.30–0.46). A dose-response
- relationship was observed with tight confidence intervals, suggesting that outcomes were better if moreelements of the bundle were completed.
- 1002 A prospective quality improvement study among 7 California hospitals (Barnes-Daly et al. 2017) also
- 1003 found a dose-response relationship between complete or partial ABCDEF bundle adherence and
- 1004 increased odds of hospital survival (OR 1.07, 95% CI 1.04–1.11 and OR 1.15, 95% CI, 1.09–1.2,
- 1005 respectively). Complete and partial bundle adherence were also associated with more days alive and
- 1006 free of delirium and coma (incident rate ratio 1.02, 95% Cl 1.01–1.04 and incident rate ratio 1.15, 95%
- 1007 Cl, 1.09–1.22, respectively).

1008 Effects of the Hospital Elder Life Program

1009 HELP is an evidence-based model of preventing delirium and functional decline that targets hospitalized

- 1010 older adults (see Table 6, Statement 7, Implementation) (Hshieh et al. 2018). As with ABCDEF bundle
- 1011 studies, HELP studies include important and useful information about the effectiveness of non-
- pharmacological interventions for delirium but did not meet inclusion criteria for the formal systematic
 review. A meta-analysis of 14 studies found HELP effectively reduced delirium incidence and rate of falls,
- 1014 with a trend toward reducing length of stay and preventing institutionalization (Hshieh et al. 2018).
- 1015 Overall, in comparative studies of HELP, there were significant reductions in delirium incidence (14
- 1016 studies: OR 0.47, 95% CI 0.37–0.59), and the rate of falls decreased by 42% among intervention patients
- 1017 (3 studies: OR 0.58, 95% CI 0.35–0.95) (Hshieh et al. 2018).

1018 Grading of the Overall Supporting Body of Research Evidence for Multi-component Interventions in1019 Prevention of Delirium

1020 o Magnitude of effect: Low. The magnitude of the effect of multi-component interventions is
1021 small in reducing the incidence and the duration of delirium. There was little or no effect on the severity
1022 of delirium or mortality associated with delirium.

New York and State and

1028 o Applicability: The findings of these studies are applicable to older patients, those in critical care 1029 and medical inpatient settings as well as post-operative patients (specifically following orthopedic or 1030 cardiac procedures). Applicability to younger individuals and those in other clinical settings is likely to be 1031 reduced. Demographic information on study participants was often not reported and non-white 1032 individuals were often under-represented when demographic information was available.

1033 o Directness: Direct. Outcomes were directly related to delirium or its associated adverse effects,1034 including mortality.

1035 o Consistency: Varies with outcome. For delirium incidence and duration and for mortality
1036 associated with delirium, study findings were consistent whereas, for other outcomes, findings were
1037 inconsistent.

o Precision: Varies with outcome. For delirium incidence and severity, the findings were precise
 whereas for other outcomes, findings were imprecise.

1040 o Dose-response relationship: Present. For multi-component interventions, there was evidence
 1041 that greater adherence to specific interventions and adherence with a greater number of interventions
 1042 was associated with improved outcomes in studies of the ABCDEF bundle.

1043 o Confounding factors (including likely direction of effect): The data may be confounded by
 1044 variations in delirium assessment due to rater training. Individuals with hypoactive delirium may have
 1045 been less likely to be identified than those with hyperactive delirium. However, the direction of effect
 1046 from these potential confounding factors is not clear.

1047 o Publication bias: Not identified. There was no evidence of publication bias for studies related to
1048 the incidence of delirium. For other outcomes, there was insufficient information to make a
1049 determination.

Overall strength of research evidence: Low to Moderate. The strength of research evidence for
 multi-component interventions is moderate for incidence and severity of delirium and low for duration
 of delirium. For other outcomes, there was insufficient information to make a determination.

1053 Single-Component Interventions

Because multi-component non-pharmacologic interventions are comprised of multiple independent
 interventions, the Pacific Northwest EPC systematic review considered the effectiveness outcomes from
 single-component studies as well as assessing effects of each component within the multi-component

1057 trials.

1058 Overview of study characteristics

1059 Thirty-six trials (Alvarez et al. 2017; Arttawejkul et al. 2020; Browning et al. 2020; Brummel et al. 2014; 1060 Chevillon et al. 2015; Dai et al. 2021; Eghbali-Babadi et al. 2017; Fahimi et al. 2020; Fazlollah et al. 2021; 1061 Giraud et al. 2016; Humeidan et al. 2021; Jeffs et al. 2013; Johnson et al. 2018; Karadas and Ozdemir 1062 2016; Khan et al. 2020; Leong et al. 2021; Martinez et al. 2012; Martinez-Velilla et al. 2019; Mitchell et 1063 al. 2017; Morris et al. 2016; Munro et al. 2017; Nydahl et al. 2020, 2022; O'Gara et al. 2020; Obanor et 1064 al. 2021; Ono et al. 2011; Potharajaroen et al. 2018; Rosa et al. 2019; Schweickert et al. 2009; Shirvani et 1065 al. 2020; Simons et al. 2016; Taguchi et al. 2007; Van Rompaey et al. 2012; Vlisides et al. 2019; Xue et al. 1066 2020; K.S. Zhang et al. 2021) compared a single behavioral intervention with usual care for the 1067 prevention of delirium. Sample sizes ranged from 6 to 1,685 (total N=6,811). Thirteen trials were 1068 conducted in the United States; four in Iran; two each in Australia, Chile, China, Germany, Japan, and 1069 Thailand; and one each in Belgium, Brazil, The Netherlands, Singapore, Spain, Turkey, and the United 1070 Kingdom. In terms of risk of bias, only one trial had a low risk of bias, whereas 26 trials had a moderate 1071 risk of bias and nine trials had a high risk of bias.

1072 The single behavioral interventions assessed were family member interventions (increased visitations, 5 1073 trials [Eghbali-Babadi et al. 2017; Martinez et al. 2012; Mitchell et al. 2017; Munro et al. 2017; Rosa et al. 1074 2019]), exercise interventions (range of motion/mobilization, twice daily exercise program, 8 trials [Jeffs 1075 et al. 2013; Karadas and Ozdemir 2016; Martinez-Velilla et al. 2019; Morris et al. 2016; Nydahl et al. 1076 2020, 2022; Schweickert et al. 2009; Shirvani et al. 2020]), bright light therapy (5 trials [Ono et al. 2011; 1077 Potharajaroen et al. 2018; Simons et al. 2016; Taguchi et al. 2007; K.S. Zhang et al. 2021]), listening to music (3 trials [Browning et al. 2020; Johnson et al. 2018; Khan et al. 2020]), massage (1 trial [Fazlollah 1078 1079 et al. 2021]), occupational therapy (OT; 1 trial [Alvarez et al. 2017]), sleeping with earplugs (2 trials 1080 [Arttawejkul et al. 2020; Van Rompaey et al. 2012]), use of earplugs plus an eye mask (2 trials [Leong et 1081 al. 2021; Obanor et al. 2021]), use of mirrors for orientation (1 trial [Giraud et al. 2016]), individualized 1082 pre-operative educational (3 trials [Chevillon et al. 2015; Fahimi et al. 2020; Xue et al. 2020]), cognitive 1083 exercises or tests (4 trials [Dai et al. 2021; Humeidan et al. 2021; O'Gara et al. 2020; Vlisides et al. 2019]), 1084 early and intensive occupational therapy (1 trial [Alvarez et al. 2017]), and cognitive therapy plus 1085 physical therapy (PT; 1 trial [Brummel et al. 2014]). The control group was usual care in all trials.

1086 Most of the studies included individuals of all adult ages, but nine studies limited the sample to older 1087 adults. In the 28 trials that reported the mean age of the sample, 12 had a mean age 65 or older. There 1088 was a predominance of men in eight trials, a predominance of women in six trials, and between 40% and 1089 60% women in the remaining 22 trials. Of trials that reported race/ethnicity, five included mostly White 1090 participants (range 67% to 85%), two trials reported that about half the participants were Black (range 1091 56% and 59%), and two trials reported a predominance of Asian patients (range 84% to 100%). The 1092 remaining 27 trials did not provide information on race or ethnicity. Seven trials excluded patients with

- 1093 dementia, two trials reported that 1% and 6% of patients had dementia at baseline, and the remaining
- 1094 27 trials did not report on dementia status. Eighteen trials reported patients' baseline functioning as
- 1095 measured by the APACHE II, Charlson Comorbidity Index, Informant Questionnaire on Cognitive Decline
- 1096 in the Elderly (IQCODE), or the Barthel Index, whereas the other 18 trials did not report information on
- 1097 functioning status. Three different measures of delirium were used to diagnose delirium in the trials—
- 1098 two versions of the CAM (CAM and CAM-ICU), DSM-IV criteria, the NEECHAM, and the confusion scale of
- 1099 the NEECHAM. For most studies, the goal was prevention of delirium and fourteen trials excluded
- patients with delirium at baseline. However, two trials reported that 13% to 14% of patients had
- 1101 delirium at the onset of the study and 20 trials did not report information on whether delirium was
- 1102 present.

1103 *Effect of single-component interventions on delirium incidence*

1104 Twenty-eight trials reported the incidence of delirium (Alvarez et al. 2017; Arttawejkul et al. 2020; 1105 Chevillon et al. 2015; Dai et al. 2021; Eghbali-Babadi et al. 2017; Fahimi et al. 2020; Fazlollah et al. 2021; 1106 Giraud et al. 2016; Humeidan et al. 2021; Jeffs et al. 2013; Johnson et al. 2018; Karadas and Ozdemir 1107 2016; Martinez et al. 2012; Martinez-Velilla et al. 2019; Mitchell et al. 2017; Nydahl et al. 2020, 2022; 1108 Obanor et al. 2021; O'Gara et al. 2020; Ono et al. 2011; Potharajaroen et al. 2018; Rosa et al. 2019; 1109 Simons et al. 2016; Taguchi et al. 2007; Van Rompaey et al. 2012; Vlisides et al. 2019; Xue et al. 2020; 1110 K.S. Zhang et al. 2021). More than half of the trials measured the incidence of delirium cross-sectionally 1111 at a specific time after the intervention was started (3-28 days), whereas the rest measured the 1112 cumulative incidence of delirium until discharge from the hospital. One trial reported risk incidence 1113 ratios and reported a much lower risk in the intervention group compared with usual care (0.15 vs. 6.66 1114 [Alvarez et al. 2017]). A pooled analysis of single-component interventions showed a significantly lower 1115 incidence of delirium than usual care (26 trials, N=5,796; 21.9% vs. 25.4%, RR 0.79, 95% CI 0.67–0.93,

- 1116 I²=60.1%). A subgroup analysis showed single-component interventions were associated with a
- significant reduction of delirium incidence in post-operative patients (10 trials, N=809; RR 0.58, 95% CI
- 1118 0.41–0.82, I²=35.8%) and with education (3 trials, N=372; RR 0.53, 95% CI 0.37–0.76, I²=0%) and OT (1
- 1119 trial, N=140; RR 0.14, 95% CI 0.03–0.61) as compared to usual care. However, other subgroup analyses
- showed no significant differences either by setting (*P*=0.11 for interaction; Figure C-2) or by intervention
- 1121 (*P*=0.48 for interaction; Figure C-3). Analysis for potential publication bias suggested a strong possibility
- 1122 of unpublished small studies.

1123 Figure C-2. Delirium incidence with single-component interventions versus usual care stratified by

1124 population or setting.

Setting and Author, Year	Treatment	Incidence Measure	Assessment Time	Treatment n/N	Control n/N	Risk Ratio (95% CI)
cu						
Alvarez, 2017	OT	CAM	5 days	2/70	14/70	0.14 (0.03, 0.61
Arttawejkul, 2020	Sleep	CAM-ICU	5 days	1/8	1/9	1.13 (0.08, 15.1
Chevillon, 2015	Education	CAM-ICU	7 days	14/63	21/66 -	0.70 (0.39, 1.25
Dai, 2021	Cognitive	Unclear	7 days	9/38	16/38 -	0.56 (0.28, 1.11
Giraud, 2016	Mirrors	CAM-ICU	Cumulative until ICU D/C	20/115	17/108	1.10 (0.61, 1.99
Karadas, 2016	Exercise	CAM-ICU	Cumulative until D/C	4/47	10/47	0.40 (0.13, 1.19
Mitchell, 2017	Family	CAM	Cumulative until D/C	17/29	18/32	4 1.04 (0.68, 1.61
Vydahl, 2020	Exercise	CAM-ICU	At D/C	114/120	141/152	1.02 (0.96, 1.09
Vydahl, 2022	Exercise	CAM-ICU	3 days	7/26	10/20 -	0.54 (0.25, 1.16
Rosa, 2019	Family		Cumulative until D/C	157/831	170/845	0.94 (0.77, 1.14
Simons, 2016	Light	CAM-ICU	28 days	137/361	123/373	1.15 (0.95, 1.40
Van Rompaey, 2012	Sleep	NEECHAM		13/69	13/67	0.97 (0.49, 1.94
K.S. Zhang, 2021	Light		Cumulative Until ICU D/C	1 41 4 4	7/40 -	1.05 (0.41, 2.72
Subgroup	2.3.1			502/1815		0.95 (0.82, 1.08
(l ² = 38.0%, p = 0.025)						
Inpatient						1
Jeffs, 2013	Exercise	CAM	Cumulative until D/C	15/305	21/343 -	 0.80 (0.42, 1.53
Martinez, 2012	Family	CAM	Cumulative until D/C	8/144	19/143	0.42 (0.19, 0.92
Martinez-Velilla, 2019	Exercise	CAM	Cumulative until D/C	27/185	15/185	1.80 (0.99, 3.27
Subgroup (I ² = 77.2%, p = 0.012)				50/634	55/671	0.87 (0.39, 1.97
Postop						
Eghbali-Babadi, 2017	Family	CAM-ICU	3 days	11/34	26/34 -	0.42 (0.25, 0.71
Fahimi, 2020		CAM-ICU	Cumulative	13/55	28/55	0.46 (0.27, 0.80
Fazioliah, 2021	Massage		2 days	8/30	7/30	1.14 (0.47, 2.75
Humeidan, 2021	Cognitive		Cumulative until D/C	18/125	29/126	0.63 (0.37, 1.07
O'Gara, 2020	Cognitive		Cumulative until D/C	5/20	3/20 -	1.67 (0.46, 6.06
Ono, 2011	Light	DSM-IV	6 days	1/10	5/12	0.24 (0.03, 1.73
Potharajaroen, 2018	Light	CAM-ICU	3 days	2/31	11/31	0.18 (0.04, 0.75
Taguchi, 2007	Light	NEECHAM		1/6	2/5	0.42 (0.05, 3.36
Vlisides, 2019	Cognitive		3 days	6/23	5/29	1.51 (0.53, 4.34
Xue, 2020	Education		7 days	7/67	16/66 -	0.43 (0.19, 0.98
Subgroup	Education	0444-100	r uays	72/401	132/408	0.58 (0.41, 0.82
(l ² = 35.8%, p = 0.122)				72/401	1321400	0.00 (0.41, 0.02
P-value for interaction (metaregres	sion): p = 0.1	1134			
Overall				624/2850	748/2946	0.79 (0.67, 0.93
(l ² = 60.1%, p = 0.000)				914-6665314		
					0.03125	1 32
					Favors intervention	Favors control

- 1125 Abbreviations. CAM=Confusion Assessment Method; CAM-ICU=Confusion Assessment Method for the Intensive
- 1126 Care Unit; CI=confidence interval; D/C=discharge; DOS=Delirium Observation Screening; DSM-IV=Diagnostic and
- 1127 Statistical Manual of Mental Disorders, 4th Edition; ICU=intensive care unit; NEECHAM=Neelon-Champagne
- 1128 confusion scale; OT=occupational therapy; postop=post-operative.
- 1129 Source. Alvarez et al. 2017; Arttawejkul et al. 2020; Chevillon et al. 2015; Dai et al. 2021; Eghbali-Babadi et al. 2017;
- 1130 Fahimi et al. 2020; Fazlollah et al. 2021; Giraud et al. 2016; Humeidan et al. 2021; Jeffs et al. 2013; Karadas and
- 1131 Ozdemir 2016; Martinez et al. 2012; Martinez-Velilla et al. 2019; Mitchell et al. 2017; Nydahl et al. 2020, 2022;
- 1132 O'Gara et al. 2020; Ono et al. 2011; Potharajaroen et al. 2018; Rosa et al. 2019; Simons et al. 2016; Taguchi et al.
- 1133 2007; Van Rompaey et al. 2012; Vlisides et al. 2019; Xue et al. 2020; K.S. Zhang et al. 2021.

Figure C-3. Delirium incidence with single-component interventions stratified by intervention.
--

Author, Year	Setting	Incidence Measure	Assessment Time	Treatment n/N	Control n/N	Risk Ratio (95% CI)
Cognitive						1
Dail 2021	ICU	Unclear	7 days	9/38	16/38 🚽	0.56 (0.28, 1.11)
Humeidan, 2021	Postop	CAM	Cumulative until D/C	18/125	29/126	0.63 (0.37, 1.07)
0'Gara, 2020	Postop	CAM	Cumulative until D/C	5/20	3/20	1.67 (0.46, 6.06)
lisides, 2019	Postop	CAM	3 days	6/23	5/29	1.51 (0.53, 4.34)
Subgroup			,.	38/206	53/213	0.79 (0.49, 1.27)
(l ² = 30.1%, p = 0.231)				11700344		1
Education						1
Chevillon, 2015	ICU	CAM-ICU	7 days	14/63	21/66	0.70 (0.39, 1.25)
Fahimi, 2020	Postop	CAM-ICU	Cumulative	13/55	28/55 🔶	0.46 (0.27, 0.80)
Kue, 2020	Postop	CAM-ICU	7 days	7/67	16/66 -	0.43 (0.19, 0.98)
Subgroup (1 ² = 0.0%, p = 0.512)				34/185	65/187	0.53 (0.37, 0.76)
Exercise						
Jeffs, 2013	Inpatient	CAM	Cumulative until D/C	15/305	21/343	0.80 (0.42, 1.53)
Karadas, 2016	ICU	CAM-ICU	Cumulative until D/C	4/47	10/47	0.40 (0.13, 1.19)
Martinez-Velilla, 2019	Inpatient	CAM	Cumulative until D/C	27/185	15/185	1.80 (0.99, 3.27)
Vydahi, 2020	ICU	CAM-ICU	At D/C	114/120	141/152	1.02 (0.96, 1.09)
Vydahl, 2022	ICU	CAM-ICU	3 days	7/26	10/20 -	0.54 (0.25, 1.16)
Subgroup	100	0.411100	0 00/0	167/683	197/747	0.91 (0.63, 1.33)
l ² = 57.9%, p = 0.040)				10/1003	1017747	1
Family						1
Eghbali-Babadi, 2017	Postop	CAM-ICU	3 days	11/34	26/34 🔶	0.42 (0.25, 0.71)
Martinez, 2012	Inpatient	CAM	Cumulative until D/C	8/144	19/143 -	0.42 (0.19, 0.92)
Mitchell, 2017	ICU	CAM	Cumulative until D/C	17/29	18/32	1.04 (0.68, 1.61)
Rosa, 2019	ICU	CAM-ICU	Cumulative until D/C	157/831	170/845	0.94 (0.77, 1.14)
Subgroup				193/1038	233/1054	0.70 (0.45, 1.08)
l ² = 74.7%, p = 0.008)						
light	Dealers	DOM IN	e deux			I
Ono, 2011	Postop	DSM-IV	6 days	1/10	5/12	0.24 (0.03, 1.73)
Potharajaroen, 2018	Postop	CAM-ICU	3 days	2/31	11/31	0.18 (0.04, 0.75)
Simons, 2016	ICU	CAM-ICU	28 days	137/361	123/373	1.15 (0.95, 1.40)
Taguchi, 2007	Postop	NEECHAM		1/6	2/5	0.42 (0.05, 3.36)
C.S.Zhang, 2021	ICU	CAM-ICU	Cumulative Until ICU D/C		7/40	1.05 (0.41, 2.72)
Subgroup ² = 57.7%, p = 0.045)				148/446	148/461	0.64 (0.30, 1.35)
Vassage						
Fazioliah, 2021	Postop	DOS	2 days	8/30	7/30	1.14 (0.47, 2.75)
Virrors						
Siraud, 2016	ICU	CAM-ICU	Cumulative until ICU D/C	20/115	17/108	1.10 (0.61, 1.99)
от						
Alvarez, 2017	ICU	CAM	5 days	2/70	14/70	0.14 (0.03, 0.61)
Sleep						
Arttawejkul, 2020	ICU	CAM-ICU	5 days	1/8	1/9	1.13 (0.08, 15.19
an Rompaey, 2012	ICU	NEECHAM		13/69	13/67 -	0.97 (0.49, 1.94)
Subgroup (1² = 0.0%, p = 0.915)			annun 12 mai	14/77	14/76 •	0.98 (0.50, 1.91)
-value for interaction (n	netaregres:	sion): p = 0.48	896			
Overall	2012	2210		624/2850	748/2946	0.79 (0.67, 0.93)
l ² = 60.1%, p = 0.000)					NATE STALL	

Favors intervention

Favors control

- 1134 *Abbreviations*. CAM=Confusion Assessment Method; CAM-ICU=Confusion Assessment Method for the Intensive
- 1135 Care Unit; CI=confidence interval; D/C=discharge; DOS=Delirium Observation Screening; DSM-IV=*Diagnostic and*
- 1136 *Statistical Manual of Mental Disorders*, 4th Edition; ICU=intensive care unit; NEECHAM=Neelon-Champagne
- 1137 confusion scale; OT=occupational therapy; postop=post-operative.
- 1138 Source. Alvarez et al. 2017; Arttawejkul et al. 2020; Chevillon et al. 2015; Dai et al. 2021; Eghbali-Babadi et al. 2017;
- 1139 Fahimi et al. 2020; Fazlollah et al. 2021; Giraud et al. 2016; Humeidan et al. 2021; Jeffs et al. 2013; Karadas and
- 1140 Ozdemir 2016; Martinez et al. 2012; Martinez-Velilla et al. 2019; Mitchell et al. 2017; Nydahl et al. 2020, 2022;
- 1141 O'Gara et al. 2020; Ono et al. 2011; Potharajaroen et al. 2018; Rosa et al. 2019; Simons et al. 2016; Taguchi et al.
- 1142 2007; Van Rompaey et al. 2012; Vlisides et al. 2019; Xue et al. 2020; K.S. Zhang et al. 2021.
- **1143** *Effect of single-component interventions on delirium severity*
- 1144 Five trials reported the severity of delirium in those who developed it (N=81 [Alvarez et al. 2017; Jeffs et
- al. 2013; Khan et al. 2020; Taguchi et al. 2007; Van Rompaey et al. 2012]). Interventions in the trials
- 1146 were varied (i.e., OT, exercise, music, light therapy, ear plugs), and some trials had only one event per
- group; thus, study findings could not be pooled for meta-analysis. One small trial (N=15) used the
- 1148 NEECHAM Confusion Scale to measure the severity of delirium and reported significantly lower delirium
- severity in the group that received light therapy compared with usual care, although only three patients
- developed delirium (Taguchi et al. 2007). Another trial also used the NEECHAM Confusion Scale and
- found lower delirium severity in the group that was given earplugs to sleep as compared to controls
- (Van Rompaey et al. 2012). The remaining three trials used either the CAM, CAM-ICU, or the DRS to
- measure the severity of delirium and found no significant differences between the control group and
- either intensive OT (Alvarez et al. 2017), exercise (Jeffs et al. 2013), or music listening (Khan et al. 2020).
- 1155 One trial of early mobilization reported significant decreases in mild and moderate to severe delirium
- 1156 from post-operative day 1 to post-operative day 2 in the intervention group compared with usual care
- 1157 (87% to 11% vs. 98% to 87% [Shirvani et al. 2020]).
- **1158** *Effect of single-component interventions on delirium duration*
- 1159 Fourteen trials reported the duration of delirium in those that developed it (N=3,183 [Alvarez et al.
- 1160 2017; Chevillon et al. 2015; Giraud et al. 2016; Humeidan et al. 2021; Jeffs et al. 2013; Karadas and
- 1161 Ozdemir 2016; Martinez et al. 2012; Mitchell et al. 2017; Morris et al. 2016; Munro et al. 2017; Nydahl
- et al. 2022; Schweickert et al. 2009; Simons et al. 2016; K.S. Zhang et al. 2021]). In a pooled analysis of
- the nine trials that were able to be combined, the difference between groups was small and not
- 1164 significant (9 trials, N=487; MD -0.18 days, 95% CI -0.62–0.26, I²=8.0% [Chevillon et al. 2015; Giraud et al.
- 1165 2016; Humeidan et al. 2021; Jeffs et al. 2013; Karadas and Ozdemir 2016; Martinez et al. 2012; Nydahl et
- al. 2022; Simons et al. 2016; K.S. Zhang et al. 2021]). There were no differences when analyses were
- 1167 stratified by setting or intervention.
- 1168 A number of trials reported results in a way that could not be combined with the other studies in a
- 1169 meta-analysis. Two trials reported that the intervention group had significantly fewer days in the ICU
- 1170 with delirium compared with usual care (median 2 days vs. 4 days, *P*=0.03 [Schweickert et al. 2009]) and
- fewer days overall in the hospital with delirium (median 2 days vs. 4 days, *P*=0.02 [Schweickert et al.
- 1172 2009]; mean 0.3 days vs. 0.9 days, *P*=0.04 [Munro et al. 2017]). A third trial reported no differences
- between days in the ICU with delirium (median 0 day vs. 0 day [Morris et al. 2016]). Another trial
- 1174 reported similar median days with delirium (1 day vs. 1 day) but did not report a variance measure

- 1175 (Mitchell et al. 2017). One trial also reported significantly larger proportions of time with delirium for
- the usual care group compared with the intervention group in the ICU (57% vs. 33%, *P*=0.02) or during
- 1177 hospitalization (41% vs. 28%, *P*=0.01 [Schweickert et al. 2009]). In terms of the number of hospital days
- 1178 that were free of delirium, three trials reported similar numbers between the intervention and usual
- 1179 care groups (a median of 2 days vs. 2 days with 7 days of observation [Khan et al. 2020], a median of 26
- days vs. 27 days with 28 days of observation [Simons et al. 2016], and a median of 27 days vs. 28 days
- 1181 with observation to the time of discharge [Brummel et al. 2014]).
- **1182** Effect of single-component interventions on ICU and hospital length of stay
- Seventeen trials reported the length of stay in the ICU (Alvarez et al. 2017; Arttawejkul et al. 2020;
- Brummel et al. 2014; Chevillon et al. 2015; Giraud et al. 2016; Karadas and Ozdemir 2016; Mitchell et al.
- 1185 2017; Morris et al. 2016; Munro et al. 2017; Obanor et al. 2021; O'Gara et al. 2020; Ono et al. 2011; Rosa
- et al. 2019; Schweickert et al. 2009; Shirvani et al. 2020; Simons et al. 2016; Vlisides et al. 2019; Xue et
- al. 2020; K.S. Zhang et al. 2021). Four trials were conducted in post-operative patients (3 after cardiac
- 1188 surgery and 1 after thoracotomy), whereas the other trials had a mix of general inpatients and surgical
- patients. In the trials that could be pooled, the intervention group had a shorter length of stay that was
- small in magnitude but statistically significant (14 trials, N=3,766; MD -0.09 days, 95% CI -0.32–0.15,
- 1191 l²=59.6%). The findings did not differ when analyses were separated by setting or intervention.
- 1192 Eighteen trials reported the length of stay in the hospital (Alvarez et al. 2017; Arttawejkul et al. 2020;
- Brummel et al. 2014; Chevillon et al. 2015; Humeidan et al. 2021; Jeffs et al. 2013; Martinez-Velilla et al.
- 1194 2019; Martinez et al. 2012; Mitchell et al. 2017; Morris et al. 2016; O'Gara et al. 2020; Ono et al. 2011;
- 1195 Schweickert et al. 2009; Shirvani et al. 2020; Simons et al. 2016; Vlisides et al. 2019; Xue et al. 2020; K.S.
- 1196 Zhang et al. 2021). In the trials that could be pooled, the difference was not significant (13 trials,
- 1197 N=2,799; MD 0.15 days, 95% CI -0.05–0.34, I²=0%). One trial did not report variance data and could not
- 1198 be included in the meta-analysis (Martinez-Velilla et al. 2019).

1199 *Effect of single-component interventions on mortality and adverse events*

- 1200 Several trials excluded patients who died during their hospital stay or during the study from their
- 1201 analyses. However, 12 trials (N=3,839) did report mortality (Alvarez et al. 2017; Brummel et al. 2014; Dai
- 1202 et al. 2021; Khan et al. 2020; Martinez-Velilla et al. 2019; Nydahl et al. 2020, 2022; Rosa et al. 2019;
- 1203 Schweickert et al. 2009; Simons et al. 2016; Xue et al. 2020; K.S. Zhang et al. 2021). In a pooled analysis
- 1204 of 12 trials, there were no significant differences in rates of mortality between intervention and control
- 1205 groups overall (N=3,730; 13% vs. 12.5%, RR 1.03, 95% Cl 0.87-1.21, l²=0%) or when the analysis was
- 1206 separated by setting or intervention.
- 1207 Seven trials reported no adverse events or described any adverse events as unrelated to the
- 1208 intervention (Alvarez et al. 2017; Jeffs et al. 2013; Khan et al. 2020; Potharajaroen et al. 2018; Simons et
- al. 2016; Taguchi et al. 2007; K.S. Zhang et al. 2021). Similar proportions of falls were noted between
- 1210 groups in a study of family member education versus usual care (0% vs. 3% [Martinez et al. 2012]) and
- 1211 exercise sessions versus usual care (3% vs. 0% [Martinez-Velilla et al. 2019]). One trial of flexible family
- 1212 visitation reported no differences in ICU-acquired pneumonia, infection, UTI, and bloodstream infection
- 1213 (Rosa et al. 2019). Two other trials reported no differences in total complications with pre-operative

- 1214 individualized education in cardiac surgery patients (Xue et al. 2020) or in total number of adverse
- 1215 events with standardized rehabilitation therapy in acute respiratory failure patients (Morris et al. 2016).
- 1216 However, one of these trials reported that a patient experienced an episode of asymptomatic
- 1217 bradycardia lasting less than 1 minute, which the authors noted might be related to the progressive
- resistance exercise intervention (Morris et al. 2016). Another trial reported that 16.6% of the early
- 1219 mobilization group experienced an "unwanted safety event" (Nydahl et al. 2022). The remaining trials
- 1220 did not report adverse events.
- **1221** *Effect of single-component interventions on other outcomes*
- 1222 Other outcomes were reported inconsistently across studies. One trial that assessed readmission rates
- 1223 found no significant differences between exercise sessions and usual care groups at 3 months (HR 2.4,
- 1224 95% CI 1.7– 3.2 vs. 2.5, 95% CI 1.8–3.3, *P*=0.82 [Martinez-Velilla et al. 2019]). However, in comparison
- 1225 with usual care, the same trial reported that the exercise group showed significantly greater
- 1226 improvements in depression measured by the Geriatric Depression Scale (MD -2.0, 95% CI -2.5 to -1.6)
- and quality of life measured by the EuroQol-5 Dimension (MD 13.2, 95% Cl 8.2–18.2 [Martinez-Velilla et
 al. 2019]). One trial (N=129) of individualized pre-operative education compared with usual care
- reported no differences in trait or state anxiety on the Impact of Events Scale but did not report the data
- 1230 (Chevillon et al. 2015). One trial reported more patients in an OT group compared with usual care were
- 1231 functioning at a normal level at discharge based on the Functional Independence Measure (81.5% vs.
- 1232 47.7% [Alvarez et al. 2017]). Two trials of exercise compared with usual care found no differences
- 1233 between groups in the proportion who were able to return to their previous residence (75% vs. 79%
- 1234 [Jeffs et al. 2013], 92% vs. 91% [Martinez-Velilla et al. 2019]).
- 1235 One trial of pre-operative cognitive training reported more post-operative cognitive decline in the
- 1236 intervention group compared with usual care (37% vs. 53%), although this difference was not
- 1237 statistically significant (O'Gara et al. 2020). Another trial reported statistically significantly higher MMSE
- scores at 1 week in a group receiving cognitive training compared with usual care (mean 25.94 vs. 21.94,
- 1239 *P*<0.001 [Dai et al. 2021]). An additional trial of cognitive training plus PT compared with usual care
- 1240 reported similar MMSE scores, in the no cognitive impairment range, at discharge from the ICU between
- groups (median 28.0 vs. 25, *P*=0.09 [Brummel et al. 2014]). With an exercise intervention, one trial
- 1242 reported significantly greater increases in MMSE scores from baseline to discharge for the intervention
- 1243 group compared with usual care (MD 1.8, 95% Cl 1.3–2.3 [Martinez-Velilla et al. 2019]), but patients had
- a mean score of 22 on the MMSE at baseline, consistent with mild dementia.
- 1245Two trials reported significantly better sleep in the intervention groups compared with usual care (mean1246Richards-Campbell Sleep Questionnaire score [0 to 100, 100=better sleep] of 59.1 vs. 35.3, P=0.0003 for1247eye mask and ear plugs [Obanor et al. 2021] and mean Pittsburgh Sleep Quality Index score at 1 week of12486.89 vs. 9.54, P<0.001 for cognitive testing [Dai et al. 2021]), whereas one trial reported no difference</td>1249between groups (had good quality of sleep on post-operative day 2: 70% vs. 83.3%, P=0.24 [Fazlollah et1250al. 2021]).
- 1251 Several trials reported on the effects of interventions on use of antipsychotic, benzodiazepine, opioid, or 1252 other sedating medications. One trial of light therapy as compared to usual care reported a comparable

- use of haloperidol in each group (35% vs. 31%, *P*=0.35), with a similar cumulative dose (median 11 mg,
- 1254 interquartile range [IQR] 4–22 mg vs. median 14 mg, IQR 5–28 mg, *P*=0.42 [Simons et al. 2016]); another
- reported no significant difference between groups in the number of days using sedatives (mean 3.9
- days, SD 1.0 vs. mean 4.1 days, SD 1.3, *P*=0.57 [Ono et al. 2011]). A third trial of light therapy reported
- no difference in the administration of additional medications (i.e., fentanyl, dexmedetomidine,
- 1258 quetiapine, midazolam, and haloperidol) as compared to usual care (K.S. Zhang et al. 2021). Finally, a
- 1259 trial of cognitive training plus PT compared to usual care reported no differences in rates of
- 1260 benzodiazepine (49% vs. 55%, P=0.46), propofol (98% vs. 59%, P=0.47), dexmedetomidine (37% vs. 14%,
- 1261 *P*=0.83), and opioid (98% vs. 95%, *P*=0.95) usage (Brummel et al. 2014).
- 1262 Effectiveness of single-component interventions based on multi-component trial data and network meta-1263 analysis
- 1264 To identify individual components that may be responsible for, or at least contribute meaningfully to,
- 1265 the overall results of multi-component interventions, the Pacific Northwest EPC conducted subgroup
- 1266 analyses based on whether each study included an individual component. For example, they analyzed
- 1267 studies based on whether the study did or did not include a mobilization component. They compared
- 1268 the findings for each subgroup to determine whether differences were statistically significantly
- 1269 different. Table C-2 shows the results of these analyses. When trials were compared based on the
- 1270 individual components they included, no individual components affected the results to a statistically
- 1271 significant degree. In addition, analysis of the overall findings did not indicate a strong potential for
- 1272 publication bias.

	RR in studies including	RR in studies without	
Component	(95% CI)	(95% CI)	P-value*
Sensory	0.796 (0.599 to 1.057)	0.674 (0.512 to 0.886)	P=0.637
Orientation	0.467 (0.284 to 0.768)	0.870 (0.696 to 1.086)	P=0.076
Mobilization	0.686 (0.557 to 0.846)	0.917 (0.590 to 1.425)	P=0.229
Restraint avoidance	0.637 (0.306 to 1.326)	0.738 (0.597 to 0.911)	P=0.878
Medication reduction	0.572 (0.384 to 0.850)	0.798 (0.630 to 1.011)	P=0.226
Catheter removal	0.556 (0.344 to 0.899)	0.808 (0.655 to 0.995)	P=0.291
Sleep aids	0.619 (0.465 to 0.822)	0.828 (0.621 to 1.104)	P=0.131
Cognitive stimulation	0.560 (0.369 to 0.849)	0.798 (0.627 to 1.017)	P=0.400
Liquid intake	0.674 (0.529 to 0.858)	0.831 (0.611 to 1.128)	P=0.239

1273 Table C-2. Pooled analyses of individual components in multi-component trials to prevent delirium

	RR in studies including	RR in studies without	
Component	(95% CI)	(95% CI)	P-value*
Nutrition	0.633 (0.485 to 0.825)	0.909 (0.697 to 1.185)	P=0.225

1274 *For interaction

1275 *Abbreviations.* CI=confidence interval; RR=risk ratio.

1276 Burton and colleagues (2021) conducted an exploratory component network meta-analysis to assess the 1277 comparative effectiveness of individual components of the multi-component interventions. A decreased 1278 risk of incident delirium was associated with re-orientation (including use of familiar objects), cognitive 1279 stimulation, and sleep hygiene. Additionally, attention to nutrition and hydration, oxygenation, 1280 medication review, assessment of mood, and bowel and bladder care likely had an association with 1281 lower incident delirium, but this could not be determined definitively because estimates included the 1282 possibility of no benefit or harm. Finally, reducing sensory deprivation, identification of infection, 1283 mobilization, and pain control were associated with potential increases in delirium incidence, but the 1284 evidence was highly uncertain.

1285 Grading of the Overall Supporting Body of Research Evidence for Use of Single-Component Non-1286 Pharmacological Interventions in Prevention of Delirium

1287 0 Magnitude of effect: Minimal. The magnitude of the effect of single interventions is minimal in 1288 most patient subgroups in reducing the incidence, severity, or duration of delirium or in terms of 1289 mortality associated with delirium. Statistically significant differences were noted with single-1290 component interventions in post-operative patients, but interventions were varied. Education and OT 1291 were associated with statistically significant reductions in delirium incidence, but studies were small. 1292 Reductions in ICU length of stay were statistically significant but very small in magnitude for single-1293 component interventions taken together; there is unlikely to be clinical significance of this decrease. 1294 Risk of bias: Moderate to High. Of the single-component studies, nine had a high risk of bias and 0

26 had a moderate risk of bias with only one study that had a low risk of bias. The factors that most
often contributed to a higher risk of bias included lack of blinding or lack of information about blinding
or allocation concealment, particularly in patients and clinicians.

o Applicability: The findings of these studies are applicable to older patients, those in critical care
 settings, and post-operative patients. Applicability to younger individuals and those in other clinical
 settings is likely to be reduced. Demographic information on study participants was often not reported
 and non-White individuals were often under-represented when demographic information was available.

1302 o Directness: Direct. Outcomes were directly related to delirium or its associated adverse effects,1303 including mortality.

1304 o Consistency: Consistent. Study findings were consistent for delirium incidence, duration, and
 1305 severity, and for mortality associated with delirium.

o Precision: Varies with outcome. For delirium incidence and duration, the findings were precise
 whereas for other outcomes, findings were imprecise.

1308 o Dose-response relationship: No available information.

o Confounding factors (including likely direction of effect): The data may be confounded by
 variations in delirium assessment due to rater training. Individuals with hypoactive delirium may have
 been less likely to be identified than those with hyperactive delirium. However, the direction of effect

- 1312 from these potential confounding factors is not clear.
- 1313 o Publication bias: Identified. There was possible evidence of publication bias for studies related
 1314 to the incidence of delirium, with small studies likely to have gone unpublished.
- 1315 o Overall strength of research evidence: Low to Moderate. The strength of research evidence for
- 1316 single interventions is moderate for the duration of delirium and low for the incidence and severity of
- delirium as well as for mortality associated with delirium. For other outcomes, there was insufficient
- 1318 information to make a determination.
- 1319 Non-Pharmacological Interventions for the Treatment of Delirium
- 1320 A systematic review conducted by the Pacific Northwest EPC assessed outcomes from multi-component
- and single-component non-pharmacological interventions among clinical trials designed to treat
- 1322 delirium. For multi-component interventions, there were no group differences in delirium improvement,
- although one trial of general inpatients demonstrated an effect that favored the intervention group
- 1324 (Pitkälä et al. 2006). For single-component interventions, there was a non-significant group difference in
- 1325 the resolution of delirium.

1326 Multi-Component Interventions

- 1327 The systematic review assessed evidence from eight clinical trials (Cole et al. 1994, 2002; Khalifezadeh et
- 1328 al. 2011; Kolanowski et al. 2011, 2016; Marcantonio et al. 2001, 2010; Pitkälä et al. 2006, 2008)
- 1329 comparing a multi-component intervention with usual care to treat delirium.

1330 *Overview of study characteristics*

- 1331 The interventions were a mix of behavioral and care-related interventions (Table C-3). Behavioral
- 1332 interventions included sensory interventions, orientation interventions, cognitively stimulating activities,
- 1333 increasing self/independent-care activities, or emotional support. Care-related interventions included
- early mobilization, early removal of urinary catheter, avoidance of restraints, avoidance or reduction of
- 1335 certain medications, use of sleep aids or promotion of good quality sleep, scheduled liquid intake to
- 1336 avoid dehydration, nutritional assistance or scheduled oral food intake, and monitoring for infections,
- 1337 blood transfusion necessity, or pain. Several trials involved family members in the intervention. Most of
- 1338 the interventions would be considered good practice or even standard of care (e.g., early removal of
- 1339 catheter); they are not usually considered controversial or harmful. All control interventions were usual
- 1340 care and may have contained portions of the multi-component interventions, but they were not actively
- 1341 monitored for adherence or treatment fidelity.

Author Year	Setting/ Population Country	RF	Family ^a	Sensory ^b	Orientation ^c	Early mobilize	Decreased restraints ^d	Planned intake ^e	Decreased medications ^f	Cognitive activities	Increased self-care ^g	Sleep ^h
Cole et al.	Inpatient	Х	Х	Х	Х	Х	Х				Х	
1994	Canada											
Cole et al.	Inpatient	Х	Х	Х	Х	Х	Х				Х	
2002	Canada											
Khalifezadeh	Postop,		Х		Х							
et al. 2011	neurosurgery											
	Iran											
Kolanowski	Rehab									Х		
et al. 2011	U.S.											
Kolanowski	Rehab									Х		
et al. 2016	U.S.											
Marcantonio	Nursing	Х		Х	Х	Х		Х	Х			
et al. 2001	home											
	U.S.											
Marcantonio	Nursing	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х
et al. 2010	home											
	U.S.											
Pitkälä et al.	Inpatient	Х			Х	Х		Х	Х			
2006	Finland											

1342 Table C-3. Individual components in multi-component intervention trials to treat delirium

^a Family was involved in the delivery of the intervention.

1344 ^b Such as glasses, hearing aids, good lighting, and noise avoidance

^c Such as date, time, location, and reason for being there

1346 ^d Either physical restraints or catheter

^e Daily scheduled oral or intravenous administration of fluids (liquids) and/or nutritional assistance

1348 ^f Decreased use or avoidance of use of opioids, anticholinergics, sedatives, and other psychoactive drugs that may increase risk of delirium or sedation

- 1349 ^g Increase patient's independent care for self, preferably to baseline
- ^h Sleep aids, such as ear plugs and/or eye masks, and decreased noise and light at night
- 1351 *Abbreviations*. RF=risk factor analysis.
- 1352 *Source.* Cole et al. 1994, 2002; Khalifezadeh et al. 2011; Kolanowski et al. 2011, 2016; Marcantonio et al. 2001, 2010; Pitkälä et al. 2006.

- 1353 Trials were generally small in size (N<200) and were mostly conducted in the United States (4 trials) and
- 1354 Canada (2 trials) with one trial conducted in Iran and another trial in Finland. Risk of bias was low in two
- trials, moderate in five trials, and high in one trial. The weighted mean age was 84 years across those
- trials that reported age, and samples were predominantly female (mean 65%, range 54% to 74%).
- Participants were mostly White, in the 4 trials that reported information on race/ethnicity. Study
 settings included post-operative neurosurgery, general inpatient, nursing homes, and rehabilitation
- settings included post-operative neurosurgery, general inpatient, nursing homes, and rehabilitation
 centers. Co-occurring dementia was excluded in one study, present in all participants in two studies, and
- 1360 present in a portion of the sample in the other studies. In all trials, participants' baseline functional
- 1361 status was within normal ranges based on the Charlson Comorbidity Index, the Clinical Dementia Rating
- 1362 Scale, the Crichton Geriatric Behavioral Scale, or the RASS. All patients were diagnosed with delirium
- 1302 Scale, the chefton Genatric Benavioral Scale, of the NASS. All patients were diagnosed with denin
- 1363 with a validated assessment scale (i.e., the CAM, DRS, MDAS, and a composite scale).
- **1364** *Effect of multi-component interventions on delirium severity*
- 1365 The systematic review identified five individual clinical trials that reported on the response of delirium
- to multi-component non-pharmacological interventions (Khalifezadeh et al. 2011; Kolanowski et al.
- 1367 2016; Marcantonio et al. 2001, 2010; Pitkälä et al. 2006). A pooled analysis of the four trials that could
- be combined found no significant differences between groups (N=795; RR 1.03, 95% CI 0.86–1.23,
- 1369 I²=72%) (Khalifezadeh et al. 2011; Kolanowski et al. 2016; Marcantonio et al. 2001, 2010) (see Figure C-
- 1370 4). A trial of general inpatients (N=174) found significantly greater sustained improvement of 4 points or
- 1371 more on the MDAS at day 8 in the intervention group compared with usual care (47% vs. 21%, *P*=0.002
- 1372 [Pitkälä et al. 2006]).
- 1373 Two trials (N=16 and 283) from the systematic review that were conducted in dementia patients in
- 1374 rehabilitation centers found a non-significantly lower severity of delirium in the intervention group
- 1375 compared with usual care as measured by the DRS (Kolanowski et al. 2011, 2016). A trial (N=126)
- 1376 conducted in nursing homes, which included rehabilitation patients as well as long-term care residents,
- 1377 found more patients in the usual care group had severe delirium compared with the intervention group
- 1378 (RR 0.40, 95% CI 0.18–0.89), although baseline severity was not reported (Marcantonio et al. 2001).

Setting and Risk of Assessment Control **Risk Ratio** Response Treatment Author, Year Bias Measure n/N (95% CI) Time n/N Nursing homes Marcantoni, 2001 Moderate CAM Discharge 54/62 52/64 1.07 (0.92, 1.25) Marcantoni, 2010 Moderate CAM 28 days 85/212 68/138 0.81 (0.64, 1.03) Subgroup 139/274 120/202 0.95 (0.73, 1.24) (l² = 73.0%, p = 0.022) Postop Khalifezadeh, 2011 High Composite 5 days 17/20 8/20 2.13 (1.20, 3.75) 17/20 8/20 2.13 (1.20, 3.75) Subgroup (l²= 0.0%, p = NA) Rehab DRS Kolanowski, 2016 122/140 0.99 (0.90, 1.09) 0 to 39 days 120/139 Low 0.99 (0.90, 1.09) Subgroup 120/139 122/140 (I2= 0.0%, p = NA) Interaction p-value : p = 0.4046 Overall 276/433 250/362 1.03 (0.86, 1.23) (l² = 71.6%, p = 0.013) 25 4 1 Favors control Favors treatment

1379 Figure C-4. Delirium response with multi-component interventions versus usual care.

1380 Abbreviations. CAM=Confusion Assessment Method; CI=confidence interval; DRS=Delirium Rating Scale; NA=not

1381 applicable; postop=post-operative; Rehab=rehabilitation.

1382 Source. Khalifezadeh et al. 2011; Kolanowski et al. 2016; Marcantonio et al. 2001, 2010.

1383 *Effect of multi-component interventions on delirium duration*

1384 The systematic review identified four trials that reported on outcomes related to the duration of

delirium (Cole et al. 2002; Kolanowski et al. 2011, 2016; Marcantonio et al. 2001). One trial in

1386 rehabilitation center patients with dementia reported a large but non-significant difference in the mean

1387 number of days with delirium (3.27 vs. 7, *P*=0.11 [Kolanowski et al. 2011]). Another trial, among patients

1388 with hip fracture, also did not find a significant difference in mean hospital days of delirium per episode

- 1389 (2.9 vs. 3.1, *P*=0.72 [Marcantonio et al. 2001]). Kolanowski and colleagues (2016) found a non-significant
- difference in the time to resolution of delirium symptoms (6.88 days vs. 7.39 days, P=0.79) and in the
- proportion of delirium-free days (64.8% vs. 68.7%, *P*=0.37) in patients with dementia. Finally, a trial of
- 1392 older inpatients reported that the time to improvement in the Delirium Index score was not significantly
- 1393 different between groups (HR 1.09, 95% CI 0.74–1.60 [Cole et al. 2002]). There was also no difference in
- delirium improvement when the analysis was restricted to patients without dementia (HR 1.54, 95% CI
- 1395 0.80–2.97 [Cole et al. 2002]).

1396 Effect of multi-component interventions on length of stay

- 1397 Among four trials (N=810) that reported the length of hospital stay (Cole et al. 2002; Kolanowski et al.
- 1398 2016; Marcantonio et al. 2001; Pitkälä et al. 2006), three trials showed a similar length of stay between
- 1399 intervention and usual care groups (Cole et al. 2002; Marcantonio et al. 2001; Pitkälä et al. 2006). In
- 1400 contrast, a single trial of patients with dementia in a rehabilitation center found significantly longer stay
- in the usual care group compared with the intervention group (mean 53.13 days vs. 36.09 days, *P*=0.01
- 1402 [Kolanowski et al. 2016]).
- 1403 *Effect of multi-component interventions on mortality*
- In a pooled analysis of six trials (N=1,245; Cole et al. 1994, 2002; Kolanowski et al. 2011, 2016;
 Marcantonio et al. 2010; Pitkälä et al. 2006), there were no differences between groups in rates of
 mortality (RR 1.07, 95% CI 0.85–1.36). None of the trials reported adverse events, and one trial excluded
 individuals who died during the study.
- 1408 Effect of multi-component interventions on other outcomes
- 1409 One trial (N=174), conducted in general hospitalized patients, reported higher health-related quality of
- 1410 life in the intervention group compared with usual care, as measured by the generic 15-dimensional
- 1411 questionnaire (*P*=0.020 [Pitkälä et al. 2008]). In the same trial, more patients in the intervention group
- 1412 reported feeling "healthy" or "quite healthy" at discharge (71% vs. 49%, P=0.050). In three trials
- 1413 (N=417), the MMSE was used to assess cognitive decline in patients with delirium. One found no
- 1414 differences in intervention and control groups at 3-month follow-up (mean 18.6 vs. 18.3) but did find a
- 1415 benefit of the multi-component intervention at 6-month follow-up (mean 18.4 vs. 15.8, P=0.047 [Pitkälä
- 1416 et al. 2006]). The other two studies found no group differences (improvement at 36 days: HR 1.10, 95%
- 1417 CI 0.74–1.63 [Cole et al. 2002] and mean at discharge: 16.84 vs. 16.25, *P*=0.5233 [Kolanowski et al.
- 1418 2011]). Lastly, two trials (N=227 and 174) failed to find any differences in mean scores on the Barthel
- 1419 Index, a disability assessment, between intervention groups at discharge (47.74 vs. 43.41, P=0.965
- 1420 [Kolanowski et al. 2011]) or at 6-month follow-up (70.2 vs. 63.8, *P*=0.144 [Pitkälä et al. 2006]) as
- 1421 compared to usual care.
- 1422 Grading of the Overall Supporting Body of Research Evidence for Use of Multi-Component Non-
- 1423 Pharmacological Interventions in the Treatment of Delirium
- 1424 o Magnitude of effect: Minimal. No significant differences were noted in the magnitude of effects
 1425 on outcomes including delirium remission, severity, or duration with multi-component interventions.
- o Risk of bias: Moderate. The majority of trials on multi-component interventions for the
 treatment of delirium had a moderate risk of bias with a high risk of bias in two of eight studies. Factors
 that most commonly affected the risk of bias were a lack of specification of the methods for random
 allocation and concealment as well as a lack of patient and clinician masking.
- o Applicability: The majority of studies on use of multi-component interventions to treat delirium
 were done in the United States or Canada, primarily in nursing homes or rehabilitation facilities with
 some studies in acute care settings. Older individuals predominated in the majority of the studies and,
 in most studies, co-occurring dementia was present in some or all of the participants. Most of the

- 1434 studies included a greater proportion of women than men. Little information was available on the race
- 1435 and ethnicity of participants for many of the studies and when this information was specified, the
- 1436 sample was predominantly White.
- 1437 o Directness: Direct. Outcomes were directly related to delirium or its associated adverse effects,1438 including mortality.
- 1439 o Consistency: Variable. Studies on delirium remission and mortality showed consistent findings
 1440 whereas for other outcomes, only one study was available, and the consistency of findings was
 1441 unknown.
- 1442 o Precision: Imprecise. Findings were imprecise for all outcomes.
- 1443 o Dose-response relationship: No available information.
- 1444 o Confounding factors (including likely direction of effect): The data may be confounded by
 1445 variations in delirium assessment due to rater training. Many of the studies included individuals with
 1446 concomitant dementia, which may have delayed resolution of delirium in those subjects.
- 1447 o Publication bias: Unclear. Although publication bias was not reported, there was an insufficient1448 number of trials to make an assessment.
- o Overall strength of research evidence: Low. The strength of research evidence was low for
 response of delirium to multi-component interventions and rates of mortality within the studies of
 delirium treatment using multi-component interventions.
- 1452 Single-Component Interventions
- Because multi-component non-pharmacologic interventions are comprised of multiple independent
 interventions, the Pacific Northwest EPC systematic review considered the effectiveness outcomes from
 single-component studies as well as assessing effects of each component within the multi-component
 trials.

1457 *Overview of study characteristics*

- 1458 Six trials (Campbell et al. 2019; Khan et al. 2019; Levy et al. 2022; Mailhot et al. 2017; Makinian et al.
- 1459 2015; Yang et al. 2012) compared a single behavioral intervention with usual care for the treatment of
- 1460 delirium. The single behavioral interventions assessed were computerized decision-support
- 1461 interventions to interrupt orders for strong anticholinergics (Campbell et al. 2019; Khan et al. 2019), a
- 1462 family member-delivered delirium management intervention (Mailhot et al. 2017), bright light therapy
- 1463 (Yang et al. 2012), massage (Makinian et al. 2015), and acupuncture (Levy et al. 2022). The control group
- 1464 was usual care in all trials. Two trials also provided adjunct antipsychotics to both groups—risperidone
- 1465 (starting at 0.5 mg/day and increased to a mean of 2.0 mg/day) with light therapy (Yang et al. 2012) or
- haloperidol (given as a single dose to both groups) with massage (Makinian et al. 2015).
- 1467 Trials were generally small in size, with the number of subjects ranging from 30 to 351. Two trials were 1468 conducted in the United States and 1 each in Canada, South Korea, Israel, and Iran. Trial settings

- 1469 included post-operative cardiac surgery, ICU, general inpatient, and hospital psychiatry. All the trials
- 1470 were rated as having a moderate risk of bias. The weighted mean age was 63 years, with four trials
- 1471 having a mean age 70 or older. Several trials were predominantly female, although the range of female
- 1472 participants was 36% to 62%. In the two U.S. trials, Black participants comprised 42% and 52% of the
- 1473 study population; no other trials reported race/ethnicity. All trial participants were within normal levels
- 1474 of functioning at the start of the study, as measured by the APACHE II, Charlson Comorbidity Index, or
- 1475 the Clinical Global Impressions-Severity. In both ICU trials, nearly three-quarters of participants were on
- 1476 mechanical ventilation. All patients were diagnosed with delirium as per a validated assessment tool
- 1477 (i.e., the CAM, CAM-ICU, DRS, or the NEECHAM Confusion Scale).
- **1478** *Effect of single-component interventions on delirium response*
- 1479 A pooled analysis of three trials found no differences in the response of patients with delirium to a
- 1480 single-component intervention (3 trials, N=191; 32.3% vs. 17.4%, RR 1.92, 95% Cl 1.13–3.25, I²=0%) (Levy
- 1481 et al. 2022; Mailhot et al. 2017; Makinian et al. 2015). A trial of ICU patients reported more delirium-
- 1482 /coma-free days in the intervention group compared with usual care by day 8 (median 4 vs. 5, P=0.36) or
- 1483 day 30 (median 25 vs. 26.5, *P*=0.10), but the differences were not significant (Campbell et al. 2019). The
- 1484 trial of acupuncture reported that the intervention group had more patients without delirium compared
- 1485 with the usual care (24% vs. 11%, *P*=0.002) as well as a significantly shorter time to first remission of
- 1486 delirium for (HR 0.267, 95% CI 0.098– 0.010) and more delirium-free days (median of 5.5 vs. 0, *P*<0.001).
- **1487** *Effect of single-component interventions on delirium severity*
- 1488 Five trials reported delirium severity was lower in the intervention group, but results were significant in 1489 only two of the trials. One trial reported significantly lower mean scores on day 5 for the intervention
- 1490 group compared with usual care (12 vs. 18, *P*<0.05 [Yang et al. 2012]), and the other reported a
- 1491 significantly larger decrease in mean scores at discharge in the intervention group compared with usual
- 1492 care (-3.2 vs. -2.5, *P*=0.046 [Khan et al. 2019]). The other three trials did not report significant
- 1493 differences (Campbell et al. 2019; Mailhot et al. 2017; Makinian et al. 2015), although all reported lower
- scores or larger decreases in the intervention group. Studies used different scales, and the interventions
- 1495 were heterogeneous; thus, they were not combined in the meta-analysis. Updated analyses indicated
- similar results as the previous meta-analysis, with no differences between groups.
- **1497** *Effect of single-component interventions on length of stay*
- 1498 Regarding length of stay, one trial (N=200) reported significantly longer ICU stay in the intervention
- 1499 group (computer decision support) compared with usual care (median 10 days vs. 8 days, P=0.019
- 1500 [Campbell et al. 2019]), whereas four trials (N=399) found no group differences in hospital length of stay
- 1501 (Campbell et al. 2019; Levy et al. 2022; Mailhot et al. 2017; Makinian et al. 2015). Of those four trials,
- 1502 two found shorter hospital stays in the intervention groups (mean 6.3 vs. 12.1 and 4.11 vs. 4.6 days
- 1503 [Mailhot et al. 2017; Makinian et al. 2015]) and two found longer hospital stays for the intervention
- 1504 group (median days: 12 vs. 11 and 13 vs. 12 days [Campbell et al. 2019; Levy et al. 2022]).
- **1505** *Effect of single-component interventions on mortality*
- 1506 In two ICU trials (N=551), there were no group differences on rates of mortality at discharge (11% vs. 8%
- 1507 [Campbell et al. 2019] and OR 0.61, 95% CI, 0.32–1.16 [Khan et al. 2019]) or at 30 days post-discharge

- 1508 (15% vs. 10% [Campbell et al. 2019] and OR 0.62, 95% CI 0.35–1.12 [Khan et al. 2019]). One trial (N=81)
- 1509 found no group differences in in-hospital mortality (16% vs. 23%, P=0.574 [Levy et al. 2022]). In three
- 1510 trials, there were also no group differences in number of serious adverse events (N=581) (27% vs. 22%
- 1511 [Campbell et al. 2019] and 26% vs. 32% [Khan et al. 2019]) or in caregiver anxiety at day 4 (mean HADS
- 1512 score: 36.67 vs. 43.86 [Mailhot et al. 2017]). The remaining three trials did not report adverse events.
- **1513** *Effect of single-component interventions on other outcomes*
- 1514 Regarding health/functional status and medication use outcomes, Sickness Impact Profile scores were
- 1515 significantly lower (i.e., better) in the intervention group compared with usual care in a family
- 1516 intervention in post-cardiac surgery patients (N=30; mean 4.80 vs. 9.50, P=0.01 [Mailhot et al. 2017]). In
- 1517 a trial of ICU patients (N=200), an intervention aimed at reducing medications with increased potential
- 1518 for causing delirium (e.g., strong anticholinergics and benzodiazepines) was not successful, as greater
- proportions of intervention patients were prescribed benzodiazepines (60.6% vs. 56.0%, *P*=0.50),
- 1520 haloperidol (29.3% vs. 20.0%, *P*=0.14), and anticholinergic drugs (34.3% vs. 26.0%, *P*=0.22 [Campbell et
- al. 2019]). Finally, the trial of acupuncture reported the same number of psychotropic drug-free days in
- each group (median 7 days each group, *P*=0.253) and equivalent scores on the Katz Index of
- 1523 Independence in Activities of Daily Living at discharge (median 2 in each group, *P*=0.945) (Levy et al.
- 1524 2022).

1525 *Effectiveness of single-component interventions based on multi-component trial data and network meta-*1526 *analysis*

- 1527 To identify individual components that may be responsible for, or at least contribute meaningfully to,
- 1528 the overall results of multi-component interventions, the Pacific Northwest EPC conducted subgroup
- 1529 analyses based on whether each study included an individual component. The findings for each
- 1530 subgroup were compared to determine whether they were statistically significantly different (Table C-4).
- 1531 When trials were compared based on the individual components they included, none of the individual
- 1532 components had significantly lower risk of delirium compared with the trials not including these
- 1533 interventions.
- 1534 Table C-4. Pooled analyses of individual components in multi-component trials to treat delirium

	RR in studies including	RR in studies without	
Component	(95% CI)	(95% CI)	P-value*
Sensory	0.948 (0.725 to 1.241)	1.375 (0.656 to 2.884)	0.472
Orientation	1.115 (0.783 to 1.588)	0.991 (0.904 to 1.086)	0.786
Mobilization	0.948 (0.725 to 1.241)	1.375 (0.656 to 2.884)	0.472
Restraint avoidance	0.814 (0.643 to 1.030)	1.107 (0.904 to 1.355)	0.446
Medication reduction	0.948 (0.725 to 1.241)	1.375 (0.656 to 2.884)	0.472

	RR in studies including	RR in studies without	
Component	(95% CI)	(95% CI)	P-value*
Catheter removal	0.814 (0.643 to 1.030)	1.107 (0.904 to 1.355)	0.446
Sleep aids	0.814 (0.643 to 1.030)	1.107 (0.904 to 1.355)	0.446
Cognitive stimulation	0.991 (0.904 to 1.086)	1.115 (0.783 to 1.588)	0.786

1535 *For interaction

1536 Abbreviations. CI=confidence interval; RR=risk ratio.

1537 Grading of the Overall Supporting Body of Research Evidence for Use of Single-Component Non-

1538 Pharmacological Interventions in the Treatment of Delirium

1539 o Magnitude of effect: Minimal to low. On pooled analyses, there was no significant effect of 1540 single-component interventions; however, in some individual studies with outcomes that were not

amenable to meta-analysis, there was a small benefit of the intervention.

1542 o Risk of bias: Moderate to high. Two-thirds of trials on single-component interventions for the 1543 treatment of delirium had a moderate risk of bias whereas the other trials had a high risk of bias. Factors 1544 that most commonly affected the risk of bias were a lack of specification of the methods for random 1545 allocation and concealment as well as a lack of patient and clinician masking. Several trials also had 1546 intervention and control groups with dissimilar characteristics at baseline.

1547 o Applicability: Most individuals in the trials of single-component interventions were older, but 1548 other demographic information was often not reported, and the samples may not be representative of 1549 usual clinical populations. Half of the trials were conducted in the United States or Canada. The single-1550 component interventions that were studied are not typically used in clinical settings in patients with 1551 delirium; however, the analysis of individual components of multi-component interventions includes 1552 common non-pharmacological approaches.

1553 o Directness: Direct. Outcomes were directly related to delirium or its associated adverse effects,
 1554 including mortality.

1555 o Consistency: Varies with outcome. Findings on delirium remission and severity were consistent
 1556 whereas findings on delirium duration and mortality were inconsistent. For other outcomes, findings
 1557 were only available from one study.

1558 o Precision: Varies with outcome. For delirium severity, the findings were precise whereas for1559 other outcomes, findings were imprecise.

1560 o Dose-response relationship: No available information.

1561 o Confounding factors (including likely direction of effect): The data may be confounded by
 1562 variations in delirium assessment due to rater training. Several of the trials had significant differences in

- the characteristics of intervention and control groups at baseline, which may also have confoundedresults.
- 1565 o Publication bias: Unclear. Although publication bias was not reported, there was an insufficient1566 number of trials to make an assessment.
- Overall strength of research evidence: Low to moderate. The strength of research evidence was
 moderate for delirium severity and low for delirium response and serious adverse events.
- **1569** Pharmacological Interventions
- **1570** *Statement 8 Principles of Medication Use*
- 1571 APA recommends **(1C)** that antipsychotic agents and other medications to address neuropsychiatric 1572 disturbances of delirium be used only when all the following criteria are met:
- verbal and non-verbal de-escalation strategies have been ineffective;
- contributing factors have been assessed and, insofar as possible, addressed; and
- the disturbances cause the patient significant distress and/or present a risk of physical
 harm to the patient or others.
- 1577 Evidence in support of this statement is primarily indirect and comes from a small number of studies on1578 the pharmacological treatment of delirium.
- 1579 The systematic literature review of pharmacological treatments for delirium that was conducted by the
- 1580 Pacific Northwest EPC included antipsychotics, sedatives, sleep-related medications, cholinesterase
- 1581 inhibitors, and miscellaneous medication (i.e., the benzodiazepine antagonist flumazenil). Findings are
- 1582 consistent with those from a systematic review from the AHRQ, which showed no effect of
- antipsychotics in the treatment of delirium in hospitalized adults (Nikooie et al. 2019) and generally
- 1584 indicated no significant effect of pharmacological treatments in improving delirium response, delirium
- severity, adverse events, or mortality. Studies of antipsychotic medications are described in this
- 1586 statement whereas studies of dexmedetomidine, benzodiazepines, melatonin, ramelteon, and other
- 1587 sleep-related medications are described in Statements 10, 11, 12, and 13.
- 1588 Use of Antipsychotic Medications for the Treatment of Delirium

1589 Overview of study characteristics

1590 There were 29 studies on treatment of delirium with antipsychotic medications that were identified in 1591 the systematic review (Agar et al. 2017; Atalan et al. 2013; Bakri et al. 2015; Boettger et al. 2011, 2015;

- 1592 Boncyk et al. 2021; Breitbart et al. 1996; Devlin et al. 2010; Fox et al. 2020; Fukata et al. 2017; Girard et
- al. 2018; Grover et al. 2016; Han and Kim 2004; Hatta et al. 2014a; Jain et al. 2017; Kim et al. 2010; Lee
- 1594 et al. 2005; Lin et al. 2008; Liu et al. 2004, 2021; Maneeton et al. 2013; Skrobik et al. 2004; Smit et al.
- 1595 2021; Tagarakis et al. 2012; Tahir et al. 2010; Thom et al. 2018; van der Vorst et al. 2020; Weaver et al.
- 1596 2017; Yoon et al. 2013). Studies were conducted in a wide range of countries with eleven in the United
- 1597 States, four in South Korea, three in India, two in Japan, and one each in Australia, Canada, China,
- 1598 Greece, Netherlands, Northern Taiwan, Saudi Arabia, Taiwan, Thailand, The Netherlands, Turkey, and
- 1599 the United Kingdom. Fifteen of the studies had a mean or median age 65 or greater, 16 had a mean or

- 1600 median age less than 65, and one trial did not report this information. Fourteen studies enrolled a
- 1601 predominance of men, four studies enrolled a predominance of women, 12 enrolled comparable
- 1602 proportions of men and women, and two did not report this information. Twenty-five studies did not
- 1603 report information on race or ethnicity and one study enrolled only Asian participants. In the other
- 1604 studies, White participants represented 13% to 83% of the sample, and Black participants represented
- 1605 9% to 57% of participants. Individuals with dementia were excluded from 12 of the trials and constituted
- 1606 10% to 25% of the sample in three trials. In the remaining seventeen trials, no information on the
- 1607 presence of dementia was reported.
- Studies on the treatment of delirium included a mix of RCTs and prospective and retrospective cohort studies. Among the RCTs (N=2,111, range 28 to 566), the risk of bias was low in two studies, moderate in nine studies, and high in seven studies. Among the cohort studies (N=12,682 range 40 to 7,879), the risk of bias was moderate in six studies and high in five studies.
- 1612 Studies on antipsychotic medications included post-operative patients (Atalan et al. 2013; Bakri et al.
- 1613 2015; Fukata et al. 2017; Tagarakis et al. 2012) as well as patients in ICUs (Andersen-Ranberg et al. 2022;
- 1614 Devlin et al. 2010; Girard et al. 2018; Skrobik et al. 2004; Thom et al. 2018; Weaver et al. 2017), general
- 1615 inpatient (Breitbart et al. 1996; Grover et al. 2016; Han and Kim 2004; Jain et al. 2017; Kim et al. 2010;
- 1616 Lee et al. 2005; Maneeton et al. 2013; Tahir et al. 2010; van der Vorst et al. 2020), and palliative care
- 1617 (Agar et al. 2017; Lin et al. 2008; Boettger et al. 2015) settings.
- 1618 In terms of specific treatments, four trials compared haloperidol with other drugs or no treatment 1619 among post-operative patients (Atalan et al. 2013; Bakri et al. 2015; Fukata et al. 2017; Tagarakis et al. 1620 2012). Regarding ICU populations, the largest of the antipsychotic trials (N=1000) compared haloperidol 1621 to placebo (Andersen-Ranberg et al. 2022). Another large trial (N=566; Girard et al. 2018) included both 1622 ziprasidone and haloperidol arms but reported only comparisons of each drug with placebo. The other 1623 placebo-controlled trial, assessing quetiapine, was small (N=36; Devlin et al. 2010) and the 1 1624 comparative effectiveness trial had high risk of bias (Skrobik et al. 2004). Two observational studies 1625 assessed ICU patients with delirium treated with any antipsychotic. One compared early treatment 1626 (within 48 hours of diagnosis) with late treatment and no treatment (Thom et al. 2018), the other 1627 treatment with no treatment (Weaver et al. 2017). Five trials in general inpatient populations compared 1628 treatment response with second-generation antipsychotics to that with haloperidol, using various 1629 delirium measures and thresholds (Grover et al. 2016; Han and Kim 2004; Jain et al. 2017; Maneeton et 1630 al. 2013; van der Vorst et al. 2020). Concerning palliative care patients, a study from Australia with
- 1631 moderate risk of bias assessed 247 patients treated with risperidone, haloperidol, or placebo; all
- 1632 patients also received non-drug treatment and treatment for potential causes of delirium (Agar et al.
- 1633 2017). The study with a high risk of bias compared olanzapine with haloperidol and analyzed 12 of 30
- 1634 patients randomized (Lin et al. 2008). The study by Boettger and colleagues (2015) was an observational
- 1635 study of four antipsychotics in a cancer treatment hospital.
- 1636 Effect of antipsychotic medications on delirium response
- 1637 In four trials of antipsychotic medication among post-surgical patients, one trial that compared
- 1638 haloperidol to no treatment found a greater rate of response to delirium in the haloperidol group (Table

- 1639 C-5 [Fukata et al. 2017]). The other trials—two of which assessed 3 to 5 days of haloperidol versus
- 1640 morphine (Atalan et al. 2013) or ondansetron (Bakri et al. 2015) and one that assessed a single dose of
- haloperidol or ondansetron (Tagarakis et al. 2012)—did not find significant differences between
- 1642 treatments.
- 1643 An observational study of the timing of antipsychotic administration in ICU patients did not show
- 1644 statistically significant differences in the resolution of delirium or coma with either early (adjusted HR
- 1645 1.24, 95% CI 0.77–1.99) or late treatment (adjusted HR 1.91, 95% CI 0.98–3.73) compared with no
- 1646 treatment (Thom et al. 2018).

Study Risk of Bias	Drug and	Comparison	Duration (follow-	Surgery type Diagnostic tool	
N analyzed	dose	treatment	up)	Age/mean age	Delirium outcomes
Study: Fukata et al. 2017 RoB: Moderate N: 201	Haloperidol 5 mg IV once daily	No treatment	5 days (day 10)	Surgery type: Abdominal/orthopedic Diagnostic Tool: NEECHAM 20–24 Age: >75 years	Response: 82% vs. 68%, RR 1.21, 95% Cl 1.03–1.42 Duration: 2 days vs. 2 days
Study: Atalan et al. 2013 RoB: High N: 53	Haloperidol 5 mg IM hourly (max 20 mg/day)	Morphine 5 mg IM hourly (max 20 mg/day)	5 days (day 10)	Surgery type: Cardiac Hyperactive delirium Diagnostic Tool: RASS >2 (0–4) Age: 66 years	Severity RASS: 0 vs. 0.39, <i>P</i> =0.33 Duration: 1.5 days vs. 1.5 days
Study: Bakri et al. 2015 RoB: Moderate N: 96	Haloperidol 5 mg IV twice daily	Ondansetron 4 mg IV twice daily	3 days (day 3)	Surgery type: Trauma Diagnostic Tool: ICDSC (0–8) Age: Mean 31 years	Response: 81% vs. 94%, RR 1.14, 95% CI 0.95–1.38 Severity ICDSC: 1.2 vs. 4.9, <i>P</i> =0.7
Study: Tagarakis et al. 2012 RoB: High N: 80	Haloperidol 5 mg IV x 1 preop	Ondansetron 8 mg IV x 1 preop	One dose (NR)	Surgery type: Cardiac Diagnostic Tool: 4- point scale Age: Mean 71 years	Response: 85% vs. 83%, RR 1.03, 95% CI 0.84–1.25 Severity: 1.2 vs. 1.3, <i>P</i> =NR ("not significant")

1647 Table C-5. Haloperidol versus other treatments for post-operative delirium

- 1648 Abbreviations. CI=confidence interval; ICDSC=Intensive Care Delirium Screening Checklist; IM=intramuscular;
- 1649 IV=intravenous; N=number; NEECHAM=Neelon and Champagne Confusion Scale; NR=not reported; preop=pre-
- 1650 operative; RASS=Richmond Agitation and Sedation Scale; RoB=risk of bias; RR=risk ratio.
- 1651 *Source*. Atalan et al. 2013; Bakri et al. 2015; Fukata et al. 2017; Tagarakis et al. 2012.
- 1652 A pooled analysis of five trials in general inpatient populations (see Figure C-5) showed no difference in
- 1653 treatment response between haloperidol and second-generation antipsychotic agents (65% vs. 67%, RR
- 1654 0.99, 95% CI 0.83–1.19, I²=27%) (Grover et al. 2016; Han and Kim 2004; Jain et al. 2017; Maneeton et al.
- 1655 2013; van der Vorst et al. 2020). Two small trials, each enrolling about 30 patients, compared second-
- 1656 generation antipsychotics with each other, and neither found statistically significant differences.

- 1657 Response was not different between olanzapine and risperidone (73% vs. 65%, P=0.71 [Kim et al. 2010])
- 1658 or between amisulpride and quetiapine (81% vs. 80%, *P*=0.93 [Lee et al. 2005]).
- 1659 An observational study of 84 patients with delirium in a cancer treatment hospital compared haloperidol
- 1660 with three second-generation antipsychotics (Boettger et al. 2015). It did not find a statistically
- significant difference between the four drugs in rates of delirium response after 4 to 7 days (P=0.42),
- 1662 with rates ranging from 62% for olanzapine to 86% for risperidone.

1663 Figure C-5. Delirium response with second-generation antipsychotics versus haloperidol in inpatients.

Author, Year	Risk of Bias	Treatment & Dose	Haloperidol Dose	Response Measure	Treatment n/N	Control n/N			Risk Ratio (95% CI)
Jain, 2017	High	Olanzapine 2.5 to 10 mg/day	1 to 4 mg/day	MDAS MDA	53/66	47/66	-	•	1.13 (0.93, 1.37)
van der Vorst, 2020	Moderate	Olanzapine 2.5 to 20 mg/day	0.5 to 20 mg/day	DRS-R-98 severity <15.25 & 25% drop	22/49	28/49		-	0.79 (0.53, 1.16)
Grover, 2016	High	Quetiapine 12.5 to 75 mg/day	0.25 to 10 mg/day	/ DRS-R-98 < 10	21/31	22/32	_	<u> </u>	0.99 (0.70, 1.38)
Maneeton, 2013	Moderate	Quetiapine 25 to 100 mg/day	0.5 to 2.0 mg/day	DRS-R-98 severity DRS	18/24	19/28		•	1.11 (0.78, 1.56)
Han, 2004 Overall	Moderate	Risperidone 0.5 to 2.0 mg/day	1.0 to 3.0 mg/day	MDAS <13	5/12 119/182	9/12 125/187			0.56 (0.26, 1.17) 0.99 (0.83, 1.19)
(l ² = 27.4%, p = 0.20)6)						1	ſ	
(1 - 27.478, p - 0.20	~,,						1 .25	1	4
						F	avors control	Favors trea	atment

Abbreviations. CI=confidence interval; DRS=Delirium Rating Scale; DRS-R-98=Delirium Rating Scale-Revised-98; MDAS=Memorial Delirium Assessment Scale.

1665 Source. Grover et al. 2016; Han and Kim 2004; Jain et al. 2017; Maneeton et al. 2013; van der Vorst et al. 2020.

1666 Effect of antipsychotic medications on delirium duration

- Among post-surgical patients, two trials assessed whether haloperidol affected the duration of delirium and found no difference, either in comparison to no treatment (Fukata et al. 2017) or treatment with
- 1669 morphine (Atalan et al. 2013) (see Table C-5).
- 1670 Two RCTs of antipsychotic medication in ICU populations reported measures of delirium duration; the
- 1671 smaller trial found a shorter duration with quetiapine treatment (Devlin et al. 2010), but the larger one
- 1672 showed no difference between either ziprasidone or haloperidol and placebo in the duration of delirium
- 1673 (Girard et al. 2018) (see Table C-6). An observational study in ICU patients found that delirium lasted
- longer with antipsychotic treatment (36 hours vs. 14 hours, *P*<0.001 [Weaver et al. 2017]).
- 1675 Table C-6. Delirium outcomes of antipsychotics versus other interventions to treat delirium in the ICU

Study Risk of Bias N analyzed	Comparison	Delirium outcomes	Length of stay
Study: Andersen-Ranberg et al. 2022 RoB: NR N: 1000	Haloperidol vs. placebo	NR	Hospital: 28.8 days vs. 26.4 days
Study: Devlin et al. 2010 RoB: Low N: 36	Quetiapine vs. placebo	Hours in delirium: median 36 vs. 120, <i>P=</i> 0.006	ICU: Median 16 days vs. 16 days, <i>P</i> =0.28 Hospital: Median 24 days vs. 26 days, <i>P</i> =0.32
Study: Girard et al. 2018 RoB: Low N: 566	Ziprasidone vs. placebo; haloperidol vs. placebo	Days with delirium: adjusted OR 1.02 (95% CI 0.69–1.51); 1.12 (95% CI 0.86–1.46)	ICU: HR 1.02 (95% CI 0.88–1.17); HR 0.95 (95% CI 0.81–1.12) Hospital: HR 1.05 (95% CI 0.88– 1.25); HR 1.03 (95% CI 0.85–1.23)
Study: Skrobik et al. 2004 RoB: High N: 73	Olanzapine vs. haloperidol	Delirium severity: no difference between groups, <i>P</i> =0.64	NR

- 1676 Abbreviations. CI=confidence interval; HR=hazard ratio; ICU=intensive care unit; NR=not reported; OR=odds ratio;
- 1677 RoB=risk of bias; RR=relative risk.
- 1678 Source. Andersen-Ranberg et al. 2022; Devlin et al. 2010; Girard et al. 2018; Skrobik et al. 2004.
- 1679 In a general inpatient population, two trials of second-generation antipsychotics compared with
- 1680 haloperidol found different results for duration of delirium, suggesting longer duration associated with
- 1681 olanzapine compared with haloperidol (MD 1.70 days, 95% CI 0.08–3.32 [van der Vorst et al. 2020]) but
- 1682 not with quetiapine compared with haloperidol (MD -0.20 days, 95% CI -0.79–0.39 [Maneeton et al.
- 1683 2013]). These were both small trials.
- 1684 Effect of antipsychotic medications on delirium severity
- 1685 Among post-surgical patients, three trials assessed whether haloperidol affected the severity of delirium
- 1686 and found no difference, either in comparison to treatment with morphine (Atalan et al. 2013) or
- 1687 ondansetron (Bakri et al. 2015; Tagarakis et al. 2012) (see Table C-5).

A trial with a high risk of bias comparing olanzapine and haloperidol reported delirium severity in ICU patients, measured by the Delirium Index (Skrobik et al. 2004). Their analysis of variance analysis found no effect of treatment choice on severity in the 73 patients studied (group-time interaction, *P*=0.64; Skrobik et al. 2004).

1692 In general inpatients, trials did not find significant differences between groups in the effects of 1693 treatment on delirium severity. All trials showed severity scores that were similar between treatment 1694 groups at baseline. Change from baseline in delirium severity did not differ significantly between groups 1695 in pooled analysis of three trials of second-generation antipsychotics and haloperidol using the DRS-R-98 (total or severity score; MD -0.11, 95% Cl, -0.42–0.21, I²=0% [Grover et al. 2011, 2016; Maneeton et al. 1696 1697 2013]). Effect of treatment on severity was similar between second-generation antipsychotics and 1698 haloperidol in two other trials that could not be pooled (Han and Kim 2004; Jain et al. 2017), between 1699 olanzapine and risperidone in two trials (MD 0.30, 95% CI -0.15–0.76, I²=0% [Grover et al. 2011; Kim et 1700 al. 2010]), and between amisulpride and quetiapine in a single small trial with high risk of bias (Lee et al. 1701 2005). Compared with placebo, DRS-R-98 scores improved more quickly with quetiapine, but final scores 1702 did not differ in one study (Tahir et al. 2010). In a trial comparing 2 first-generation antipsychotics, 1703 haloperidol and chlorpromazine, severity (DRS scores) declined with treatment in both groups, but the 1704 difference between groups was not significant (endpoint score 11.64 vs. 11.85, P=0.94 [Breitbart et al.

1705 1996]).

1706 In a pooled analysis of studies of palliative care patients, delirium severity (using MDAS) in palliative care

1707 patients was not significantly different between second-generation antipsychotics and haloperidol

1708 (N=259; MD 0.03, 95% CI -0.31–0.38, I²=0%). The trial of risperidone, haloperidol, and placebo used

- 1709 three items from the Nursing Delirium Screening Scale (NuDESC) as the primary outcome, with severity
- scores ranging from 0 to 6 (lower better [Agar et al. 2017]). At the end of the trial, delirium symptoms
- were higher with either antipsychotic than with placebo (risperidone MD 0.48, 95% CI 0.09–0.86 and
 haloperidol 0.24, 95% CI 0.06–0.42). While significant, the differences are small. In an observational
- haloperidol 0.24, 95% CI 0.06–0.42). While significant, the differences are small. In an observational
 palliative care study that compared haloperidol with three second-generation antipsychotics, delirium
- 1713 severity after treatment ranged from 6.8 points on the MDAS for haloperidol to 11.7 for olanzapine, but
- 1715 the difference was not statistically significant across the four drugs (*P*=0.25; Boettger et al. 2015).
- 1716 Effect of antipsychotic medications on length of stay
- 1717 Table C-6 also shows ICU and hospital length of stay for the two trials that reported it (Devlin et al. 2010;
- 1718 Girard et al. 2018). Treatment with any antipsychotic compared with placebo had no effect on length of
- 1719 stay in either trial. A retrospective cohort study of 510 patients suggested longer ICU stay with
- antipsychotic treatment compared with no treatment (5.7 days vs. 3.8 days, *P*=0.005 [Weaver et al.
- 1721 2017]). In terms of ICU readmission, no statistically significant difference was observed with either
- 1722 ziprasidone (HR 0.73, 95% CI 0.49–1.10) or haloperidol (HR 1.13, 95% CI 0.62–2.09) treatment as
- 1723 compared to placebo (N=566; Girard et al. 2018).
- 1724 Effect of antipsychotic medications on mortality and adverse events
- 1725 In four trials of haloperidol among post-surgical patients, adverse events were not reported or reported
- as none (Atalan et al. 2013; Bakri et al. 2015; Fukata et al. 2017; Tagarakis et al. 2012).

- 1727 Two RCTs in ICU populations did not show a statistically significant difference for in-hospital or 30-day
- 1728 mortality with antipsychotic treatment compared with placebo. One trial (N=566) found that neither 30-
- day nor 90-day mortality were different between ziprasidone (up to 40 mg daily) or haloperidol (up to
- 1730 20 mg daily) and placebo (Table C-7; Girard et al. 2018); however, 89% of the sample had hypoactive
- delirium and results may not be applicable to patients with hyperactive delirium. An additional trial
- (N=1,000), in which 54% of the sample had hypoactive delirium, found no difference in 90-day mortality
 or in days alive and out of the hospital at 90 days (Andersen-Ranberg et al. 2022). Adverse events did
- 1734 not differ between patients receiving antipsychotics and placebo in the same studies, though few events
- 1735 were reported. The study of olanzapine and haloperidol reported only extrapyramidal symptoms; these
- 1736 occurred with haloperidol and not with olanzapine, although the difference was not statistically
- significant (Skrobik et al. 2004). One observational study in ICU patients found that late treatment (>48
- hours) with any antipsychotic was associated with a decrease in 10-day mortality (adjusted HR 0.30, 95%
- 1739 CI 0.10–0.88), although a post hoc subgroup analysis excluding comatose patients found no difference in
- 1740 mortality (Thom et al. 2018). Another observational study showed no effect of antipsychotic treatment
- 1741 on mortality as compared to placebo (17.4% vs. 18.3%, *P*=0.87 [Weaver et al. 2017]).
- 1742 Table C-7. Mortality and adverse events of antipsychotics versus other interventions to treat delirium in
- 1743 the ICU

Study Risk of Bias			
N analyzed	Comparison	Mortality	Adverse events
Study: Andersen- Ranberg et al. 2022 RoB: NR N: 1,000	Haloperidol vs. placebo	90-day: 36.3% vs. 43.3%; adjusted RR 0.84 (0.72–0.98)	Serious adverse reaction in ICU: 2.2% vs. 1.9 %; adjusted RR 1.20 (0.33–5.45)
Study: Devlin et al. 2010 RoB: Low N: 36	Quetiapine vs. placebo	In hospital: 11% vs. 17%, <i>P=</i> 1.0	Any drug-related AE: 28% vs. 11%, <i>P=</i> 0.4 EPS, SAEs, and WAEs: 0 vs. 0 events
Study: Girard et al. 2018 RoB: Low N: 566	Ziprasidone vs. placebo; haloperidol vs. placebo	30-day: HR 1.07 (95% CI 0.77– 1.47); HR 1.03 (95% CI 0.73–1.46) 90-day: HR 1.02 (95% CI 0.79– 1.30); HR 1.17 (95% CI 0.99–1.40)	EPS: 1 vs. 1; 1 vs. 1 event Dystonia: 0 vs. 0; 1 vs. 0 events
Study: Skrobik et al. 2004 RoB: High N: 73	Olanzapine vs. haloperidol	NR	EPS: 0% vs. 13%, <i>P</i> =0.15

1744 *Abbreviations*. AE=adverse event; CI=confidence interval; EPS=extrapyramidal symptoms; HR=hazard ratio;

1745 ICU=intensive care unit; N=number; NR=not reported; RoB=risk of bias; RR=relative risk; SAE=serious adverse

1746 event; WAE=withdrawal due to adverse event.

1747 *Source*. Andersen-Ranberg et al. 2022; Devlin et al. 2010; Girard et al. 2018; Skrobik et al. 2004.

- 1748 Three trials in general hospital inpatients (N=282) did not show a statistically significant difference in 1749 mortality between patients treated with second-generation antipsychotics and those given haloperidol 1750 (RR 1.08, 95% CI 0.55–2.09, I²=0% [Jain et al. 2017; Maneeton et al. 2013; van der Vorst et al. 2020]). In a 1751 placebo-controlled trial of 42 patients, four died in the quetiapine group and three in the placebo group (Tahir et al. 2010). A pooled analysis of three trials of second-generation antipsychotics compared with 1752 1753 haloperidol did not find a significant difference in incidence of any adverse effect (N=293; 12% vs. 17%, 1754 RR 0.74, 95% CI 0.43–1.29, I²=0% [Grover et al. 2011; Jain et al. 2017; van der Vorst et al. 2020]). 1755 Sedation and extrapyramidal symptoms were the most common side effects reported. Study withdrawal 1756 due to adverse events also did not differ significantly in a pooled analysis of three trials (N=254; 8.0% vs. 1757 13%, RR 0.60, 95% CI 0.25–1.45, I²=0% [Han and Kim 2004; Maneeton et al. 2013; van der Vorst et al. 1758 2020]). Comparisons of second-generation antipsychotics with each other, first-generation 1759 antipsychotics with each other, and quetiapine with placebo also did not find significant difference in
- adverse events (Breitbart et al. 1996; Kim et al. 2010; Lee et al. 2005; Tahir et al. 2010). These were very
- small trials, with inadequate statistical power to assess differences.
- 1762 In a large palliative care study (N=247; Agar et al. 2017) mortality for patients receiving antipsychotics
- 1763 was reported to be greater than for those receiving placebo, with the difference significant for
- haloperidol. Median survival for patients receiving placebo was 26 days, compared with 16 days for
- 1765 haloperidol (HR 1.73, 95% CI 1.20–2.50) and 17 days for risperidone (HR 1.29, 95% CI 0.91–1.84). Both
- 1766 antipsychotic groups had worse symptoms on the Extrapyramidal Symptom Rating Scale compared with
- 1767 placebo (risperidone MD 0.73, 95% Cl 0.09–1.37, *P=*0.03 and haloperidol MD 0.79; 95% Cl 0.17–1.41,
- 1768 *P*=0.01). An observational study of four antipsychotics in a cancer treatment hospital found a statistically
- significant difference in rates of any adverse event between drugs (*P*=0.009), with the lowest rate for
- 1770 risperidone (4.8%) and highest for olanzapine (43%) (Boettger et al. 2015). Extrapyramidal symptoms
- 1771 were highest with haloperidol (19% for parkinsonism, *P*=0.012 compared with second-generation
- antipsychotics). Among olanzapine patients, 29% experienced an increase in sedation, which was not
- 1773 seen with other antipsychotics (*P*=0.001 across drugs).
- 1774 Effect of antipsychotic medications on other outcomes
- 1775 Patients in the ICU given quetiapine spent less time agitated than those given placebo in one small trial
- 1776 (6 hours vs. 36 hours with Sedation Agitation Score [SAS] ≥5, P=0.02 [Devlin et al. 2010]). The same trial
- 1777 suggested less use of rescue haloperidol and sedatives by various measures in patients given scheduled
- 1778 quetiapine, but differences were not statistically significant in this trial of 36 patients. Rates of rescue
- 1779 haloperidol use appeared lower in patients given olanzapine than those given scheduled haloperidol in
- the other small ICU trial, but again, differences were not statistically significant (39% vs. 53%, P=0.26
- 1781 [Skrobik et al. 2004]). In the large placebo-controlled trial of haloperidol (Andersen-Ranberg et al. 2022)
- 1782 no differences were noted in the use of restraint or in receipt of rescue medications, including propofol,
- 1783 α -2-agonist, benzodiazepine, or open-label antipsychotic medication.
- 1784 In a trial of risperidone, haloperidol, and placebo in palliative care patients, fewer individuals needed
- 1785 rescue midazolam in the placebo group than in the combined risperidone and haloperidol groups, with
- 1786 differences statistically significant on each study day (Agar et al. 2017).

1787 Grading of the Overall Supporting Body of Research Evidence for Use of Antipsychotic Agents to Address1788 Neuropsychiatric Disturbances of Delirium

Magnitude of effect: Minimal to none. Studies using antipsychotic medications, including
haloperidol and second-generation antipsychotic medications, were quite consistent in showing minimal
to no effects of antipsychotic medication in terms of delirium response or reducing the severity,
duration, or associated length of hospital or ICU stay. In a single large study in palliative care patients,
use of an antipsychotic medication was associated with more adverse effects and a greater severity of

1794 delirium.

1795 o Risk of bias: Moderate to high. Approximately half of studies had a moderate risk of bias with
1796 almost all of the remaining studies having a high risk of bias. There were also a number of observational
1797 studies that were likely to have biases due to a lack of random assignment. Among the RCTs, factors
1798 contributing to risk of bias included inadequate or unclear random assignment or allocation
1799 concealment, inadequate masking, and in some studies, problems with attrition or statistical analysis.

1800 Applicability: The largest number of studies was conducted in the United States, with other 0 1801 studies conducted in a wide range of countries. A broad range of ages were included in the trials but 1802 about half of the studies excluded individuals less than age 65. Men and women were represented in 1803 the trials also the proportions of men and women in each study varied and there was more often a 1804 predominance of men than women. Most studies did not include information on race or ethnicity, 1805 limiting the ability to draw conclusions about demographic applicability. Only three trials included 1806 individuals with co-occurring dementia; the other trials did not report this information or excluded 1807 patients with dementia. Most studies were done in acute care populations, including post-operative, 1808 general medical and ICU patients with no studies in longer-term care facilities.

1809 o Directness: Direct. The vast majority of studies provided direct information on delirium related
 1810 outcomes including response, severity, and duration.

1811 o Consistency: Consistent. When information was available from more than one study for a given
 1812 intervention-control comparison and outcome measure, the findings were consistent. Many of the
 1813 comparisons and outcomes only had information available from one study, however.

Precision: Imprecise. Confidence intervals were wide and sample sizes were small for virtually all
 of the comparisons, yielding significant imprecision in terms of optimal information sizes.

1816 o Dose-response relationship: No available information.

1817 o Confounding factors (including likely direction of effect): The data may be confounded by
 1818 variations in delirium assessment due to rater training. Individuals with hypoactive delirium may have
 1819 been less likely to be identified than those with hyperactive delirium and the response to antipsychotic
 1820 medications or other treatments may differ. However, the direction of effect from these potential
 1821 confounding factors is not clear.

- 1822 o Publication bias: Not identified. There was insufficient information to make a determination due
 1823 to the small number of trials in each treatment setting.
- 1824 o Overall strength of research evidence: Low. For many of the outcomes, there was insufficient
- 1825 evidence to identify any effect related to antipsychotic medication treatment of delirium. Where
- 1826 evidence was sufficient, it had a low strength of evidence. These outcomes included response or
- 1827 duration of delirium to haloperidol post-operatively as compared to no treatment, response or severity
- 1828 of delirium to second-generation antipsychotics as compared to first-generation antipsychotics or
- 1829 another second-generation antipsychotic in general inpatient settings, severity of delirium as compared
- 1830 to placebo in palliative care settings, and adverse events either compared to placebo or second-
- 1831 generation antipsychotics.
- **1832** Statement 9 Antipsychotic Agents
- APA recommends (1C) that antipsychotic agents not be used to prevent delirium or hasten itsresolution.
- 1835 This statement is supported by direct evidence from trials of antipsychotic medications in preventing or
- 1836 treating delirium. Studies of treatment are discussed in more detail in Appendix C, Statement 8, and
- 1837 generally show minimal or no effects of medication, including findings of well-designed, large-scale,
- 1838 multicenter trials like the Agents Intervening against Delirium in Intensive Care Unit (AID-ICU) trial
- 1839 (Andersen-Ranberg et al. 2022) and the Modifying the Impact of ICU-Associated Neurological
- 1840 Dysfunction–USA (MIND-USA) trial (Girard et al. 2018). Although haloperidol has been most often
- 1841 assessed, second-generation antipsychotics including risperidone, olanzapine, and quetiapine have also
- 1842 failed to show consistent treatment benefits for patients with delirium.
- 1843 Use of Antipsychotic Medications for the Prevention of Delirium
- 1844 The Pacific Northwest EPC reviewed the literature for studies that assessed the use of antipsychotics in
- 1845 preventing delirium, mostly in post-operative and ICU settings and commonly with haloperidol. Overall,
- 1846 the evidence was not sufficiently consistent and compelling that antipsychotics effectively prevent
- 1847 incident delirium or reduce delirium duration, hospital/ICU length of stay, or mortality and other
- 1848 adverse events.

1849 Overview of study characteristics

- 1850 Fourteen studies (N=4,449 subjects, range 37 to 1,796) compared an antipsychotic medication to
- 1851 placebo or no treatment (Abdelgalel 2016; Abraham et al. 2021; Al-Qadheeb et al. 2016; Fukata et al.
- 1852 2014; Hollinger et al. 2021; Kalisvaart et al. 2005; Khan et al. 2018; Y. Kim et al. 2019; Larsen et al. 2010;
- 1853 Mokhtari et al. 2020; Prakanrattana and Prapaitrakool 2007; Schrijver et al. 2018; Thanapluetiwong et
- al. 2021; van den Boogaard et al. 2018; Wang et al. 2012). The risk of bias was low in six trials, moderate
- 1855 in eight trials, and high in one trial. Studies were conducted in various countries with four in the United
- 1856 States, three in The Netherlands, two in Thailand, and one each in China, Egypt, Iran, Japan, South
- 1857 Korea, and Switzerland. In seven of the studies, participants were limited to older adults, and the mean
- age was ≥65 years in nine of the trials. Six trials had a predominance of men, and two trials had a
- 1859 predominance of women; in the remaining seven trials the proportion of men and women was similar.

Only two trials reported the race or ethnicity of participants and, in both, almost all participants were
White. In ten of the trials, the presence of delirium excluded a subject from participation, but five trials
did not report whether participants had delirium at baseline. One trial included patients with cooccurring dementia whereas nine trials specifically excluded individuals with dementia or severe
dementia.

1865 Eight trials (N=1,979) assessed antipsychotics compared with placebo or no treatment to prevent 1866 delirium among post-operative patients (Fukata et al. 2014; Hollinger et al. 2021; Kalisvaart et al. 2005; 1867 Khan et al. 2018; Larsen et al. 2010; Mokhtari et al. 2020; Prakanrattana and Prapaitrakool 2007; Wang 1868 et al. 2012). Three trials enrolled adults undergoing cardiac, thoracic, or neurological surgeries (1 trial of 1869 each) with expected ICU stays (Khan et al. 2018; Mokhtari et al. 2020; Prakanrattana and Prapaitrakool 1870 2007); one enrolled older adults undergoing noncardiac surgeries who were admitted to an ICU (Wang 1871 et al. 2012); three enrolled older adults undergoing elective orthopedic or abdominal surgeries (Fukata 1872 et al. 2014; Kalisvaart et al. 2005; Larsen et al. 2010); and one enrolled older adults undergoing a variety 1873 of elective and emergency surgeries (Hollinger et al. 2021). Haloperidol dosing and route of 1874 administration varied widely among the studies. It was given intravenously in three trials (a bolus of 0.5 1875 mg, followed by intravenous (IV) infusion of 0.1 mg/hour for up to 7 days [Wang et al. 2012]; 2.5 mg 1876 once daily for 3 days [Fukata et al. 2014], and 5 mcg/kg pre-operatively [Hollinger et al. 2021]) and orally 1877 (0.5 mg 3 times a day) in two studies (Kalisvaart et al. 2005; Khan et al. 2018). The study of a single pre-1878 operative dose of haloperidol also had a ketamine arm and a combination (haloperidol/ketamine) arm 1879 (Hollinger et al. 2021). Aripiprazole was given as 15 mg orally daily for 7 days in a single study (Mokhtari 1880 et al. 2020). Two studies evaluated single doses of second-generation antipsychotics (olanzapine 5 mg 1881 pre-operatively and risperidone 1 mg oral disintegrating tablets upon regaining consciousness [Larsen et 1882 al. 2010; Prakanrattana and Prapaitrakool 2007]).

- 1883 Concerning patients in the ICU, five trials (N=1,673) assessed antipsychotics to prevent delirium 1884 (Abdelgalel 2016; Abraham et al. 2021; Al-Qadheeb et al. 2016; Y. Kim et al. 2019; van den Boogaard et 1885 al. 2018). One large trial (N=1,439) accounted for 86% of these patients, a study from the Netherlands with low risk of bias that compared 6 mg/day of IV haloperidol with placebo (van den Boogaard et al. 1886 1887 2018). There were two other placebo-controlled trials of IV haloperidol, with disparate doses (2.5 mg 1888 bolus if needed, then 12 mg/day to 48 mg/day [Abdelgalel 2016] or 4 mg/day [Al-Qadheeb et al. 2016]). 1889 Two small trials (N=106) administered 12.5 mg/day to 25 mg/day of oral quetiapine (Abraham et al. 1890 2021; Y. Kim et al. 2019); one had high risk of bias (N=71 [Abraham et al. 2021]).
- 1891 Two additional studies examined patients in a general inpatient unit (Schrijver et al. 2018;
- 1892 Thanapluetiwong et al. 2021). One trial with a low risk of bias, conducted in the Netherlands, assessed
- 1893 patients (N=245) ages 70 and older who were at risk for delirium and randomly assigned to haloperidol
- 1894 or placebo 1 mg orally twice daily for a maximum of 14 doses (Schrijver et al. 2018). In the other trial,
- 1895 conducted in Thailand, patients (N=122) ages 65 and older were randomly assigned to quetiapine 12.5
- 1896 mg or placebo once daily at bedtime for a maximum 7-day duration (Thanapluetiwong et al. 2021).

1897 Effect of antipsychotic medications on delirium incidence

- 1898 In a pooled analysis of all eight trials, antipsychotics reduced the incidence of post-operative delirium
- significantly (N=1,796; 16% vs. 28%, RR 0.60, 95% CI 0.44–0.81, I²=57%), but there was significant
- 1900 heterogeneity in the findings and study designs (see Figure C-6) (Fukata et al. 2014; Hollinger et al. 2021;
- 1901 Khan et al. 2018; Kalisvaart et al. 2005; Larsen et al. 2010; Mohktari et al. 2020; Prakanrattana and
- 1902 Prapaitrakool 2007; Wang et al. 2012). A subgroup analysis by first- versus second-generation drugs was
- significant (*P*=0.008 for interaction), with the studies of haloperidol showing a smaller, but still
- 1904 significant, reduction in risk (17% vs. 22%, RR 0.77, 95% CI 0.62–0.97, I²=0%) compared with the studies
- 1905 of second-generation drugs (14% vs. 39%, RR 0.36, 95% CI 0.26–0.4, I²=0%). A subgroup analysis of the
- 1906 post-operative setting (ICU vs. non-ICU) was not significant. Delirium-free days were reported in two
- 1907 studies of patients admitted to the ICU post-operatively—one of aripiprazole and one of haloperidol,
- both given for seven days (Mokhtari et al. 2020; Wang et al. 2012). Neither study reported a difference
- 1909 between antipsychotic and placebo groups on this measure.

1910 Figure C-6. Delirium incidence with antipsychotics in surgical patients post-operatively.

Antipsychotic Generation and Author, Year	Setting	Drug & Dose	Incidence Measure	Assessment Time (days)	Treatment n/N	Control n/N		Risk Ratio (95% Cl)
FGA								
Khan, 2018	ICU	Haloperidol 1.5 mg/day	CAM	NR	15/68	19/67	-++	0.78 (0.43, 1
Wang, 2012	ICU	Haloperidol 2.4 mg/day	CAM-ICU	7 days	35/229	53/228		0.66 (0.45, 0
Fukata, 2014	Non-ICU	Haloperidol 2.5 mg/day	NEECHAM	7	20/59	25/60	+++	0.81 (0.51, 1
Hollinger, 2021	Non-ICU	Haloperidol 1 mcg/kg x 1 preop	DOS, NuDESC,	3 days	3/45	4/44	• _	0.73 (0.17, 3
Kalisvaart, 2005	Non-ICU	Haloperidol 1.5 mg/day	CAM	14	32/212	36/218	-	0.91 (0.59, 1
Subgroup					105/613	137/617		0.77 (0.62, 0
(l ² = 0.0%, p = 0.862	:)							
SGA								
Mohktari, 2020	ICU	Aripiprazole 15 mg/day	CAM-ICU and RASS	7 days	4/20	11/20 -		0.36 (0.14, 0
Prakanrattan, 2007	ICU	Risperidone 1 mg x 1 dose	CAM-ICU	Discharge	7/63	20/63		0.35 (0.16, 0
Larsen 2010	Non-ICU	Olanzapine 5 mg x 1 dose	CAM, DRS, MMSE	8	28/196	82/204	-	0.36 (0.24, 0
Subgroup					39/279	113/287		0.36 (0.26, 0
(l ² = 0.0%, p = 0.998	5)							
P-value for interactio	n: p = 0.008							
Overall					144/892	250/904		0.60 (0.44, 0
(l ² = 57.1%, p = 0.02	2)						•	
						1	25 1	8
						Favors treatment		Favors control

1911 *Abbreviations*. CAM=Confusion Assessment Method; CAM-ICU=Confusion Assessment Method for the Intensive Care Unit; CI=confidence interval;

1912 DOS=Delirium Observation Screening; DRS=Delirium Rating Scale; FGA=first-generation antipsychotic; ICU=intensive care unit; MMSE=Mini-Mental State

1913 Evaluation; NEECHAM=Neelon-Champagne Confusion Scale; NR=not reported; NuDESC=Nursing Delirium Screening Scale; RASS=Richmond Agitation and

1914 Sedation Scale; SGA=second-generation antipsychotic.

1915 *Source*. Fukata et al. 2014; Hollinger et al. 2021; Khan et al. 2018; Kalisvaart et al. 2005; Larsen et al. 2010; Mohktari et al. 2020; Prakanrattan and Prapaitrakool 2007; Wang et al. 2012.

- 1917 In ICU patients, the five placebo-controlled trials did not show a statistically significant effect of
- 1918 antipsychotic treatment on delirium incidence (34% vs. 36%, RR 0.90, 95% Cl 0.69–1.17, l²=38%). Almost
- all the evidence was about haloperidol (N=1,567). The two small trials of quetiapine (N=106) suggested a
- 1920 decrease in delirium incidence with quetiapine compared with placebo. However, statistical significance
- 1921 was borderline (46% vs. 71%, RR 0.66, 95% CI 0.45–0.98, I²=0%), and incidence in the control groups
- 1922 differed between trials (78% in a study with high risk of bias [Abraham et al. 2021] vs. 55% in a smaller
- 1923 trial with low risk of bias [Y. Kim et al. 2019]).
- 1924 Among general inpatient populations, no significant difference in the incidence of delirium was noted
- either with haloperidol (OR 1.43, 95% CI 0.72–2.78 [Schrijver et al. 2018]) or with quetiapine (8.8% vs.
- 1926 14% at day 7, *P*=0.381 [Thanapluetiwong et al. 2021]) as compared to placebo.
- 1927 Effect of antipsychotic medications on delirium duration
- 1928 Four trials (N=1,085) reported on duration of delirium in post-operative patients who developed it
- 1929 (Fukata et al. 2014; Kalisvaart et al. 2005; Khan et al. 2018; Larsen et al. 2010). Overall, the
- antipsychotics did not reduce the duration compared with controls (MD 0.35, 95% CI 1.49–0.78, I²=85%),
- although there is a high degree of heterogeneity in the analysis. One trial reported a large significant
- 1932 benefit with haloperidol (-6.4 days, 95% CI -9.5 to -3.3 days) when measured at 14 days after surgery,
- whereas the other three measured at 4, 7, and 8 days after surgery and found no effect (Kalisvaart et al.2005).
- 1935 Two small trials in ICU patients reported delirium duration and did show a difference with treatment.
- 1936 Delirium episodes for patients given haloperidol (Al-Qadheeb et al. 2016) or quetiapine (Y. Kim et al.
- 1937 2019) were a day and a half shorter than for those given placebo (MD -1.51 days, 95% CI -2.09 to -0.93,
- 1938 l²=0%).
- 1939 Among general inpatients, neither haloperidol (median 4 days vs. 3 days, *P*=0.37 [Schrijver et al. 2018])
- 1940 nor quetiapine (N=13; median 3 days vs. 4 days, P=0.557 [Thanapluetiwong et al. 2021]) was associated
- with a change in the duration of delirium relative to placebo a trial did not find a significant effect ofhaloperidol on duration.
- **1943** Effect of antipsychotic medications on delirium severity
- 1944 Two trials (N=925) reported on the severity of delirium in post-operative patients, but data were not
- 1945 combinable (Kalisvaart et al. 2005; Larsen et al. 2010). Olanzapine, given as a single pre-operative dose,
- 1946 resulted in a greater total severity score on the DRS-R-98 scale on the first day it was diagnosed (16.4 vs.
- 1947 14.5, *P*=0.02 [Larsen et al. 2010]). Haloperidol, given orally for up to 6 days post-operatively, resulted in
- 1948 a significantly lower maximum score on the same scale compared with placebo (14.4 vs. 18.4, *P*=0.001
- 1949 [Kalisvaart et al. 2005]). Although these differences were statistically significant, the absolute
- 1950 differences are small on a 0 to 45 scale.
- Among general inpatients, one trial did not find a significant effect of haloperidol on severity of delirium
 as measured by the DRS-R-98 and Delirium Observation Screening Scale (DOSS) (Schrijver et al. 2018).

1953 Effect of antipsychotic medications on length of stay

- 1954 In post-operative patients, the length of stay in the ICU was not different between antipsychotic and
- 1955 placebo groups in four studies (MD -0.07 days, 95% CI -0.17–0.02, I²=0% [Khan et al. 2018; Mokhtari et
- al. 2020; Prakanrattana and Prapaitrakool 2007; Wang et al. 2012]). A subgroup analysis by antipsychotic
- 1957 generation (2 trials of haloperidol, 1 each of aripiprazole and risperidone) did not show a significant
- 1958 effect. The overall length of hospital stay was also not different between treatment and control groups
- in four studies, one of risperidone and three of haloperidol (MD -0.61 days, 95% CI -1.77–0.55, I²=50%
- 1960 [Kalisvaart et al. 2005; Khan et al. 2018; Prakanrattana and Prapaitrakool 2007; Wang et al. 2012]). A
- 1961 subgroup analysis by whether the patients were in the ICU or not was not significant.
- 1962 For non-surgical patients in an ICU setting, three placebo-controlled trials (Abdelgalel 2016; Al-Qadheeb
- 1963 et al. 2016; van den Boogaard et al. 2018) did not show a difference in length of ICU stay with
- haloperidol (MD -0.08, 95% Cl -0.66–0.50, l²=46.5%). Two trials of quetiapine (1 with high risk of bias)
- 1965 were associated with a statistically significant decrease in the length of ICU stay with treatment, and the
- 1966 magnitude of the difference was large (RR -4.2 days, 95% CI -8.3–0.14, I^2 =19% [Abraham et al. 2021; Y.
- 1967 Kim et al. 2019]). Antipsychotic treatment did not have a statistically significant effect on hospital stay in
- the four trials reporting it (MD -1.6 days, 95% CI -4.0–0.92, I²=75% [Abdelgalel 2016; Abraham et al.
- 1969 2021; Y. Kim et al. 2019; van den Boogaard et al. 2018]). The pooled treatment effect showed
- 1970 substantial heterogeneity, which did not improve for haloperidol when it was analyzed separately from
- 1971 quetiapine (I²=88% for the 2 haloperidol trials pooled). However, the two quetiapine trials together
- 1972 showed a large and statistically significant decrease in hospital length of stay with treatment, without
- 1973 statistical heterogeneity (MD -5.6 days, 95% Cl -10.63 to -0.59, I²=0%).
- Among general inpatients, the overall length of hospital stay did not differ between treatment and
 placebo groups for either haloperidol (Schrijver et al. 2018) or quetiapine (Thanapluetiwong et al. 2021).

1976 Effect of antipsychotic medications on mortality and adverse events

- 1977 Mortality was not reported in six of the seven post-operative trials. A moderate risk of bias study of
- 1978 haloperidol in older patients who had undergone noncardiac surgeries, but were admitted to an ICU,
- 1979 reported that 28-day mortality was slightly greater in the placebo group but not statistically significant
- 1980 (0.9% vs. 2.6%, RR 0.33, 95% Cl 0.07–1.6 [Wang et al. 2012]). Although heterogeneously reported, no
- 1981 study found differences between groups on adverse events reported.
- 1982 Mortality was not affected by antipsychotic treatment in the five ICU trials; 17% of treated patients and 1983 17% of untreated patients died (RR 0.97, 95% CI 0.78–1.20, I²=0%). The largest study reported mortality
- 1984 at 28 days (van den Boogaard et al. 2018), whereas the shorter trials assessed earlier time points
- 1985 (Abraham et al. 2021; Al-Qadheeb et al. 2016; Y. Kim et al. 2019) or did not report assessment time
- 1986 (Abdelgalel 2016). A subgroup analysis based on specific antipsychotic (haloperidol or quetiapine) did
- 1987 not show a significant effect (*P*=0.403 for interaction). The large Dutch trial (N=1,439; van den Boogaard
- 1988 et al. 2018) reported no significant differences between haloperidol and placebo in episodes of QTc
- 1989 prolongation or in six specific extrapyramidal symptoms, although they did not compare an overall
- 1990 measure of adverse events across groups. They reported that only three of their 1,439 patients had a
- 1991 serious adverse event. A smaller placebo-controlled trial of haloperidol found no significant differences

- in serious adverse events or withdrawals due to adverse events (Al-Qadheeb et al. 2016), and one of
- 1993 quetiapine (Y. Kim et al. 2019) observed no adverse events in either group.
- 1994 Among general inpatient populations, no differences in mortality were noted between treatment and
- 1995 placebo groups for either haloperidol (Schrijver et al. 2018) or quetiapine (Thanapluetiwong et al. 2021).
- 1996 In terms of adverse events, rates were comparable for haloperidol and placebo (14% vs. 16%, *P*=0.57
- 1997 [Schrijver et al. 2018]). In the trial of quetiapine as compared to placebo, no adverse events were
- 1998 reported (Thanapluetiwong et al. 2021).
- 1999 Effect of antipsychotic medications on other outcomes
- A study of haloperidol in thoracic surgery patients measured cognitive changes using the Repeatable
- 2001 Battery for the Assessment of Neuropsychological Status (Khan et al. 2018). At the first clinic follow-up,
- 2002 only 18 patients of 135 randomized completed the assessment. Patients in the placebo group improved,
- 2003 whereas those in the haloperidol group did not (percentile change scores haloperidol: median 13, IQR
- 2004 0–24; placebo: median -2, IQR -18–0; *P*=0.05).
- Among ICU patients, a study with 68 participants found that haloperidol reduced the percent of hours spent agitated (0% vs. 2%, *P*=0.008), as measured by a SAS of 5 or more (where a SAS score of 1
- indicates coma) (Al-Qadheeb et al. 2016). This study also used sedative treatment for all patients, with
 titration to a SAS score of 3. Another trial (N=35) found no effect of quetiapine on hours spent agitated
 (6% vs. 5%, *P*=0.54) using a RASS score greater than +2 (where -5 is unarousable [Y. Kim et al. 2019]).
- 2010 Four of the trials in ICU patients reported rescue medication use, but only one suggested an effect of
- 2011 antipsychotic treatment on its use. The largest study found no difference in number of days and dose of
- 2012 additional open-label haloperidol between patients treated with 6 mg/day scheduled haloperidol and
- 2013 those given placebo (van den Boogaard et al. 2018). Two other trials did not show differences in the use
- 2014 of dexmedetomidine, other sedatives, or non-study antipsychotics between treatment groups (Al-
- 2015 Qadheeb et al. 2016; Y. Kim et al. 2019). The final trial showed lower doses of midazolam and propofol
- 2016 in patients treated with haloperidol than in those given placebo (*P*<0.05) but no statistically significant
- 2017 differences between treatment arms in the number of patients given these drugs (Abdelgalel 2016).
- In a general inpatient population, there was no effect of haloperidol as compared to placebo on hospital
 readmission within 6 months (Schrijver et al. 2018). Furthermore, the large haloperidol trial from the
 Netherlands (Rood et al. 2019; van den Boogaard et al. 2018) did not show statistically significant
 differences in ICU and decision
- 2021 differences in ICU readmission.
- 2022 Quality of life was only assessed in one study and did not show statistically significant differences
- 2023 between patients treated with haloperidol and those given placebo as measured by the SF-36 at 6
- 2024 months (Rood et al. 2019; van den Boogaard et al. 2018).
- 2025 Use of Antipsychotic Medications as a Risk Factor for Delirium
- 2026 Although delirium risk factors were not part of the scope for the systematic review for this guideline, a
- 2027 targeted search of the recent literature found some studies that assessed pharmacological risk factors
- for delirium, including prior or in-hospital treatment with antipsychotics. A systematic review and meta-

- 2029 analysis that included post-surgical, mixed medical/surgical, and ICU populations found haloperidol did
- 2030 not significantly increase the risk of delirium (OR 0.96, 95% CI 0.72–1.28 [Reisinger et al. 2023]).
- 2031 Conversely, several other observational studies of first- and second-generation antipsychotic
- 2032 medications noted an association between use of an antipsychotic and delirium risk in post-surgical
- 2033 (Kang et al. 2019), emergency (Kennedy et al. 2022), and medical/surgical patients (Aloisi et al. 2019) as
- 2034 well as patients with and without dementia (Aloisi et al. 2019). Thus, it is not clear whether
- 2035 antipsychotic medications may contribute to delirium or whether individuals who receive an
- 2036 antipsychotic medication for behavioral issues have previously unrecognized delirium.

2037 Grading of the Overall Supporting Body of Research Evidence for Use of Antipsychotic Agents in the2038 Prevention or Treatment of Delirium

2039 o Magnitude of effect: Minimal to Low. The magnitude of effect differed with the setting and the 2040 outcome. In post-operative patients, there was a benefit of antipsychotic medication in reducing the 2041 incidence of delirium but little or no effect on the duration or severity of delirium. In contrast, in ICU 2042 patients, there was a small effect on the duration of delirium but no difference in delirium incidence. In 2043 general inpatients, there was no effect of antipsychotic on delirium incidence, duration, or severity.

2044oRisk of bias: Moderate. For individual studies, one had a high risk of bias, eight had a moderate2045risk of bias and six had a low risk of bias. For studies with a moderate or high risk of bias, they2046sometimes used an analytic method other than an intent-to-treat analysis or comparable approach. In2047addition, some studies did not report on the baseline characteristics of the treatment groups or assess2048for their comparability.

o Applicability: Only five studies were conducted in the United States or Canada with the
 remaining studies conducted in a wide range of countries. The trials included a mix of ages and included
 men as well as women; however, most studies did not include information on race or ethnicity.
 Individuals with dementia were excluded in about half of studies, but the presence of dementia was not
 reported in many studies. Most studies were done in acute care populations, including post-operative,
 general medical, and ICU patients with no studies in longer-term care facilities.

2055 o Directness: Direct. The vast majority of studies provided direct information on delirium related
 2056 outcomes including incidence, severity, and duration.

2057 o Consistency: Inconsistent. A number of the comparisons and outcomes only had information
 2058 available from one study. However, when information was available from more than one study for a
 2059 given intervention-control comparison and outcome measure, the findings were inconsistent in different
 2060 settings and, in some instances, inconsistent within a specific setting of care.

2061 o Precision: Variable. For post-operative patients, delirium incidence, severity, and duration had
 2062 precise measures; however, for all other settings and outcomes, the measures were imprecise.

2063 o Dose-response relationship: No available information.

2064 o Confounding factors (including likely direction of effect): There was significant variation in the 2065 protocols used in these studies, which likely contributed to the heterogeneity of results. The data may 2066 be confounded by variations in delirium assessment due to rater training. Individuals with hypoactive 2067 delirium may have been less likely to be identified than those with hyperactive delirium and the 2068 response to antipsychotic medications or other treatments may differ. However, the direction of effect 2069 from these potential confounding factors is not clear.

2070 o Publication bias: Not identified. There was insufficient information to make a determination due
 2071 to the small number of trials in each treatment setting.

2072 o Overall strength of research evidence: Low to moderate. The strength of research evidence was 2073 moderate for the incidence of delirium in ICU settings and in post-operative patients; however, for other 2074 settings and outcomes, the strength of research evidence was low.

2075 *Statement 10 – Benzodiazepines*

APA recommends **(1C)** that benzodiazepines not be used in patients with delirium or who are at risk for delirium, including those with pre-existing cognitive impairment, unless there is a specific indication for their use.

- 2079 This statement is supported by direct evidence from trials of benzodiazepines in preventing or treating
- 2080 delirium as well as indirect evidence that benzodiazepines may serve as a risk factor for the
- 2081 development of delirium. Benzodiazepines have also been used as a comparison condition in studies of
- 2082 other sedating medications, such as dexmedetomidine. These studies are described further in Appendix
- 2083 C, Statements 10 and 11.

2084 Overview of study characteristics

2085 In the studies that examined use of benzodiazepines to prevent delirium, eight RCTs (Aizawa et al. 2002; 2086 Hassan et al. 2021; He et al. 2018; Kurhekar et al. 2018; Silva-Jr et al. 2019; Spence et al. 2020; Sultan 2087 2010; Yu et al. 2017) were included from a systematic review (Wang et al. 2023). Studies did not require 2088 a DSM or clinical diagnosis of delirium for inclusion, and sample sizes ranged from 40 to 800 2089 participants. All but one of the studies included individuals over age 60, most of the studies involved 2090 non-cardiac surgery, and five compared use of a benzodiazepine to dexmedetomidine. There was a 2091 predominance of men in three trials and between 40% and 60% women in four trials. One trial did not 2092 report information on sex, and none of the trials reported information on race or ethnicity. Two trials 2093 excluded patients with delirium at baseline, and one trial excluded patients with dementia; the other

- trials did not report whether participants had delirium or dementia at baseline.
- 2095Three studies were identified that examined use of benzodiazepines to treat delirium (Breitbart et al.20961996; Hui et al. 2017; Yapici et al. 2011). In one study with a moderate risk of bias that was conducted in2097Turkey, participants had undergone elective coronary artery bypass graft surgery, valve replacement, or2098both and had failed at least one attempt at extubation (Yapici et al. 2011). Interventions included2099midazolam (n=34) and dexmedetomidine (n=38). The mean age of the sample was 60 years, and 63%2100were female. Information on race, ethnicity, or dementia was not reported. In a moderate risk of bias2101trial conducted in the United States (N=90; analyzed N=58), participants who experienced an episode of

- agitation were given a single dose of lorazepam or placebo, in addition to ongoing treatment with
- 2103 haloperidol (Hui et al. 2017). The mean age of participants was 65 years, 47% were female, and 76%
- 2104 were White. In another small study (N=30) in the United States that was limited to inpatients with AIDS,
- 2105 the effects of lorazepam were compared to haloperidol and chlorpromazine (Breitbart et al. 1996). This
- study had a moderate risk of bias. The mean age of the participants was 39, 23% were female, 57% were
- 2107 Black, and participants with a diagnosis of dementia were excluded.
- 2108 Use of Benzodiazepines for the Prevention of Delirium
- 2109 In its systematic literature review, the Pacific Northwest EPC identified a cluster crossover trial that
- 2110 examined the use of benzodiazepines as a pharmacological approach to the prevention of delirium
- 2111 (Spence et al. 2020). This large Canadian trial (N=800) compared restricted intra-operative
- 2112 benzodiazepine use with liberal intra-operative use in post-operative cardiac surgery patients.
- 2113 Midazolam was the most often administered benzodiazepine. Investigators found no difference in
- 2114 incident delirium (18% vs. 14%, RR 1.24, 95% CI 0.90–1.71), length of ICU stay (median 24 days vs. 24
- days, P=0.148), hospital stay (median 7 days vs. 7 days, P=0.393), or in-hospital mortality (1.2% vs. 1%,
- 2116 *P=*0.801).
- 2117 A subsequent systematic review assessed effects of benzodiazepines on post-operative delirium and
- 2118 intra-operative awareness (Wang et al. 2023). For the RCTs taken together, there was no significant
- association of perioperative benzodiazepine use with post-operative delirium (N=1,352; RR 1.43, 95% CI
- 2120 0.90–2.27, I²=72%, P=0.13; very low quality of evidence). In subgroup analysis, the studies that
- 2121 compared benzodiazepines to dexmedetomidine showed worse outcomes with benzodiazepines (RR
- 2122 1.83, 95% CI 1.24–2.72, I²=13%, *P*=0.002), whereas the other studies showed possible benefits of
- 2123 benzodiazepines in reducing post-operative delirium (*P*=0.02). Among six observational studies that
- 2124 included sufficient data for meta-analysis, perioperative benzodiazepine use appeared to be associated
- with a greater likelihood of development of delirium (N=3,269; OR 2.93, 95% CI 1.96–4.36, I^2 =34%,
- 2126 *P*<0.00001; very low quality of evidence).
- 2127 Use of Benzodiazepines for the Treatment of Delirium
- 2128 In post-operative patients who had undergone elective coronary artery bypass graft surgery, valve
- replacement or both, dexmedetomidine (0.3–0.7 μg/kg/hour IV) was compared to midazolam (0.05–0.2
- 2130 mg/kg/hour IV) in effects on delirium and assistance with weaning from mechanical ventilation (Yapici et
- al. 2011). When assessed at 60 hours after surgery, patients who received dexmedetomidine had
- significantly lower rates of delirium than patients who received midazolam (2.7% vs. 21%, *P*<0.05).
- 2133 The Pacific Northwest EPC identified one palliative care trial that treated patients for delirium using
- 2134 benzodiazepines (Hui et al. 2017). Delirium severity, measured by the change in MDAS score from
- 2135 baseline to 8 hours, in agitated patients did not show a statistically significant difference between
- 2136 patients given a single dose of lorazepam or placebo (MD 2.1, 95% CI -1.0–5.2). Mean duration of stay in
- 2137 the palliative care unit was 6 days in each group (*P*=0.35). Overall survival did not differ significantly
- 2138 between lorazepam and placebo (mean 68 hours vs. 73 hours, HR 1.2, 95% CI 0.7–2.2). Changes in
- 2139 specific extrapyramidal symptoms and most adverse events also showed no difference between
- 2140 lorazepam and placebo, although there was no aggregate measure of harms. Drowsiness was greater

- with lorazepam. Agitation 8 hours after treatment, measured by a RASS score of 1 to 4, occurred in
- fewer patients treated with lorazepam than placebo (3.8% vs. 31%, *P*=0.001), and they required less
- rescue treatment with haloperidol (median 2.0 mg vs. 4.0 mg, *P*=0.009).
- 2144 In another trial that assessed the effects of 6 days of antipsychotic medication or benzodiazepine in
- 2145 inpatients with AIDS, all six patients who received lorazepam showed no improvement (mean DRS score
- 2146 18.33 [SD 2.58] at baseline to 17.33 [SD 4.18] on day 2; *P*<0.63) and experienced treatment limiting
- 2147 adverse effects (Breitbart et al. 1996). In contrast, treatment with antipsychotic medication reduced
- symptoms of delirium from baseline to day 2 (mean 20.45 [SD 3.45] at baseline to 12.45 [SD 5.87],
- 2149 *P*<0.001 for haloperidol; mean 20.62 [SD 3.88] at baseline to 12.08 [SD 6.5], *P*<0.001 for
- 2150 chlorpromazine).
- 2151 Use of Benzodiazepines as a Risk Factor for Delirium
- 2152 Although delirium risk factors were not part of the scope for the systematic review for this guideline, a
- 2153 targeted search of the recent literature found multiple observational and database studies that assessed
- 2154 whether use of benzodiazepines is a risk factor for delirium. Interpretation of such studies is challenging
- 2155 because a benzodiazepine may be prescribed to a patient who is exhibiting behavioral changes due to
- 2156 unrecognized delirium. In addition, benzodiazepines, like alcohol, can have stimulant-like as well as
- 2157 sedative-like effects (Holdstock and de Wit 1998) making it important to consider dose-related and
- 2158 patient-specific variability in responses.
- 2159 Findings on the effects of benzodiazepines on the incidence of delirium are mixed. A systematic review
- 2160 and meta-analysis of studies that assessed medication-related incident delirium among heterogenous
- 2161 populations (e.g., ICU, surgical, mixed populations) found the use of benzodiazepines had no effect on
- 2162 the development of delirium in four prospective cohort studies (N=1,345; adjusted OR 0.94, 95% CI
- 2163 0.63–1.41 [Reisinger et al. 2023]). Two studies of surgical patients also showed no association with post-
- 2164 operative delirium. In one large study (N=1,266), midazolam given immediately before surgery did not
- 2165 increase risk of delirium post-operatively (OR 0.91, 95% CI 0.65–1.29, *P*=0.67 [Wang et al. 2021]).
- 2166 Another study of non-cardiac surgery patients in Thailand (N=249) found no association of pre-operative
- 2167 benzodiazepine use with post-operative delirium in a multivariate predictor model (adjusted RR 1.41,
- 2168 95% CI 0.66–3.01, *P*=0.37 [Iamaroon et al. 2020]). Using data from the 2014 to 2017 National Hospital
- 2169 Ambulatory Medical Care Survey, there were no differences in the use of sedatives, which were
- 2170 primarily benzodiazepines, in patients with and without delirium who were ages 65 and older and
- 2171 visited the emergency department (Kennedy et al. 2022).
- 2172 In contrast, many other studies do show an association between benzodiazepine use and delirium. For
- 2173 example, in a systematic review, one study of ICU patients (N=520) showed a significant association
- 2174 between benzodiazepines and incident delirium and a dose–response relationship with higher
- 2175 benzodiazepine doses associated with increased delirium risk in 4 studies (3 in ICU populations and 1 in
- 2176 surgical), leading the authors to conclude that benzodiazepines do present a strong risk of increased
- 2177 delirium in ICU settings (Reisinger et al. 2023). Furthermore, a predictive algorithm among ICU patients
- 2178 (H. Zhang et al. 2021) found use of benzodiazepines significantly and independently predicted
- 2179 development of delirium (N=304; OR 4.503, RR 5.503, P=0.013). Study authors also observed a

- 2180 substantially higher rate of benzodiazepine use in patients who were assessed as having delirium versus 2181 those who did not (65.2% vs 23.7%) (H. Zhang et al. 2021). Similarly, perioperative use of 2182 benzodiazepines in 250 ICU patients more than doubled the risk of delirium (adjusted OR 2.26, P=0.029) 2183 and was significantly more prevalent in patients with delirium versus without (44.3% vs 19.1%, P<0.001 [Chaiwat et al. 2019]). ICU patients treated with midazolam specifically (N=9,348) also had more than 2184 2185 double the odds of developing delirium (OR 2.54, 95% CI 2.31–2.79, P<0.001) compared with patients 2186 not treated with midazolam (Shi et al. 2022). Finally, a multicenter study of 69 ICUs (Pun et al. 2021) 2187 reported a 59% higher risk of delirium with benzodiazepine infusion in patients with COVID-19 (OR 1.59, 2188 95% Cl 1.33–1.91, P<0.0001). In surgical populations (N=32,734), a predictive model found that post-2189 operative benzodiazepine use increased the risk of incident delirium more than threefold (OR 3.52, 95% 2190 CI 3.06–4.06, P<0.001 [Vacas et al. 2022]). Another study on adults ages 70 and older undergoing major 2191 elective surgery (N=560) also found post-operative use of benzodiazepines was associated with an 2192 increased risk of delirium (adjusted HR 3.23, 95% Cl 2.10–4.99 [Duprey et al. 2022]). In emergency 2193 settings, one study found that older adults (75 years and older) who received benzodiazepines prior to 2194 being hospitalized (N=472) had a clinically but not statistically significant increase in the risk of incident 2195 delirium compared with patients who did not receive benzodiazepines (37.3% vs 6.5%, adjusted OR 2196 3.85, 95% CI 0.77–15.19 [Silva et al. 2021]). In addition, another study of older adults (65 years and 2197 older) treated with benzodiazepines in the emergency department (N=7,927) found benzodiazepine use 2198 increased the odds of delirium by 1.37 (95% CI 1.13–1.65 [Lee et al. 2022]).
- Grading of the Overall Supporting Body of Research Evidence for Use of Benzodiazepines in thePrevention or Treatment of Delirium
- 2201 o Magnitude of effect: Minimal to low. Although findings are mixed, most analyses suggest that
 2202 benzodiazepines are associated either with no benefit or with slightly worse outcomes related to
 2203 delirium.
- 2204 o Risk of bias: Moderate to high. Factors that tended to contribute to the moderate to high risk of
 2205 bias included inadequate or poorly described procedures for randomization and masking as well as
 2206 potential for selective reporting.
- 2207 o Applicability: Studies were predominantly conducted in older patients. Many studies did not
 2208 include sufficient detail to determine whether the study demographic characteristics were
 2209 representative of usual clinical populations. Most studies were done in acute care populations,
 2210 particularly post-operative patients, which limits the generalizability of results.
- 2211 o Directness: Direct. The studies provided direct information on delirium related outcomes2212 including incidence and severity.
- 2213 o Consistency: Inconsistent. A number of the comparisons and outcomes only had information
 2214 available from one study. However, when information was available from more than one study, the
 2215 findings were inconsistent.
- Precision: Imprecise. Confidence intervals were wide and sample sizes were small for virtually all
 of the comparisons, yielding significant imprecision in terms of optimal information sizes.

2218 o Dose-response relationship: No available information.

2219 o Confounding factors (including likely direction of effect): There was significant variation in the 2220 protocols used in these studies, which likely contributed to the heterogeneity of results. The data may 2221 be confounded by variations in delirium assessment due to rater training. Individuals with hypoactive 2222 delirium may have been less likely to be identified than those with hyperactive delirium and the 2223 response to benzodiazepines or other treatments may differ. However, the direction of effect from 2224 these potential confounding factors is not clear.

o Publication bias: Not identified. There was no evidence of publication bias in studies that
 examined the incidence of delirium. There was insufficient information to make a determination due to
 the small number of trials in each treatment setting for other outcome measures.

Overall strength of research evidence: Low. The strength of research evidence was low due to
 the small number of studies, the lack of consistency in the findings, and the significant risk of bias in
 many of the studies.

- 2231 Statement 11 Dexmedetomidine to Prevent Delirium
- APA suggests (2B) that dexmedetomidine be used rather than other sedating agents to prevent delirium
 in patients who are undergoing major surgery or receiving mechanical ventilation in a critical care
 setting.
- The Pacific Northwest EPC conducted a systematic literature review of pharmacological preventions for delirium that involved the use of dexmedetomidine. Evidence consistently pointed to a significant
- reduction in incident delirium with dexmedetomidine in both post-surgical and ICU populations.
- 2238 Overview of study characteristics
- 2239 In post-surgical patients, 42 trials (N=9,184) assessed dexmedetomidine to prevent delirium in the post-2240 operative period (Chang et al. 2018; Chen et al. 2021; Djaiani et al. 2016; Hassan et al. 2021; He et al. 2241 2018; Hu et al. 2020; Huyan et al. 2019; J.A. Kim et al. 2019; Lee et al. 2018, 2019; X. Li et al. 2017; Li et 2242 al. 2020; Likhvantsev et al. 2021; X. Liu et al. 2016; Y. Liu et al. 2016; Maldonado et al. 2009; Massoumi 2243 et al. 2019; Mei et al. 2018; B. Mei et al., 2020; Momeni et al. 2021; Park et al. 2014; Shehabi et al. 2009; 2244 Sheikh et al. 2018; Shi et al. 2019, 2020; Shokri and Ali 2020; Shu et al. 2017; Soh et al. 2020; Su et al. 2245 2016; Sun et al. 2019; Susheela et al. 2017; Tang et al. 2018; C. Tang et al. 2020; Turan et al. 2020; van 2246 Norden et al. 2021; Wu et al. 2016; Xin et al. 2021; Xuan et al. 2018; Yang et al. 2015; Yu et al. 2017; 2247 Zhang et al. 2020; Zhao et al. 2020). In four trials, dexmedetomidine was given prior to surgery (He et al. 2248 2018; Huyan et al. 2019; J.A. Kim et al. 2019; Shu et al. 2017) and was continued during surgery in three 2249 of those trials (Huyan et al. 2019; J.A. Kim et al. 2019; Shu et al. 2017). In two trials, dexmedetomidine 2250 was given prior to surgery and continued both during the surgery and after the surgery (Hassan et al. 2251 2021; Zhao et al. 2020). In eight trials, dexmedetomidine was begun during surgery and continued 2252 during the post-operative period (Lee et al. 2019; X. Li et al. 2017; Likhvantsev et al. 2021; Soh et al. 2253 2020; C. Tang et al. 2020; Turan et al. 2020; van Norden et al. 2021; Yang et al. 2015). In the remaining 2254 trials, dexmedetomidine was given either during surgery (Chen et al. 2021; Djaiani et al. 2016; Hu et al. 2255 2020; Lee et al. 2018; Li et al. 2020; Y. Liu et al. 2016; Mei et al. 2018; B. Mei et al. 2020; Sheikh et al.

2018; Shi et al. 2019, 2020; Tang et al. 2018; Xin et al. 2021; Yu et al. 2017; Zhang et al. 2020) or was
limited to the post-operative period (Chang et al. 2018; X. Liu et al. 2016; Maldonado et al. 2009;
Massoumi et al. 2019; Momeni et al. 2021; Park et al. 2014; Shehabi et al. 2009; Shokri and Ali 2020; Su
et al. 2016; Sun et al. 2019; Susheela et al. 2017; Wu et al. 2016; Xuan et al. 2018).

2260 28 trials compared dexmedetomidine with normal saline or usual care (Chen et al. 2021; He et al. 2018; 2261 Hu et al. 2020; Huyan et al. 2019; J.A. Kim et al. 2019; Lee et al. 2018, 2019; X. Li et al. 2017; Li et al. 2262 2020; Likhvantsev et al. 2021; Y. Liu et al. 2016; Massoumi et al. 2019; Momeni et al. 2021; Shi et al. 2263 2019, 2020; Shu et al. 2017; Soh et al. 2020; Su et al. 2016; Sun et al. 2019; Tang et al. 2018; C. Tang et 2264 al. 2020; Turan et al. 2020; van Norden et al. 2021; Wu et al. 2016; Xin et al. 2021; Xuan et al. 2018; Yang et al. 2015; Zhang et al. 2020; Zhao et al. 2020), and 16 trials made head-to-head comparisons between 2265 2266 dexmedetomidine and another medication such as propofol or midazolam (Chang et al. 2018; Djaiani et 2267 al. 2016; Hassan et al. 2021; He et al. 2018; Lee et al. 2018; X. Liu et al. 2016; Maldonado et al. 2009; Mei 2268 et al. 2018; B. Mei et al. 2020; Park et al. 2014; Shehabi et al. 2009; Sheikh et al. 2018; Shokri and Ali 2269 2020; Susheela et al. 2017; C. Tang et al. 2020; Yu et al. 2017). Two trials included both a placebo and an 2270 active intervention arm that was compared with dexmedetomidine (He et al. 2018; Lee et al. 2018). 2271 Cardiac surgery was performed in 17 trials (Djaiani et al. 2016; Hassan et al. 2021; X. Li et al. 2017; 2272 Likhvantsev et al. 2021; X. Liu et al. 2016; Maldonado et al. 2009; Massoumi et al. 2019; Momeni et al. 2273 2021; Park et al. 2014; Shehabi et al. 2009; Sheikh et al. 2018; Shi et al. 2019; Shokri and Ali 2020; Shu et al. 2017; Susheela et al. 2017; Turan et al. 2020; van Norden et al. 2021), orthopedic surgery in five trials 2274 2275 (Y. Liu et al. 2016; Mei et al. 2018; B. Mei et al. 2020; Xuan et al. 2018; Zhang et al. 2020), and the 2276 remaining trials enrolled participants having noncardiac, nonorthopedic major surgery.

2277 Of the 27 studies in post-surgical patients that compared dexmedetomidine to normal saline or usual 2278 care, sample sizes ranged from 60 to 798 with 6,642 participants overall. There was a low risk of bias in 2279 13 studies and a moderate risk of bias in 14 studies. Most of these studies were conducted in China (16), 2280 with four in South Korea, two in the United States, and one each in Belgium, Germany, Iran, Russia, and 2281 Taiwan. In 16 of the studies, the sample was limited to older adults whereas in the other 11 studies the 2282 sample included adults of all ages. Mean age was reported in 25 studies and was 65 years or greater in 2283 16 of the studies. There was a predominance of men in 10 trials, a predominance of women in three 2284 trials, and between 40% and 60% women in 13 trials. One trial did not report information on the sex of 2285 participants. In the single trial that reported race or ethnicity, 92% of participants were White. Five trials 2286 excluded patients with delirium at baseline, but the other 22 trials did not report whether participants 2287 had delirium at baseline. Thirteen trials excluded patients with dementia; the remaining 14 trials did not 2288 report on dementia status.

Of the 18 studies in post-surgical patients that compared dexmedetomidine to another active intervention, sample sizes ranged from 12 to 432 with 3,262 participants overall. There was a low risk of bias in three studies whereas 14 studies had a moderate risk of bias and one had a high risk of bias. Studies were conducted in various countries with six done in China, three in the United States, two in Egypt, two in South Korea, and one each in Australia, Canada, India, Pakistan, and Taiwan. In 11 of the studies, the sample was limited to older adults whereas in the other seven studies the sample included adults of all ages. Mean age was reported in 17 studies and was 65 years or greater in 10 of the studies.

- There was a predominance of men in five trials and between 40% and 60% women in 11 trials. Two trials did not report information on the sex of participants. None of the trials reported information on race or ethnicity. Four trials excluded patients with delirium at baseline, but the other 14 trials did not report whether participants had delirium at baseline. Nine trials excluded patients with dementia; the remaining nine trials did not report on dementia status.
- 2301 In ICU patients, the Pacific Northwest EPC identified nine trials (N=1,559) of dexmedetomidine to 2302 prevent delirium (Abdelgalel 2016; Jakob et al. 2012; Li et al. 2019; MacLaren et al. 2015; Ruokonen et 2303 al. 2009; Shu et al. 2019; Skrobik et al. 2018; Winings et al. 2021). One publication (Jakob et al. 2012) 2304 included two distinct trials—the PRODEX trial comparing dexmedetomidine with the anesthetic 2305 propofol, and MIDEX comparing it with midazolam, a benzodiazepine. PRODEX and MIDEX together 2306 accounted for most of the dexmedetomidine patients (N=998, 70%). One trial included both haloperidol 2307 as an active comparator and a third group given placebo (Abdelgalel 2016). Another compared 2308 treatment only with placebo (Skrobik et al. 2018), and the other three used midazolam or propofol as 2309 comparators (Li et al. 2019; MacLaren et al. 2015; Shu et al. 2019). A tenth study, with a high risk of bias, 2310 compared midazolam and propofol in 120 patients on mechanical ventilation (Chen 2020). In most 2311 studies, all patients were on mechanical ventilation, with two trials that included a mix of patients who 2312 were and were not mechanically ventilated (Li et al. 2019; Skrobik et al. 2018). Studies with placebo
- arms did allow use of nonstudy sedative medications.
- 2314 Of the nine studies of dexmedetomidine in ICU patients, there was a low risk of bias in three studies and
- a moderate risk of bias in six. Studies were conducted in various countries with two done in China, two
- in the United States, two in Europe (one of which included Russia) and one each in Egypt, Canada, and
- 2317 Finland. In one of the studies, the sample was limited to older adults whereas in seven studies the
- 2318 sample included adults of all ages. Mean age was reported in seven studies and was 65 years or greater
- in three of the studies. There was a predominance of men in seven trials and between 40% and 60%
- women in two trials. None of the trials reported information on race or ethnicity. One trial excluded
- patients with delirium at baseline and three trials excluded patients with dementia; the other trials did
- not report whether participants had delirium or dementia at baseline.
- 2323 Effect of dexmedetomidine on delirium incidence
- 2324 In post-surgical patients, there was a significant reduction in incident delirium with dexmedetomidine
- that was maintained even when looking only at noncardiac surgery populations and at
- 2326 dexmedetomidine administration either during or after surgery. Head-to-head comparisons with specific
- 2327 medications (e.g., haloperidol, propofol, midazolam, clonidine, opioids) generally also revealed a lower
- 2328 incidence with dexmedetomidine in post-surgical and ICU populations.
- 2329 Regarding incidence of delirium in post-surgical patients, the pooled analysis of dexmedetomidine
- versus saline or usual care favored dexmedetomidine in the prevention of delirium (28 trials, N=6,449;
- 2331 12.5% vs. 19.1%, RR 0.63, 95% CI 0.50–0.78, I²=64.8%) (see Figure C-7)¹. The effect of dexmedetomidine

¹ Pooled analysis conducted as part of the Pacific Northwest Evidence-Based Practice Center's systematic review included two studies (Shi et al. 2019; Sun et al. 2019) that were subsequently retracted.

- was also significant when trials limited enrollment to noncardiac patients (19 trials, N=4,372; 11.2% vs.
- 2333 20.6%, RR 0.56, 95% CI 0.46–0.69, I²=42.3%) and when administration of dexmedetomidine was limited
- to either intra-operative or post-operative administration only (13 trials, N=2,269, 13.8% vs. 23.7%, RR
- 2335 0.57, 95% CI 0.42–0.76, I²=57.2%; 7 trials, N=2,271, 12.0% vs. 20.8%, RR 0.68, 95% CI 0.47–0.99,
- 2336 I²=49.2%, respectively). One trial (N=346), not included in the pooled analysis due to lack of reporting
- 2337 overall incidence data, reported a lower incidence of delirium with dexmedetomidine on post-operative
- 2338 days 1 through 5 (*P*<0.05 each day) versus normal saline with no incident delirium on post-operative
- 2339 days 6 and 7 (Huyan et al. 2019).
- 2340 Two trials compared dexmedetomidine with placebo in ICU patients (1 also including a comparison with
- haloperidol as discussed in the Overview of Study Characteristics section [Abdelgalel 2016]). Delirium
- incidence was significantly lower with treatment, and the magnitude of effect was large (16% vs. 45%,
- 2343 RR 0.38, 95% CI 0.22–0.65, I²=0% [Abdelgalel 2016; Skrobik et al. 2018]).

Figure C-7. Delirium incidence with dexmedetomidine versus usual care or normal saline in surgical patients post-operatively.

	Treatment			Treatment	Control		Risk Ratio
Author, Year	Setting	Type of Surgery	Dexmedetomidine Dose	n/N	n/N		(95% CI)
Chen, 2021	Intraop only	Noncardiac	0.5 µg/kg/h	7/78	14/78	-+	0.50 (0.21, 1.1
He, 2018	Intraop only	Noncardiac	Bolus + 0.4 µg/kg/h	6/30	15/30		0.40 (0.18, 0.8
Hu, 2020	Intraop only	Noncardiac	Bolus + 0.1 µg/kg/h	15/90	32/87	-+-	0.45 (0.26, 0.7
.A.Kim, 2019	Intraop only	Noncardiac	0.5 µg/kg/h	15/60	15/60	++-	1.00 (0.54, 1.8
Lee, 2018	Intraop only	Noncardiac	Bolus + 0.2 to 0.7 µg/kg/h	9/95	27/109		0.38 (0.19, 0.7
Lee, 2019	Intraop + postop	Noncardiac	1 µg/kg/h	9/100	6/101	+++	- 1.52 (0.56, 4.1
X.Li, 2017	Intraop + postop	Cardiac	0.1 to 0.6 µg/kg/h	7/142	11/143	· -+ /	0.64 (0.26, 1.6
Li, 2020	Intraop only	Noncardiac	Bolus + 0.5 µg/kg/h	17/309	32/310		0.53 (0.30, 0.9
Likhvantsev, 2021	Intraop + postop	Cardiac	0.4 to 1.4 µg/kg/h	6/84	16/85 -		0.38 (0.16, 0.9
Y. Liu, 2016	Intraop only	Noncardiac	0.2 to 0.4 µg/kg/h	15/99	43/98		0.35 (0.21, 0.5
Massoumi, 2019	Postop only	Cardiac	0.2 to 0.7 µg/kg/h	4/44	9/44 -		0.44 (0.15, 1.3
Momeni, 2021	Postop only	Cardiac	0.4 µg/kg/h	31/177	33/172	÷.	0.91 (0.59, 1.4)
Shi, 2019	Intraop only	Cardiac	0.4 to 0.6 µg/kg/h	33/84	21/80		1.50 (0.95, 2.3
Shi, 2020	Intraop only	Noncardiac	0.5 µg/kg/h	4/53	6/53		0.67 (0.20, 2.2
Shu, 2017	Intraop only	Cardiac	Bolus + 0.5 µg/kg/h	4/30	7/30	+	0.57 (0.19, 1.7)
Soh, 2020	Intraop + postop	Cardiac	0.4 µg/kg/h	2/54	7/54	• + + -	0.29 (0.06, 1.3
Su, 2016	Postop only	Noncardiac	0.1 µg/kg/h	32/350	79/350	-	0.41 (0.28, 0.5
Sun, 2019	Postop only	Noncardiac	0.1 µg/kg/h	33/281	38/276	++-	0.85 (0.55, 1.3)
Tang, 2018	Intraop only	Noncardiac	Bolus + 0.3 µg/kg/h	8/54	12/52	-+	0.64 (0.29, 1.4
C.Tang, 2020	Postop only	Noncardiac	2.5 µg/ml (PCA)	5/22	10/26	-+-	0.59 (0.24, 1.4
Turan, 2020	Intraop + postop	Cardiac	0.1 to 0.4 µg/kg/h	67/398	46/396	i +	1.45 (1.02, 2.0
Wu, 2016	Postop only	Noncardiac	0.1 µg/kg/h	2/38	3/38 -	-+	- 0.67 (0.12, 3.7
Xin, 2021	Intraop only	Noncardiac	0.5 µg/kg/h then 0.4 µg/kg/h	3/30	10/30	• <u>+</u> -	0.30 (0.09, 0.9
Xuan, 2018	Postop only	Noncardiac	0.1 µg/kg/h	30/227	64/226		0.47 (0.32, 0.6
Yang, 2015	Intraop + postop	Noncardiac	0.2 to 0.7 µg/kg/h	2/39	5/40	-+	0.41 (0.08, 1.9
Zhang, 2020	Intraop only	Noncardiac	0.5 µg/kg/h	20/120	36/120		0.56 (0.34, 0.9
Zhao, 2020	Preop + postop	Noncardiac	Bolus then 100, 200, or 400 µg	13/108	4/105		3.16 (1.06, 9.3
van Norden, 2021	Intraop + postop	Cardiac + Noncardi	ac 0.7 µg/kg/h then 0.4 µg/kg/h	5/28	14/32 -		0.41 (0.17, 0.9
Overall				404/3224	615/3225		0.63 (0.50, 0.7
(l ² = 64.8%, p = 0.0	00)					· •	
	84.54						
					0.0625	i	16
				3	Favors treatme	ent	Favors control

- 2345 *Note.* Pooled analysis conducted as part of the Pacific Northwest Evidence-Based Practice Center's systematic review included two studies (Shi et al. 2019; Sun
- et al. 2019) that were subsequently retracted.
- 2347 *Abbreviations*. CI=confidence interval; h=hour; intraop=intra-operative; n/N=number; PCA=patient-controlled anesthesia; postop=post-operative.
- 2348 Source. Chen et al. 2021; He et al. 2018; Hu et al. 2020; J.A. Kim et al. 2019; Lee et al. 2018, 2019; X. Li et al. 2017; Li et al. 2020; Likhvantsev et al. 2021; Y. Liu
- 2349 et al. 2016; Massoumi et al. 2019; Momeni et al. 2021; Shi et al. 2019, 2020; Shu et al. 2017; Soh et al. 2020; Su et al. 2016; Sun et al. 2019; Tang et al. 2018; C.
- 2350 Tang et al. 2020; Turan et al. 2020; van Norden et al. 2021; Wu et al. 2016; Xin et al. 2021; Xuan et al. 2018; Yang et al. 2015; Zhang et al. 2020; Zhao et al.
- 2351 2020.

- 2352 In head-to-head trials in post-operative patients (see Figure C-8), treatment with dexmedetomidine
- resulted in a significantly lower incidence of delirium than propofol when added to each trial's standard
- 2354 anesthesia medications (7 studies, N=1,032; 11.1% vs. 23.6%, RR 0.51, 95% CI 0.35–0.74, I²=25% [Djaiani
- 2355 et al. 2016; X. Liu et al. 2016; Maldonado et al. 2009; Mei et al. 2018; B. Mei et al. 2020; Sheikh et al.
- 2356 2018; Susheela et al. 2017]), midazolam (4 trials, N=282; 8.5% vs. 36.2%, RR 0.27, 95% CI 0.15–0.48,
- 2357 I²=0% [Hassan et al. 2021; He et al. 2018; Maldonado et al. 2009; Yu et al. 2017]), an opioid (2 studies,
- 2358 N=441; 10.2% vs. 23%, RR 0.50, 95% CI, 0.30–0.84, I²=0% [Park et al. 2014; Shehabi et al. 2009]), or
- 2359 clonidine (1 study, N=286; 8.3% vs. 16.2%, RR 0.51, 95% CI 0.27–0.99 [Shokri and Ali 2020]).

2360 Figure C-8. Delirium incidence with dexmedetomidine versus propofol, midazolam, and opioids in surgical patients post-operatively.

Control Drug Class	Treatment	Type of			Treatme	nt Control	Risk Ratio
and Author, Year	Setting	Surgery	Dexmedetomidine Dose	Control Drug & Dose	n/N	n/N	(95% CI)
Anesthetic							
Djaiani, 2016	Postop	Cardiac	Bolus + 0.2 to 0.7 µg/kg/h	Propofol 25 to 50 µg/kg/min	16/91	29/92	0.56 (0.33, 0.9
<. Liu, 2016	Postop	Cardiac	0.2 to 1.5 µg/kg/h	Propofol 5 to 50 µg/kg/min	0/29	2/32	0.22 (0.01, 4.4
Maldonado, 2009	Postop	Cardiac	Bolus + 0.2 to 0.7 µg/kg/h	Propofol 25 to 50 µg/kg/min	1/30	15/30	0.07 (0.01, 0.4
Sheikh, 2018	Intraop only	Cardiac	± Bolus + 0.2 to 0.6 µg/kg/	h Propofol 0.25 to 1.0 µg/kg/h	1/30	7/30	0.14 (0.02, 1.0
Susheela, 2017	Intraop + post	top Cardiac	0.1 to 1.0 µg/kg/h	Propofol 25 to 100 µg/kg/min	2/3	2/3	1.00 (0.32, 3.1
Mei, 2018	Intraop only	Noncardi	acBolus + 0.1 to 0.5 µg/kg/h	Propofol 0.8 to 1.0 µg/ml	11/148	24/148 -	0.46 (0.23, 0.9
B. Mei, 2020	Intraop only	Noncardi	acBolus + 0.1 to 0.5 µg/kg/h	Propofol 0.8 to 1.0 µg/ml	26/183	43/183	0.60 (0.39, 0.9
Subgroup					57/514	122/518	0.51 (0.35, 0.7
(l ² = 24.9%, p = 0.191)							
Benzodiazepine							
Hassan, 2021	Intraop + post	top Cardiac	0.4 to 0.7 µg/kg/h	Midazolam 0.02 to 0.08 µg/kg/h	2/35	8/35	0.25 (0.06, 1.0
Maldonado, 2009	Postop	Cardiac	Bolus + 0.2 to 0.7 µg/kg/h	Midazolam 0.5 to 2.0 mg/h	1/30	15/30	- 0.07 (0.01, 0.4
He, 2018	Intraop only	Noncardi	acBolus + 0.4 µg/kg/h	Midazolam 0.03 mg/kg	6/30	18/30 -	0.33 (0.15, 0.7
Yu, 2017	Intraop only	Noncardi	acBolus + 0.2 to 0.7 µg/kg/h	Midazolam Bolus + 0.02 to 0.08 µg/	kg/h3/46	10/46 -	0.30 (0.09, 1.0
Subgroup					12/141	51/141 🏼 🕚	0.27 (0.15, 0.4
(l ² = 0.0%, p = 0.470)							
Opioid							
Park, 2014	Postop	Cardiac	Bolus + 0.2 to 0.8 µg/kg/h	Remifentanil 1,000 to 2,500 µg/h	6/67	17/75 -	0.40 (0.17, 0.9
Shehabi, 2009	Postop	Cardiac	0.1 to 0.7 µg/kg/h	Morphine 10 to 70 µg/kg/h	13/152	22/147 -	0.57 (0.30, 1.0
Subgroup					19/219	39/222	0.50 (0.30, 0.8
(l ² = 0.0%, p = 0.504)							
Sedative							
Shokri, 2020	Postop	Cardiac	0.2 to 1.4 µg/kg/h	Clonidine bolus + 1 to 2 µg/kg/h	12/144	23/142	• 0.51 (0.27, 0.9
						0.0070426	4.429
						0.0078125	1 128
						Favors treatment	Favors control

- 2361 *Abbreviations*. CI=confidence interval; h=hour; intraop=intra-operative; min=minute; n/N=number; postop=post-operative.
- 2362 *Source*. Djaiani et al. 2016; Hassan et al. 2021; He et al. 2018; X. Liu et al. 2016; Maldonado et al. 2009; Mei et al. 2018; B. Mei et al. 2020; Park et al. 2014;
- 2363 Shehabi et al. 2009; Sheikh et al. 2018; Shokri and Ali 2020; Susheela et al. 2017; Yu et al. 2017.

- Head-to-head comparisons in eight trials in ICU patients (see Figure C-9) showed a significantly lower
- incidence of delirium with dexmedetomidine treatment, with a moderate magnitude of effect (12% vs.
- 2366 19%, RR 0.66, 95% CI 0.50–0.86, I²=9.4% [Abdelgalel 2016; Jakob et al. 2012; Li et al. 2019; MacLaren et
- al. 2015; Ruokonen et al. 2009; Shu et al. 2019; Winings et al. 2021]). The specific comparator, whether
- haloperidol, midazolam, or propofol, did not have a statistically significant effect on this result (*P*=0.51
- for interaction). Only two relatively small individual studies showed a significant difference between
- 2370 medications, one of haloperidol (Abdelgalel 2016) and the other of midazolam (Li et al. 2019). The study
- comparing sedation with midazolam and propofol did not show a significant difference in delirium
- incidence between the medications (17% vs. 13%, P=0.61 [Chen 2020]).

2373 Figure C-9. Delirium incidence with dexmedetomidine versus other drugs in intensive care unit patients.

Author, Year	Dexmedetomidine Dose	Control & Dose	Control Drug Class	Treatment n/N	Control n/N			Risk Ratio (95% CI)
Jak ob, 2012 PRODEX	0.2 to 1.4 µg/kg/hour	Propofol 0.3 to 4.0 mg/kg/hour	Anesthetic	22/246	31/247		-	0.71 (0.42, 1.20)
Winings, 2021	0.48 µg/kg/hour (mean)	Propofol 24.6 µg/kg/minute (mean)	Anesthetic	8/28	10/29	-	-	0.83 (0.38, 1.79)
Abdelgale I, 2016	0.2 to 0.7 µg/kg/hour	Haloperidol 0.5 to 2 mg/hour	Antipsychotic	3/30	10/30		-	0.30 (0.09, 0.98)
Jakob, 2012 MIDEX	0.2 to 1.4 µg/kg/hour	Midazolam 0.03 to 0.2 mg/kg/hour	Benzodiazepine	28/247	33/250	+	+	0.86 (0.54, 1.38)
MacLaren, 2015	0.15 to 1.5 µg/kg/hour	Midazolam 1 to 10 mg/hour	Benzodiazepine	1/11	5/12	÷	<u>-</u>	0.22 (0.03, 1.59)
Shu, 2019	0.2 to 0.7 µg/kg/hour	Midazolam 0.05 to 0.10 mg/kg/hour	Benzodiazepine	0/40	4/40		+	0.11 (0.01, 2.00)
LL, 2019	0.8 µg/kg/hour	Midazolam 0.06 mg/kg/hr or Propofol 0.5 to 2 mg/kg/hour	Benzodiazepine or Anesthetic	18/64	34/62			0.51 (0.33, 0.81)
Ruokonen, 2020	0.25 to 1.4 µg/kg/hour	Midazolam 0.04 to 0.2 mg/kg/hr or Propofol 0.8 to 4 mg/kg/hour	Benzodiazepine or Anesthetic	7/41	8/44		←	0.94 (0.37, 2.36)
Overall				87/707	135/714	•	,	0.66 (0.50, 0.86)
(l ² = 9.4%, p = 0.356)								
						.0078125	1	128
					Fa	vors treatment	Favors cont	trol

2374 *Abbreviations*. CI=confidence interval; MIDEX=midazolam vs. dexmedetomidine; PRODEX=propofol vs. dexmedetomidine.

2375 *Source*. Abdelgalel 2016; Jakob et al. 2012; Li et al. 2019; MacLaren et al. 2015; Ruokonen et al. 2009; Shu et al. 2019; Winings et al. 2021.

2376 Effect of dexmedetomidine on delirium duration

- 2377 Among post-operative patients who developed delirium, the use of dexmedetomidine was associated
- 2378 with a shorter duration of symptoms compared with no dexmedetomidine (7 trials, N=240; MD -0.44
- 2379 days, 95% CI -0.80 to -0.08, I²=42.9%). There was no indication of publication bias based on funnel plot
- 2380 analysis. In one placebo-controlled trial of dexmedetomidine in ICU patients, the duration of patients'
- first delirium episode was similar with or without dexmedetomidine (median 2.0 days vs. 2.2 days,
- 2382 *P*=0.73 [Skrobik et al. 2018]).
- 2383 In head-to-head trials in post-operative patients, a pooled analysis found a significantly shorter duration
- of delirium with dexmedetomidine than with propofol (2 trials, N=105; MD -0.78 days, 95% CI -1.30 to -
- 2385 0.26, I²=0% [Djaiani et al. 2016; Maldonado et al. 2009]). In a single study each, dexmedetomidine also
- resulted in significantly shorter delirium duration than midazolam (N=60; MD -3.40 days, 95% CI -6.74 to
- 2387 -0.06 [Maldonado et al. 2009]) and clonidine (N=35; MD -2.31, 95% CI -2.79 to -1.83 [Shokri and Ali
- 2388 2020]). However, a pooled analysis of two trials that compared dexmedetomidine versus the opioids
- remifentanil (N=23 [Park et al. 2014]) and morphine (N=35 [Shehabi et al. 2009]) did not find a
- 2390 significant difference in duration of delirium between the medications (MD 0.88 days, 95% CI -2.17–
- 2391 3.93, l²=40%).
- 2392 Effect of dexmedetomidine on delirium severity
- 2393 The vast majority of studies in post-operative or ICU patients did not report information on the severity
- of delirium. One study assessed the severity of delirium using the Intensive Care Delirium Screening
- 2395 Checklist (ICDSC) and found no difference in maximum scores in post-operative patients treated with
- dexmedetomidine as compared to usual care (*P*=0.24 [Likhvantsev et al. 2021]).
- 2397 Effect of dexmedetomidine on length of stay
- 2398 Dexmedetomidine tended to be associated with shorter length of stay in the ICU and the hospital in
- 2399 post-operative patients, although in ICU patients, this effect was mixed. For example, a large, significant
- 2400 decrease in ICU length of stay was observed when compared with haloperidol, but outcomes were
- 2401 inconsistent when comparing dexmedetomidine with propofol or midazolam.
- A pooled analysis of 13 trials (N=3,685)² in post-operative patients showed that dexmedetomidine
- resulted in a significant but very small difference in ICU stays (1.9 hours) compared with usual care or
- 2404 normal saline (MD -0.08 days, 95% CI, -0.13 to -0.02, I²=69.1% [Chen et al. 2021; Lee et al. 2019; X. Li et
- al. 2017; Li et al. 2020; Likhvantsev et al. 2021; Massoumi et al. 2019; Momeni et al. 2021; Shi et al.
- 2406 2019; Soh et al. 2020; Su et al. 2016; Turan et al. 2020; van Norden et al. 2021; Wu et al. 2016]). A
- subgroup analysis by the timing of the intervention (i.e., post-operative vs. intra-operative) or type of
- 2408 surgery (cardiac vs. noncardiac) did not explain the statistical heterogeneity. However, heterogeneity
- 2409 was greatest in the pooled analysis of cardiac trials (I²=81.9%) based on the subgroup analysis. A pooled
- 2410 analysis of 15 trials³ in post-operative patients found significantly shorter hospital stay with

² Pooled analysis conducted as part of the Pacific Northwest Evidence-Based Practice Center's systematic review included one study (Shi et al. 2019) that was subsequently retracted.

³ Pooled analysis conducted as part of the Pacific Northwest Evidence-Based Practice Center's systematic review included two studies (Shi et al. 2019; Sun et al. 2019) that were subsequently retracted.

2411 dexmedetomidine than with usual care or normal saline (N=5,053; MD -0.96 days, 95% CI -1.56 to -0.37, 2412 I²=95.4% [Chen et al. 2021; Huyan et al. 2019; Lee et al. 2019; X. Li et al. 2017; Li et al. 2020; Likhvantsev 2413 et al. 2021; Momeni et al. 2021; Shi et al. 2019; Soh et al. 2020; Su et al. 2016; Sun et al. 2019; Turan et 2414 al. 2020; van Norden et al. 2021; Wu et al. 2016; Xuan et al. 2018]). Stratified analyses by the timing of 2415 the intervention and by surgery type did not explain the statistical heterogeneity.

- 2416 A pooled analysis of three trials of dexmedetomidine versus propofol in post-operative patients found
- 2417 shorter ICU stays with dexmedetomidine (N=303; MD -2.93 days, 95% CI -5.36 to -0.51, I²=94% [Djaiani
- 2418 et al. 2016; Maldonado et al. 2009; Sheikh et al. 2018]). ICU stays were also shorter with
- 2419 dexmedetomidine compared with clonidine (N=286; MD -0.30, 95% CI -0.42 to -0.18) based on a single
- 2420 trial in cardiac surgery (Shokri and Ali 2020). When dexmedetomidine was compared with the opioids,
- 2421 remifentanil (Park et al. 2014) or morphine (Shehabi et al. 2009), the differences were very small and
- 2422 not significantly different (N=441; MD 0.11 days, 95% CI -0.23–0.46, I²=46%). There was also no
- 2423 difference in length of ICU stay between post-operative dexmedetomidine and midazolam based on one
- 2424 cardiac surgery trial (N=60; MD -1.10 days, 95% CI -2.22–0.02 [Maldonado et al. 2009]).
- 2425 The difference in pooled length of hospital stay in post-operative patients was large and favored
- 2426 dexmedetomidine versus propofol (N=605; MD -3.14 days, 95% Cl -8.95 to -0.30, l^2 =95% [Chang et al.
- 2427 2018; Djaiani et al. 2016; Maldonado et al. 2009; Mei et al. 2018; Susheela et al. 2017]). As with the
- 2428 finding for ICU length of stay, a pooled analysis of the two opioid trials found a very small, non-
- 2429 significant difference in hospital stay compared with dexmedetomidine (N=441; MD 0.06 days, 95% CI -
- 2430 0.60-0.73, $l^2=0\%$ [Park et al. 2014; Shehabi et al. 2009]). There was also no difference between
- 2431 dexmedetomidine and midazolam on hospital stay based on one small trial (N=60; MD -1.80 days, 95%
- 2432 CI -3.61–0.01). One small trial also compared dexmedetomidine plus IV acetaminophen with propofol
- 2433 plus IV acetaminophen, and although the absolute difference in length of hospital stay was large, it was
- 2434 not statistically significant (N=12; 10.33 days vs. 5.33 days, P>0.05 [Susheela et al. 2017]).
- 2435 All nine trials of dexmedetomidine in non-post-operative ICU patients reported ICU length of stay.
- 2436 Compared with other medications (antipsychotic, benzodiazepine, or anesthetic), dexmedetomidine was
- 2437 associated with shorter ICU stays; however, the magnitude of effect was small, and statistical
- 2438 heterogeneity was high (7 trials; MD -1.98 days, 95% Cl -3.66–0.31, I²=72%) (see Figure C-10). However,
- 2439 separating these analyses by comparator medication resulted in different findings depending on which
- 2440 medication was being compared with dexmedetomidine. There was a large, significant decrease in ICU
- 2441 length of stay with dexmedetomidine compared with haloperidol in a low risk of bias study of 60
- 2442 patients (MD -3.40 days, 95% CI -3.79 to -3.01 [Abdelgalel 2016]). Comparisons of dexmedetomidine
- 2443 with propofol or midazolam resulted in different findings, depending on study size and risk of bias. In
- 2444 two smaller trials (N=211) with moderate risk of bias, comparing dexmedetomidine with either propofol
- 2445 or midazolam, dexmedetomidine showed a large, significant benefit (MD -3.84 days, 95% CI -6.51 to -
- 2446 1.16 [Li et al. 2019; Ruokonen et al. 2009]). However, the larger PRODEX and MIDEX trials (N=998) with 2447
- low risk of bias (Jakob et al. 2012), and two additional trials (MacLaren et al. 2015; Winings et al. 2021)
- 2448 did not show statistically significant differences between dexmedetomidine and midazolam (MD 2.14
- 2449 days, 95% CI -1.04–5.33) or propofol (MD -0.69, 95% CI -2.74–1.35). The two placebo-controlled trials 2450 (Abdelgalel 2016; Skrobik et al. 2018) suggested a moderate decrease in ICU stay with dexmedetomidine

- treatment, but the difference was not statistically significant (MD -2.02, 95% CI -6.56–2.53). A trial
- comparing midazolam to propofol found that ICU length of stay was similar between groups (5.7 days vs
- 2453 5.6 days, *P*=0.75 [Chen 2020]).

Figure C-10. Length of intensive care unit stay with dexmedetomidine versus other drugs in intensive care unit patients.

Trial	Class	Dexmediatomidine	Control			Mean Difference (95% CI)	N	Assessment
Antipsychotic								
Ab de Igale I, 2018	Antipsychotic	Bolus + 0.2 to 0.7 µg/kg/hou	r Haloperidol bolus + 0.5 to 2 mg/hour	•		-3.40 (-3.79, -3.01)	60	NR
Subtotal (P = .%, p =	NA)			0		-3.40 (-3.79, -3.01)		
Benzodiazepine or A	nesthesia							
LI, 2019	Benzodiazepine or Anesthesia	0.8 µg/kg/hour	Midazolam 0.06 mg/kg/hour or Propolol 0.5 to 2 mg/kg/hour			-5.20 (-7.44, -2.96)	126	D/C
Ruckonen, 2009	Benzodiazepine or Anesthesia	0.25 to 1.4 µg/kg/hour	Midazolam 0.04 to 0.2 mg/kg/hour or Propolol 0.8 to 4 mg/kg/hou	· 😐		-2.47 (-4.70, -0.25)	85	30 days
Subtotal (P=65.1%,	p = 0.091)			\diamond		-3.84 (-6.51, -1.16)		
Benzodiazepine								
MaoLaren, 2016	Benzodiazepine	0.15 to 1.5 µg/kg/hour	Midazolam 1 to 10 mg/hour		•	3.53 (-6.84, 13.91)	23	D/C
Jakob, 2012 MIDEX	Benzodiazepine	0.2 to 1.4 µg/kg/hour	Midazolam 0.03 to 0.2 mg/kg/hour		-	2.00 (-1.34, 5.34)	500	D/C
Subtotal (P=0.0%, p	= 0.783)			\leq	>	2.14 (-1.04, 5.33)		
Anesthesia								
Jakob, 2012 PRODEX	Anesthesia	0.2 to 1.4 µg/kg/hour	Propofol 0.3 to 4.0 mg/kg/hour			-0.90 (-3.13, 1.34)	498	D/C
Winings, 2021	Anesthesia	0.48 µg/kg/hour (mean)	Propofol 24.6 µg/kg/minute (mean)		_	0.35 (-4.69, 5.39)	57	NR
Subtotal (P=0.0%, p	= 0.657)			\diamond		-0.69 (-2.74, 1.35)		
Overall (I*=71.8%, p	= 0.002)			\Diamond		-1.98 (-3.66, -0.31)		
				75 0				
				-7.5 0 Favors Intervention	1- Favors Control	4		

2455 *Abbreviations*. CI=confidence interval; D/C=discharge; NA=not applicable; NR=not reported.

2456 Source. Abdelgalel 2016; Jakob et al. 2012; Li et al. 2019; MacLaren et al. 2015; Ruokonen et al. 2009; Winings et al. 2021.

- 2457 For hospital length of stay, the PRODEX and MIDEX trials found no difference between
- 2458 dexmedetomidine and either midazolam or propofol (Jakob et al. 2012). In PRODEX, patients given
- 2459 dexmedetomidine stayed for a median 25 days compared with 28 days for propofol (P=0.76), whereas in
- 2460 MIDEX it was 35 days for dexmedetomidine and 27 days for midazolam (*P*=0.37). A small trial with high
- risk of bias showed no difference in hospital stays between dexmedetomidine and propofol (18 days vs.
- 2462 17 days, *P*=0.63 [Winings et al. 2021]). Another small trial with low risk of bias found shorter hospital
- stays with dexmedetomidine than with haloperidol (6.2 days vs. 13.5 days, *P*<0.001 [Abdelgalel 2016]).
- The placebo-controlled trials (both with low risk of bias) had conflicting findings, with one reporting a
- 2465 statistically significant decrease in hospital stay with dexmedetomidine treatment (N=60; mean 6.2 days
- vs. 15.5 days, *P*<0.05 [Abdelgalel 2016]), whereas another reported no difference (N=100; median 27
 days vs. 29 days, *P*=0.48 [Skrobik et al. 2018]).
- 2468 Effect of dexmedetomidine on mortality and adverse events
- 2469 Mortality outcomes did not differ based on administration of dexmedetomidine versus placebo or a
- 2470 medication comparator.
- 2471 Regarding mortality in post-surgical populations, a pooled analysis⁴ indicated that mortality was not
- affected by dexmedetomidine when compared with normal saline (12 trials, N=4,107; 0.9% vs. 2.0%, RR
- 2473 0.59, 95% CI 0.33–1.03, I²=0% [Chen et al. 2021; Lee et al. 2019; X. Li et al. 2017; Li et al. 2020;
- Likhvantsev et al. 2021; Massoumi et al. 2019; Momeni et al. 2021; Soh et al. 2020; Su et al. 2016; Sun et
- 2475 al. 2019; Turan et al. 2020; van Norden et al. 2021]), propofol (2 trials, N=479; 0.8% vs. 0.4%, RR 1.61,
- 2476 95% CI 0.20–12.98, I²=0% [Djaiani et al. 2016; Mei et al. 2018]), an opioid (1 trial, N=299; 1.3% vs. 2.7%,
- 2477 RR 0.48, 95% CI 0.09–2.60 [Shehabi et al. 2009]), or clonidine (1 trial, N=286; 1.4% vs. 5.6%, RR 0.25, 95%
 2478 CI 0.05–1.14 [Shokri and Ali 2020]).
- 2479 In ICU patients, mortality across seven trials also did not differ between dexmedetomidine and other
- 2480 treatments (20% vs. 18%, RR 1.12, 95% CI 0.89–1.39, I²=0%), and the specific medication comparison did
- 2481 not affect this finding (*P*=0.62 for interaction [Abdelgalel 2016; Jakob et al. 2012; Li et al. 2019;
- 2482 MacLaren et al. 2015; Ruokonen et al. 2009; Winings et al. 2021]). Results were similar for
- 2483 dexmedetomidine compared with placebo (19% vs. 18%, RR 1.09, 95% CI 0.57–2.08, I²=0% [Abdelgalel 2484 2016: Skrobik et al. 2018])
- 2484 2016; Skrobik et al. 2018]).
- In terms of other adverse events in post-operative patients, dexmedetomidine as compared with normal
 saline was associated with an increased risk of hypotension requiring treatment (10 trials⁴, N=4,004;
 23.1% vs. 15.4%, RR 1.50, 95% Cl 1.32–1.70, l²=0% [Hu et al. 2020; Lee et al. 2019; Shi et al. 2020; Su et
 al. 2016; Sun et al. 2019; Turan et al. 2020; Wu et al. 2016; Xuan et al. 2018; Yang et al. 2015; Zhang et
 al. 2020]). Post-operative bradycardia requiring treatment was not increased, based on nine trials⁴
 (N=3,038; 6.5% vs. 5.6%, RR 1.27, 95% Cl 0.83–1.95, l²=35% [Lee et al. 2019; X. Li et al. 2017; Shi et al.
- 2490 (N=5,058, 6.5% VS. 5.6%, KK 1.27, 95% Cl 0.85–1.95, 1–55% [Lee et al. 2019, X. Li et al. 2017, 5ill et al. 2491 2020; Su et al. 2016; Sun et al. 2019; Turan et al. 2020; Wu et al. 2016; Yang et al. 2015; Zhang et al.
- 2492 2020]).

⁴ Pooled analysis conducted as part of the Pacific Northwest Evidence-Based Practice Center's systematic review included one study (Sun et al. 2019) that was subsequently retracted.

- 2493 A pooled analysis of two trials found no difference in risk of post-operative bradycardia or hypotension
- 2494 between dexmedetomidine and propofol (N=123; 15% vs. 4.8%, RR 2.87, 95% Cl 0.80–10.34, l²=0%;
- 2495 18.3% vs. 19.0%, RR 1.02, 95% CI 0.51–2.04, I²=0%; respectively [Chang et al. 2018; X. Liu et al. 2016]).
- However, a pooled analysis of two opioid trials (N=441 [Park et al. 2014; Shehabi et al. 2009]) found an
- 2497 increased risk of post-operative bradycardia (16.0% vs. 7.7%, RR 2.03, 95% Cl 1.08–3.83, l²=22%) but a
- 2498 decreased risk of hypotension (21.5% vs. 35.1%, RR 0.61, 95% CI 0.45–0.83, I²=0%) with
- 2499 dexmedetomidine as compared with opioids (i.e., remifentanil, morphine).
- 2500 Two post-operative trials, one of dexmedetomidine compared to placebo (van Norden et al. 2021) and
- 2501 the other of dexmedetomidine compared to sufentanil (Zhao et al. 2020), reported no difference
- 2502 between groups in post-operative bradycardia episodes; it was unclear if treatment was required for
- 2503 these episodes. Another trial reported that the total number of neurological complications was less with
- dexmedetomidine (26.3% vs. 43.8%, P=0.031), although there was no difference in severe neurological
 complications (11.3% vs. 20.0%, P=0.191 [Chen et al. 2021]).
- 2506 Most trials of dexmedetomidine in ICU patients (see Figure C-11) reported hypotension and bradycardia,
- although some trials did not define these terms. Taken together, six trials (N=1,210) did not show a
- 2508 statistically significant difference in hypotension between dexmedetomidine and midazolam (Jakob et
- al. 2012; MacLaren et al. 2015; Shu et al. 2019), propofol (Jakob et al. 2012), or haloperidol (Abdelgalel
- 2510 2016) (19% vs. 15%, RR 1.34, 95% CI 0.96–1.88, I²=41%), but findings were inconsistent across the three
- 2511 midazolam trials. The MIDEX trial (Jakob et al. 2012), with low risk of bias, found a higher risk of
- hypotension (not defined) with dexmedetomidine than midazolam (N=497; 21% vs. 12%, RR 1.78, 95%
- 2513 Cl 1.17–2.71), whereas smaller trials with moderate risk of bias did not.
- 2514

2515

2516 Figure C-11. Hypotension incidence with dexmedetomidine versus other drugs in intensive care unit patients.

Control Drug Class and Author, Year	Dexmedetomidine Dose	Control Drug & Dose	Treatment n/N	Control n/N			Risk Ratio (95% CI)
Anesthetic							
Jakob, 2012 PRODEX	0.2 to 1.4 µg/kg/hour	Propofol 0.3 to 4.0 mg/kg/hour	32/246	33/247	-+-		0.97 (0.62, 1.53)
Winings, 2021	0.48 µg/kg/hour (mean)Propofol 24.6 µg/kg/minute (mean)	17/28	13/29	+	-	1.35 (0.82, 2.24)
Subgroup			49/274	46/276			1.13 (0.81, 1.58)
(l ² = 0.0%, p = 0.321)					1		
Antipsychotic							
Abdelgalel, 2016	0.2 to 0.7 µg/kg/hour	Haloperidol 0.5 to 2 mg/hour	4/30	3/30	 		1.33 (0.33, 5.45)
Subgroup			4/30	3/30		\geq	1.33 (0.33, 5.45)
(I ² = 0.0%, p = NA)							
Benzodiazepine							
Jakob, 2012 MIDEX	0.2 to 1.4 µg/kg/hour	Midazolam 0.03 to 0.2 mg/kg/hour	51/247	29/250	-	F	1.78 (1.17, 2.71)
MacLaren, 2015	0.15 to 1.5 µg/kg/hour	Midazolam 1 to 10 mg/hour	10/11	6/12	H	⊢	1.82 (1.00, 3.30)
Shu, 2019	0.2 to 0.7 µg/kg/hour	Midazolam 0.05 to 0.10 mg/kg/hour	r 1/40	6/40			0.17 (0.02, 1.32)
Subgroup			62/298	41/302			1.46 (0.75, 2.83)
(l ² = 59.4%, p = 0.076)					Í		
P-value for interaction: p =	0.5676						
Overall			115/602	90/608		•	1.34 (0.96, 1.88)
(l ² = 41.3%, p = 0.120)					ľ		
					.015625 1	1	54
				Favors	s treatment	Favors o	ontrol

Abbreviations. CI=confidence interval; MIDEX=midazolam vs. dexmedetomidine; n/N=number; NA=not applicable; PRODEX=propofol vs. dexmedetomidine.
 Source. Abdelgalel 2016; Jakob et al. 2012; MacLaren et al. 2015; Shu et al. 2019; Winings et al. 2021.

C80

- 2519 The pattern was similar for bradycardia: MIDEX showed a higher risk with dexmedetomidine than
- 2520 midazolam (degree of bradycardia was not defined), but a pooled estimate across any comparator
- 2521 (midazolam, propofol, or haloperidol) did not show a difference (14% vs. 8.6%, RR 1.51, 95% CI 0.88–
- 2522 2.59, I²=50%). In both MIDEX and PRODEX, the frequency of serious adverse events was comparable
- among the treatment groups (Jakob et al. 2012), and withdrawals due to adverse events did not differ
- 2524 between dexmedetomidine and midazolam or propofol (10% vs. 9.5%, RR 1.06, 95% CI 0.74–1.53, I²=0%
- 2525 [Jakob et al. 2012; Ruokonen et al. 2009]).
- 2526 Hypotension, bradycardia, and 28-day mortality were infrequent in the trial comparing midazolam and
- propofol and did not show a significant difference between groups (Chen 2020). One small placebo-
- 2528 controlled trial (N=60) reported a large, statistically significant increase in bradycardia with
- dexmedetomidine (27% vs. 3%, *P*<0.05), defined as a heart rate of 50 beats per minute or less, 60 or less
- 2530 if it required intervention (Abdelgalel 2016). Authors also noted a decrease in respiratory tract infections
- 2531 (6.7% vs. 33%, *P*<0.05). The study used noninvasive ventilation (NIV), and authors attributed the
- 2532 increase in respiratory infections in the placebo arm to more frequent NIV failure, requiring intubation
- 2533 that increased the risk of hospital-acquired infections. The other placebo-controlled trial reported
- 2534 bradycardia and hypotension only if they required interrupting treatment and found no differences
- 2535 between patients given dexmedetomidine and placebo (Skrobik et al. 2018).

2536 Effect of dexmedetomidine on other outcomes

- 2537 Regarding other miscellaneous outcomes in post-surgical patients, a pooled analysis of three post-
- 2538 operative trials (N=989 [Lee et al. 2019; Massoumi et al. 2019; Su et al. 2016]) found no significant
- 2539 differences in antipsychotic use between dexmedetomidine and normal saline (2.0% vs. 2.8%, RR 0.68,
- 2540 95% CI 0.14–3.41, I²=0%), but dexmedetomidine was associated with significantly less antipsychotic use
- 2541 post-operatively than propofol (2 trials, N=213; 9.9% vs. 22.1%, RR 0.48, 95% CI 0.26–0.88, I²=0%
- 2542 [Djaiani et al. 2016; Maldonado et al. 2009]). One trial (N=79; Yang et al. 2015) reported significantly less
- agitation post-operatively with dexmedetomidine compared with normal saline (10.3% vs. 30%,
- 2544 *P*=0.029), whereas another trial (N=108) reported less acute kidney injury with dexmedetomidine versus
- 2545 normal saline (14% vs. 32%, RR 0.41, 95% CI 0.19–0.91 [Soh et al. 2020]).
- 2546 In ICU patients in the PRODEX trial, the number of people receiving rescue sedation was higher with
- dexmedetomidine than propofol, with borderline statistical significance (73% vs. 64%, *P*=0.05). The
- 2548 MIDEX trial showed no difference in rescue sedation between dexmedetomidine and midazolam (44%
- vs. 45%, *P*=0.72). A third small trial with high risk of bias did not show a statistically significant difference
- compared with propofol (Winings et al. 2021), whereas a fourth with low risk of bias showed less rescue
- 2551 sedation with dexmedetomidine than with haloperidol (Abdelgalel 2016).

2552 Grading of the Overall Supporting Body of Research Evidence for Use of Dexmedetomidine in the

2553 Prevention of Delirium

- 2554 o Magnitude of effect: Variable. In post-operative patients, there was a small effect of
- 2555 dexmedetomidine relative to placebo in reducing the incidence of delirium whereas in ICU patients,
- typically receiving mechanical ventilation, there was a large effect of dexmedetomidine relative to
- 2557 placebo. When compared to other sedating medications, dexmedetomidine had a moderate to large

effect in reducing delirium incidence in post-operative patients but a small magnitude of effect in ICUpatients. Duration of delirium was less often studied, and the magnitude of effect was minimal.

2560 o Risk of bias: Moderate. Approximately half of the studies had a moderate risk of bias, with all
2561 but one of the remaining studies having a low risk of bias. Factors that most often influenced the risk of
2562 bias were inadequate reporting of information on allocation concealment and masking.

2563 Applicability: Studies were conducted in a wide range of countries with a substantial number 0 2564 conducted in China. Only a small proportion of the studies were conducted in the United Sates or 2565 Canada, which may limit applicability. Approximately half of the studies included older adults whereas 2566 the other studies included adults of all ages. Although many of the studies included comparable 2567 proportions of men and women, other studies had a preponderance of men enrolled. Race and ethnicity 2568 were rarely reported, which makes it difficult to determine whether study demographic characteristics 2569 were representative of usual clinical populations. Studies were done in post-operative patients and ICU 2570 settings, which is consistent with the settings in which dexmedetomidine would be used clinically.

2571 o Directness: Direct. The studies provided direct information on delirium related outcomes
 2572 including incidence and duration as well as on adverse events including mortality.

2573 o Consistency: Consistent. For the key outcome, the finding of a reduced incidence of delirium
 2574 was consistent in both post-operative and ICU patients and in placebo-controlled and head-to-head
 2575 comparisons.

o Precision: Variable. For the key outcome of delirium incidence, the findings were precise in post operative comparisons with placebo and with other sedating medications. For other outcomes, findings
 were imprecise.

2579 o Dose-response relationship: No available information.

2580 o Confounding factors (including likely direction of effect): The data may be confounded by
2581 variations in delirium assessment due to rater training. Individuals with hypoactive delirium may have
2582 been less likely to be identified than those with hyperactive delirium and the response to sedating
2583 treatments may differ. However, the direction of effect from these potential confounding factors is not
2584 clear.

2585 o Publication bias: Not identified. For the outcome of delirium incidence in post-operative
 2586 patients who received dexmedetomidine or placebo, there was no evidence of publication bias.

Overall strength of research evidence: Moderate. The strength of the research evidence was
 moderate for the key outcome of delirium incidence. Pooled analyses were based on a large number of
 trials and a large total number of participants. Findings were generally consistent in both post-operative
 and ICU patients and in placebo-controlled and head-to-head comparisons, increasing the confidence in
 the strength of evidence.

2592 Statement 12 – Dexmedetomidine in Patients with Delirium

APA suggests **(2C)** that when patients with delirium are sedated for mechanical ventilation in a critical care setting, dexmedetomidine be used rather than other sedating agents.

Evidence for this statement comes from three studies that examined the effects of dexmedetomidine
and other sedating agents in patients with delirium, each of which had 100 patients or fewer (Bakri et al.
2015; Liu et al. 2018; Yapici et al. 2011). However, all reported results favoring dexmedetomidine in
terms of faster delirium resolution and fewer days with delirium. A very small trial of clonidine, which is
also an α₂-adrenergic receptor agonist, showed no difference from placebo (Hov et al. 2019). Indirect
evidence for this statement is provided by studies of dexmedetomidine on reducing the incidence and

2601 duration of delirium (see Statement 11).

2602 Overview of study characteristics

2603 Three trials conducted in post-operative patients compared the effects of different sedating medications 2604 to treat delirium (Bakri et al. 2015; Liu et al. 2018; Yapici et al. 2011). One low risk of bias study that was 2605 conducted in China compared dexmedetomidine, sufentanil, and the combination given as a bolus 2606 followed by 2 dose-groups for maintenance of sufentanil (Liu et al. 2018). The population was young 2607 patients (N=100; age 20-40 years, mean 31 years, race/ethnicity not reported) who developed delirium 2608 post-operatively (surgical types not reported). The study reported outcomes only up to 8 hours after 2609 initiation of treatment (Liu et al. 2018). A second study with a moderate risk of bias was conducted in 2610 Turkey and compared dexmedetomidine with midazolam in patients (N=72) who had delirium and had 2611 failed extubation attempts following cardiac surgery (Yapici et al. 2011). Patients in this study had a mean age 60, and 62.5% were female. No information was given on race, ethnicity, or presence of 2612 2613 dementia. A third trial, conducted in Saudi Arabia, enrolled patients who had undergone trauma surgery 2614 and required ICU admission (Bakri et al. 2015). This study had a moderate risk of bias and compared 2615 continuous infusion of dexmedetomidine (n=32), ondansetron (n=32), and haloperidol (n=32). Patients 2616 in this study had a mean age 31, and 9% were female; race and ethnicity were not reported.

- 2617 Two trials conducted in ICU patients compared the effects of different sedating medications to treat
- 2618 delirium (Liu et al. 2021; Reade et al. 2016). One trial with a low risk of bias was done in Australia in
- 2619 patients (N=71) with agitated delirium and compared dexmedetomidine treatment with placebo (Reade
- et al. 2016). The median age of this sample was 57 years, and 24% were female. Race and ethnicity were
- not reported, and participants with dementia were excluded. One retrospective cohort study, with a
- 2622 moderate risk of bias, was conducted in China and compared dexmedetomidine (n=118) to olanzapine
- 2623 (n=145) in patients who were age ≥75 (Liu et al. 2021). Race and ethnicity were not reported, but 23% of
- the sample was female and 10.6% had dementia.
- 2625 Effect of dexmedetomidine on delirium response
- 2626 A study of post-operative patients compared dexmedetomidine, sufentanil, and the combination of
- 2627 dexmedetomidine and sufentanil using two different doses of sufentanil (Liu et al. 2018). Sufentanil
- alone and the two combination groups had significantly fewer patients with a response at 8 hours
- 2629 compared with dexmedetomidine alone (64% vs. 84% vs. 92% vs. 84%, *P*<0.05) (Liu et al. 2018). In
- 2630 patients who had undergone trauma surgery and had a subsequent ICU admission, there was no

- 2631 significant difference in the proportion of patients with delirium in the dexmedetomidine group as
- 2632 compared to the ondansetron or haloperidol groups (Bakri et al. 2015). Also, in the ICU study of patient
- 2633 with agitated delirium, baseline delirium resolved more quickly in patients who received
- 2634 dexmedetomidine as compared to placebo (median 23 hours vs. 40 hours, *P*=0.01), and they had fewer
- study days with delirium present (median 1 day vs. 3 days, P=0.02) (Reade et al. 2016).
- 2636 Effect of dexmedetomidine on length of stay
- 2637 Only one study examined effects of dexmedetomidine on length of stay in patients with delirium.
- 2638 Although the median length of stay was shorter in ICU patients treated with dexmedetomidine as
- 2639 compared to placebo, the difference was not significant for either the ICU stay (median 2.9 days vs. 4.1
- 2640 days after randomization, *P*=0.09) or hospital stay (median 8.5 days vs. 9.5 days, *P*=0.96) (Reade et al.
- 2641 2016). In ICU patients age ≥75, hospital LOS was greater in patients treated with dexmedetomidine as
- 2642 compared to those treated with olanzapine (mean 9.30 [SD 4.90] vs. 8.83 [SD 3.34], *P*<0.001) (Liu et al.
- 2643 2021).

2644 Effect of dexmedetomidine on mortality and adverse events

- 2645 Limited information was available from these studies on adverse events, including mortality. In the
- 2646 study of post-operative patients who received dexmedetomidine, sufentanil, or the combination, an
- 2647 increase in respiratory distress was noted in the combination groups (8% vs. 32% vs. 64% vs. 36%,
- 2648 *P*<0.05) (Liu et al. 2018). In the study of agitated patients in an ICU setting, rates of bradycardia and
- agitation did not differ significantly between groups (Reade et al. 2016). In terms of mortality, no patient
- 2650 died after receiving placebo, whereas one treated patient died in the ICU (*P*>0.99) and two in the
- hospital (*P*=0.50) (Reade et al. 2016). Cause of death and association with treatment were not reported.
- 2652 In ICU patients ≥75 years, there was no significant difference found in mortality between patients who
- received olanzapine and those who received dexmedetomidine (24.5% vs. 21.4%) (Liu et al. 2021).

2654 Effect of dexmedetomidine on other outcomes

- 2655 In terms of other outcomes, the trial that compared dexmedetomidine with midazolam in patients
- 2656 following cardiac surgery found that, at 2.5 days post-operation, the proportion of patients who were
- 2657 able to be weaned from mechanical ventilation was significantly greater in the dexmedetomidine group
- 2658 (97% vs. 79%, RR 1.17, 95% Cl 1.01–1.36) (Yapici et al. 2011). In post-operative trauma patients, a
- 2659 greater proportion of patients needed "rescue" treatment with haloperidol in the ondansetron group as
- compared to those who received haloperidol (11% vs. 3%; *P*=0.03) (Bakri et al. 2015). Dexmedetomidine
- and haloperidol groups did not differ in the amount of rescue haloperidol that was needed (*P*=0.07)
- 2662 (Bakri et al. 2015).

2663 Grading of the Overall Supporting Body of Research Evidence for Use of Dexmedetomidine in the2664 Treatment of Delirium

2665 o Magnitude of effect: Low to moderate. The magnitude of effect of varied with the outcome and
 2666 the comparison condition but was clinically significant in terms of response of delirium and in the
 2667 proportion of patients who were able to be weaned from mechanical ventilation in one study.

2668 o Risk of bias: Low to moderate. The risk of bias was low in two studies and moderate in one
2669 study. In one study, there was insufficient description of randomization and masking procedures, and it
2670 was unclear whether the groups were comparable at baseline.

2671 o Applicability: Studies were done in various countries, but none were done in the United States 2672 or Canada, which may limit applicability. In addition, the study populations were younger than typical 2673 patients with delirium. The proportion of women was low in most of the studies, but other demographic 2674 features were not well delineated. Studies were done in post-operative patients and ICU settings, which 2675 is consistent with the settings in which dexmedetomidine would be used clinically.

2676 o Directness: Direct. The studies provided direct information on delirium related outcomes
 2677 including response as well as providing limited information on adverse events including mortality.

2678 o Consistency: Consistent. The finding of a better response of delirium and/or better outcome
 2679 with dexmedetomidine compared to placebo or other sedating medications was consistent in both post 2680 operative and ICU patients.

2681 o Precision: Imprecise. The studies used proportions for a number of the measures and there was
 2682 significant imprecision in terms of optimal information sizes.

2683 o Dose-response relationship: No available information.

2684 o Confounding factors (including likely direction of effect): The data may be confounded by
 2685 variations in delirium assessment due to rater training. Although one study was limited to agitated
 2686 patients, in the other studies, individuals with hypoactive delirium may have been less likely to be
 2687 identified than those with hyperactive delirium. However, the direction of effect from these potential
 2688 confounding factors is not clear.

2689 o Publication bias: Not identified. Publication bias was not able to be assessed due to the small
2690 number of trials and differences in comparators.

2691 o Overall strength of research evidence: Low. The studies had a low to moderate risk of bias and 2692 were generally consistent in their findings; however, only a small number of studies were available, and 2693 they had significant variations in design and outcome measures that were used.

2694 Statement 13 – Melatonin and Ramelteon

2695 APA suggests (2C) that melatonin and ramelteon not be used to prevent or treat delirium.

2696 This recommendation is based on a systematic literature review conducted by the Pacific Northwest

2697 EPC, which focused on pharmacological approaches to prevention and treatment of delirium. The

2698 literature review mostly included prevention studies, which generally reported small or no effect of

2699 melatonin or ramelteon on delirium incidence or related outcomes (e.g., duration of delirium, severity

of illness). A subsequent systematic review was consistent with a lack of effectiveness of ramelteon in

2701 prevention of delirium (Dang et al. 2023). The two treatment studies identified in the Pacific Northwest

2702 EPC review also failed to show that melatonin or ramelteon effectively treat delirium in terms of time to

DRAFT January 25, 2024 NOT FOR CITATION

delirium resolution, delirium severity, mortality, adverse events, rescue medication, and use of
restraints (Lange et al. 2021; Thom et al. 2019). A subsequent systematic review (Beaucage-Charron et
al. 2023) also suggested that further evidence was needed before using these medications to treat
delirium.

2707 Overview of study characteristics

2708 Eighteen studies (N=2,293; range 50 to 452) assessed effects of sleep-related medications in the 2709 prevention of delirium (Abbasi et al. 2018; Azuma et al. 2018; Bellapart et al. 2020; de Jonghe et al. 2710 2014; Ford et al. 2020; Gandolfi et al. 2020; Gupta et al. 2019; Hatta et al. 2014b, 2017; Jaiswal et al. 2711 2018, 2019; Javaherforoosh Zadeh et al. 2021; Lawlor et al. 2020; Mahrose et al. 2021; Nishikimi et al. 2712 2018; E.S. Oh et al. 2021; Sharaf et al. 2018; Sultan 2010). There was a low risk of bias in five studies, a 2713 moderate risk of bias in eleven studies, and a high risk of bias in two studies. Studies were conducted in 2714 various countries including four trials in Japan, three trials each in Egypt and the United States, two trials 2715 each in Australia and Iran, and one trial each in Brazil, Canada, India, and The Netherlands. Seven of the 2716 studies limited enrollment to individuals age 65 or older, and eleven studies had a mean or median age 2717 greater than 65 years, whereas other studies included a broader range of adult participants. Six studies 2718 had a predominance of men, two studies had a predominance of women, nine studies had similar 2719 numbers of men and women, and one study did not report on the sex of participants. The majority of 2720 studies (15) did not report information on race or ethnicity. One study included 92% White participants, 2721 another included 74% White and 15% Black participants, and, in a third trial, all participants were Asian. 2722 In seven studies, individuals with delirium at baseline were excluded, whereas information on delirium 2723 at baseline was not described in the other eleven studies. Six studies excluded individuals with 2724 dementia, three studies included individuals with dementia (range 6.7% to 25% of the sample), and nine 2725 studies did not report this information.

2726 In post-operative patients, nine trials (N=1,190) compared a sleep-related medication with placebo or 2727 no treatment, with four trials of melatonin 3 mg/day (de Jonghe et al. 2014; Ford et al. 2020; 2728 Javaherforoosh Zadeh et al. 2021; Sharaf et al. 2018), one of 5 mg/day (Mahrose et al. 2021), one of 5 2729 mg the night before surgery and 5 mg pre-operatively (Sultan 2010), and three of ramelteon 8 mg/day 2730 (Gupta et al. 2019; Jaiswal et al. 2019; E.S. Oh et al. 2021). Six trials began treatment prior to surgery 2731 and continued for 2 to 7 days after (de Jonghe et al. 2014; Ford et al. 2020; Jaiswal et al. 2019; 2732 Javaherforoosh Zadeh et al. 2021; Mahrose et al. 2021; E.S. Oh et al. 2021), whereas two trials gave 2 2733 pre-operative doses only (the night before or 12 hours before surgery, and then 90 or 60 minutes prior 2734 to surgery, respectively [Gupta et al. 2019; Sultan 2010]). One study enrolled older adults undergoing 2735 any type of surgery requiring more than one hour of anesthesia (Gupta et al. 2019), three enrolled older 2736 adults undergoing orthopedic surgeries (de Jonghe et al. 2014; E.S. Oh et al. 2021; Sultan 2010), and 2737 three enrolled patients undergoing elective cardiac or pulmonary surgeries requiring an ICU admission 2738 post-operatively (Ford et al. 2020; Jaiswal et al. 2019; Sharaf et al. 2018). One of the studies (of older 2739 patients undergoing hip arthroplasty under spinal anesthesia) also compared melatonin with midazolam 2740 7.5 mg oral and 100 mcg clonidine given twice pre-operatively with no post-operative administration 2741 (Sultan 2010). A subsequent RCT, which was not included in the Pacific Northwest EPC meta-analysis, 2742 compared ramelteon (8 mg orally) or placebo for six nights (1 pre-operative night and 5 consecutive

- post-operative nights) in patients age 65 or older who were undergoing elective surgery under generalanesthesia (Kinouchi et al. 2023).
- 2745 Regarding ICU populations, five trials (N=531) compared the effect of a sleep-related medication with
- 2746 placebo or usual care in preventing development of delirium, with three trials of melatonin (3–10
- 2747 mg/day [Abbasi et al. 2018; Bellapart et al. 2020; Gandolfi et al. 2020]), one of ramelteon 8 mg/day
- 2748 (Nishikimi et al. 2018), and one of suvorexant 15 to 20 mg/day (Azuma et al. 2018). A subsequent
- 2749 Australian multicenter RCT, which was not included in the Pacific Northwest EPC meta-analysis,
- 2750 compared melatonin 4 mg to placebo for 14 consecutive nights or until discharge (Wibrow et al. 2022).
- 2751 In ICU patients with a diagnosis of delirium, one retrospective cohort study compared 77 ICU patients
- treated with ramelteon to 245 patients not given a sleep-related medications (Thom et al. 2019).
- 2753 In mixed inpatient samples, one trial (N=69) compared the effect of 3 mg of melatonin nightly to
- 2754 placebo in individuals age 65 or older (Jaiswal et al. 2018). Another RCT (N=67) compared the effect of
- 2755 up to 7 days of 8 mg of ramelteon nightly to placebo in patients age 65 to 89 (Hatta et al. 2014b). A third
- trial (N=72), also in patients age 65 to 89, compared 15 mg of suvorexant every night for 3 days to
- 2757 placebo (Hatta et al. 2017). Among palliative care patients, one trial randomized 60 patients with
- advanced cancer to 3 mg/day of melatonin or placebo for up to 28 days (Lawlor et al. 2020).
- 2759 Effect of sleep-related medications on delirium incidence
- 2760 All nine trials in post-operative patients reported delirium incidence, with four trials using the CAM-ICU 2761 instrument, three using the CAM, one the DOSS with DSM-5, and one using the Abbreviated Mental Test (score >8). Assessment time was 3 to 9 days after surgery. A pooled analysis of incidence of delirium 2762 2763 found a small, but significant difference for sleep-related medications compared with placebo (N=1,190; 2764 RR 0.62, 95% CI 0.40–0.96, I²=63.5%) (see Figure C-12). A subgroup analysis by type of surgery (cardiac 2765 vs. noncardiac) did not indicate significant effects. However, a subgroup analysis by specific medication 2766 (melatonin vs. ramelteon) showed a statistically significant difference for melatonin (6 trials, N=902; RR 2767 0.53, 95% CI 0.29–0.97, 1²=75%) but not ramelteon (4 trials, N=288; RR 0.82, 95% CI 0.51–1.32). A 2768 subgroup analysis by whether the medication was given only pre-operatively or continued post-2769 operatively again found no significant effect for continuing post-operatively (7 trials, N=988; 22% vs. 2770 25%, RR 0.73, 95% CI 0.48–1.13, I²=60%) but did find a significant reduction for the pre-operatively-only group (7% vs. 22%, RR 0.30, 95% Cl 0.14–0.66, $l^2=0\%$). However, the *P*-value for the subgroup interaction 2771 2772 was not statistically significant (P=0.177). A subsequent placebo-controlled trial of ramelteon showed no 2773 significant difference in the likelihood of delirium between the groups (Cox proportional HR 1.40, 95% CI 2774 0.40–4.85, χ^2 =0.29, df=1, P=0.60 [Kinouchi et al. 2023]). In addition to these placebo-controlled trials, a 2775 trial of older patients undergoing hip arthroplasty under spinal anesthesia (Sultan 2010) also compared 2776 melatonin with midazolam and clonidine, finding that significantly fewer patients developed delirium by 2777 day 3 in the melatonin group compared with all of the other groups (9.4% vs. 44% midazolam vs. 37% 2778 clonidine).

2779 Figure C-12. Delirium incidence with sleep-related medications in surgical patients post-operatively.

				Assessme	ent			
Timing of			Incidence	Time	Treatmen	t Control		Risk Ratio
Administration	Treatment	Control	Measure	(days)	n/N	n/N		(95% CI)
Preop + postop	Melatonin	Placebo	CAM or CAM-ICU	7 days	21/98	21/104	+	1.06 (0.62, 1.82
Preop + postop	Ramelteon	Placebo	CAM-ICU	9 days	19/59	22/58	•	0.85 (0.52, 1.39
Preop + postop	Melatonin	Placebo	CAM-ICU	2 days	3/30	14/30		0.21 (0.07, 0.67
Preop + postop	Melatonin	Dexmedetomidine	CAM-ICU	5 days	6/55	15/55	-	0.40 (0.17, 0.95
Preop + postop	Melatonin	Placebo	ICDSC	3 days	2/25	7/25	+	0.29 (0.07, 1.24
					51/267	79/272		0.57 (0.33, 1.00
						1		
Preop + postop	Ramelteon	Placebo	DSM-V	3 days	3/33	2/38		1.73 (0.31, 9.72
Preop + postop	Melatonin	Placebo	DSM-IV, DOSS	8 days	55/186	49/192		1.16 (0.83, 1.61)
Preop only	Ramelteon	Placebo	CAM	3 days	2/50	6/50	+	0.33 (0.07, 1.57)
Preop only	Melatonin	No treatment	AMT Score <8	3 days	5/53	16/49		0.29 (0.11, 0.73)
					65/322	73/329		0.67 (0.27, 1.65
						1		
aression): p = 0.68	1							
					116/589	152/601		0.62 (0.40, 0.96
						0.0625	1 16	
						Eavors treatment	Eavors control	
	Administration Preop + postop Preop only Preop only Preop only	Administration Treatment Preop + postop Melatonin Preop only Ramelteon	Administration Treatment Control Preop + postop Melatonin Placebo Preop + postop Ramelteon Placebo Preop + postop Melatonin Placebo Preop + postop Melatonin Dexmedetomidine Preop + postop Melatonin Placebo Preop only Ramelteon Placebo Preop only Melatonin No treatment	Administration Treatment Control Measure Preop + postop Melatonin Placebo CAM or CAM-ICU Preop + postop Ramelteon Placebo CAM-ICU Preop + postop Melatonin Placebo CAM-ICU Preop + postop Melatonin Dexmedetomidine CAM-ICU Preop + postop Melatonin Dexmedetomidine CAM-ICU Preop + postop Melatonin Placebo ICDSC Preop + postop Melatonin Placebo DSM-V Preop + postop Melatonin Placebo DSM-V Preop only Ramelteon Placebo CAM Preop only Melatonin No treatment AMT Score <8	Administration Treatment Control Measure (days) Preop + postop Melatonin Placebo CAM or CAM-ICU 7 days Preop + postop Ramelteon Placebo CAM-ICU 9 days Preop + postop Melatonin Placebo CAM-ICU 2 days Preop + postop Melatonin Dexmedetomidine CAM-ICU 5 days Preop + postop Melatonin Placebo ICDSC 3 days Preop + postop Melatonin Placebo DSM-V 3 days Preop only Ramelteon Placebo CAM 3 days Preop only Melatonin No treatment AMT Score <8	Administration Treatment Control Measure (days) n/N Preop + postop Melatonin Placebo CAM or CAM-ICU 7 days 21/98 Preop + postop Ramelteon Placebo CAM-ICU 9 days 19/59 Preop + postop Melatonin Placebo CAM-ICU 9 days 3/30 Preop + postop Melatonin Dexmedetomidine CAM-ICU 5 days 6/55 Preop + postop Melatonin Placebo ICDSC 3 days 2/25 Preop + postop Melatonin Placebo DSM-V 3 days 3/33 Preop + postop Melatonin Placebo DSM-V 3 days 3/33 Preop + postop Melatonin Placebo DSM-V 3 days 3/33 Preop + postop Melatonin Placebo DSM-V 3 days 3/33 Preop + postop Melatonin Placebo DSM-IV, DOSS 8 days 55/186 Preop only Ramelteon Placebo CAM 3 days 2/50 Preop only Melatonin No treatment AMT Score <8	Administration Treatment Control Measure (days) n/N n/N Preop + postop Melatonin Placebo CAM or CAM-ICU 7 days 21/98 21/104 Preop + postop Ramelteon Placebo CAM-ICU 9 days 19/59 22/58 Preop + postop Melatonin Placebo CAM-ICU 2 days 3/30 14/30 Preop + postop Melatonin Dexmedetomidine CAM-ICU 2 days 6/55 15/55 Preop + postop Melatonin Dexmedetomidine CAM-ICU 5 days 6/55 15/55 Preop + postop Melatonin Placebo ICDSC 3 days 2/33 2/38 Preop + postop Ramelteon Placebo DSM-IV, DOSS 8 days 55/186 49/192 Preop only Ramelteon Placebo CAM 3 days 2/50 6/50 Preop only Melatonin No treatment AMT Score <8	Administration Treatment Control Measure (days) n/N n/N Preop + postop Melatonin Placebo CAM or CAM-ICU 7 days 21/98 21/104 Preop + postop Melatonin Placebo CAM-ICU 9 days 19/99 22/58 Preop + postop Melatonin Placebo CAM-ICU 2 days 3/30 14/30 Preop + postop Melatonin Dexmedetomidine CAM-ICU 5 days 6/55 15/55 Preop + postop Melatonin Placebo ICDSC 3 days 2/25 Preop + postop Melatonin Placebo DSM-V 3 days 3/33 2/38 Preop + postop Melatonin Placebo DSM-V 3 days 5/5186 49/192 Preop + postop Melatonin Placebo DSM-V 3 days 5/53 16/49 Preop only Ramelteon Placebo CAM 3 days 5/53 16/49 Preop only Melatonin No treatment AMT Score <8

2780 Abbreviations. AMT=Abbreviated Mental Test; CAM=Confusion Assessment Method; CAM-ICU=Confusion Assessment Method for the Intensive Care Unit;

2781 CI=confidence interval; DOSS=Delirium Observation Screening Scale; DSM-IV=*Diagnostic and Statistical Manual of Mental Disorders,* 4th Edition;

2782 ICDSC=Intensive Care Delirium Screening Checklist; n/N=number; preop=pre-operative; postop=post-operative.

2783 Source. de Jonghe et al. 2014; Ford et al. 2020; Gupta et al. 2019; Jaiswal et al. 2019; Javaherforoosh Zadeh et al. 2021; Mahrose et al. 2021; E.S. Oh et al. 2021;

2784 Sharaf et al. 2018; Sultan 2010.

- 2785 Three trials of sleep-related medications in ICU patients reported delirium incidence, with a large, but
- 2786 not statistically significant difference favoring active treatment (13% vs. 22%, RR 0.56, 95% CI 0.30–1.05,
- 2787 I²=22% [Abbasi et al. 2018; Azuma et al. 2018; Nishikimi et al. 2018]). Ramelteon was the only individual
- 2788 medication for which the effect on delirium incidence was statistically significant, and again the
- 2789 magnitude of difference was large (24% vs. 47% for placebo, RR 0.53, 95% Cl 0.29–0.96). A subsequent
- 2790 large (N=841) RCT of prophylactic melatonin in ICU patients showed no difference in delirium-free
- assessments compared to placebo (79.2% vs. 80% respectively, *P*=0.547) (Wibrow et al. 2022).
- In general inpatient populations, the effect of sleep-related medications on delirium incidence was notstatistically significant in the pooled analysis, but the absolute difference was moderate, and statistical
- 2794 heterogeneity was high (9.8% vs. 20%, RR 0.34, 95% Cl 0.03–3.40, I²=82%) (see Figure C-13). A subgroup
- analysis of the two trials with mixed inpatient and ICU patients resulted in a very different estimate of
- effect than the study that was limited to inpatients. The two trials with mixed inpatient and ICU patient
- 2797 samples assessed ramelteon and suvorexant and showed a large, significant reduction in delirium
- 2798 incidence (2.9% vs. 27%, RR 0.11, 95% Cl 0.03–0.45, I²=0% [Hatta et al. 2014b, 2017]). The study with
- only inpatients found a moderate but non-significant increase in incidence with melatonin (21% vs.
 9.1%, RR 2.30, 95% CI 0.77–6.92 [Jaiswal et al. 2018]). The suvorexant trial (Hatta et al. 2017) reported a
- subgroup analysis, which found no effect on delirium incidence in patients with a Clinical Dementia
- 2802 Rating score of 0.5 or higher. However, the trial was underpowered to make this comparison, including
- 2803 just 18 patients with mild cognitive impairment by this definition.
- Among palliative care patients, a trial of melatonin as compared with placebo did not show a statistically significant difference in the incidence of delirium (37% vs. 33%, *P*=0.79) (Lawlor et al. 2020).

Setting and Author, Year	Risk of Bias	Drug & Dose	Incidence Measure	Assessment Time	Treatment n/N	Control n/N		Risk Ratio (95% Cl)	,
ICU and Inpatient									
Hatta, 2014	Moderate	Ramelteon 8mg/day	DSM-IV and DRS-R-98	7 days	1/33	11/34		0.09 (0.01, 0).69)
Hatta, 2017	Moderate	Suvorexant 15 mg/day	DSM-5 and DRS-R-98	7 days	1/36	8/36		0.13 (0.02, 0).95)
Subgroup					2/69	19/70		0.11 (0.03, 0).45)
(l ² = 0.0%, p = 0.842)									
Inpatient									
Jaiswal, 2018	Moderate	Melatonin 3 mg/day	CAM and chart review	NR	9/43	4/44	; ∔ •	2.30 (0.77, 6	5.92)
Subgroup					9/43	4/44		2.30 (0.77, 6	3.92)
(I ² = 0.0%, p = NA)									
P-value for interaction	n: p = 0.185								
Overall					11/112	23/114		0.34 (0.03, 3	3.40)
(l ² = 82.1%, p = 0.002	2)								
							.015625 1	1 64	
						F	avors treatment	Favors control	

2806 Figure C-13. Delirium incidence with sleep-related medications versus placebo in inpatients.

2807 *Abbreviations*. CAM=Confusion Assessment Method; CI=confidence interval; DRS-R-98=Delirium Rating Scale-Revised-98; DSM=*Diagnostic and Statistical*

2808 *Manual of Mental Disorders*; ICU=intensive care unit; NR=not reported.

2809 *Source*. Hatta et al. 2014b, 2017; Jaiswal et al. 2018.

2810 Effect of sleep-related medications on delirium duration

- 2811 The duration of delirium in surgical patients was reported in four trials, all of which continued the
- 2812 medication post-operatively (de Jonghe et al. 2014; Ford et al. 2020; Jaiswal et al. 2019; E.S. Oh et al.
- 2813 2021). The duration of delirium had a range of 1 to 3 days in the sleep-related medication groups, and 1
- to 2 days in the placebo groups, with a pooled MD of 0.18 days (95% CI -0.23–0.59, I²=13%). Subgroup
- 2815 analyses of specific medication and risk of bias were not significant.
- 2816 In ICU patients treated with sleep-related medications to prevent delirium, the duration of delirium did
- 2817 not differ between treated and untreated patients in the three trials, with a pooled MD of -0.86 days
- 2818 (95% CI -1.88–0.16 days, I²=0%). The other two studies did not report data needed to pool, and
- 2819 individually they did not show differences in delirium outcomes between melatonin and placebo
- 2820 (Bellapart et al. 2020; Gandolfi et al. 2020). In ICU patients with a diagnosis of delirium, treatment did
- not shorten time to resolution of delirium and coma (adjusted HR 1.05, 95% Cl 0.54–2.01) (Thom et al.
- 2822 2019).

2823 Effect of sleep-related medications on delirium severity

- 2824 Two trials in post-operative populations reported on the severity of delirium with no significant
- 2825 differences between groups, but the data were too heterogeneous to pool. In cardiac surgery patients
- the median MDAS score was 9 (IQR 3–26, with possible score values of 0 to 30) in the melatonin group,
- and 8.5 (IQR 3–22) in the placebo group (*P*=0.22 [Ford et al. 2020]). The proportion of patients who
- 2828 experienced episodes of severe delirium (MDAS>13) was not significantly different between groups
- 2829 (43% vs. 29%, P=0.33 [Ford et al. 2020]). A study in older orthopedic patients found similar DRS-R-98
- scores between participants treated with ramelteon as compared with placebo (19.7 vs. 19.0, *P*=0.56
- 2831 [E.S. Oh et al. 2021]). One trial reported severity of delirium was statistically significantly different
- 2832 (*P*=0.003), but the data were not shown (Javaherforoosh Zadeh et al. 2021). Another trial reported
- 2833 duration of delirium was significantly shorter in the group that received melatonin plus
- 2834 dexmedetomidine as compared to those that received dexmedetomidine alone (24.5 hours vs. 48.0
- 2835 hours, *P*=0.001 [Mahrose et al. 2021]).
- 2836 In general medical inpatients with delirium as determined by the CAM, improvement in MDAS scores,
- 2837 between baseline and the mean of 5 daily posttreatment scores, did not differ between melatonin and
- 2838 placebo (2.5 points vs. 2.2 points on a 30-point scale, *P*=0.41), nor did the number of CAM-positive days
- 2839 (4.5 days vs. 5 days, *P*=0.18) (Lange et al. 2021).
- Among palliative care patients treated with melatonin as compared to placebo, there was no difference in delirium severity measured by the Nu-DESC scale over 3 days (*P*=0.19) (Lawlor et al. 2020).

2842 Effect of sleep-related medications on length of stay

- 2843 Length of ICU stay was reported in two trials of post-operative patients. One trial reported a statistically
- significantly shorter length of ICU stay with melatonin versus placebo (mean of 3.83 days vs. 4.00 days,
- 2845 *P*=0.04 [Javaherforoosh Zadeh et al. 2021]). Another trial showed no differences between groups
- 2846 (median of 4 days each, P=0.349 [Jaiswal et al. 2019]).

- Length of hospital stay was reported in three trials of post-operative patients (de Jonghe et al. 2014;
- Ford et al. 2020; Jaiswal et al. 2019). The length of stay was significantly shorter in one trial of melatonin
- in older patients undergoing hip surgery (de Jonghe et al. 2014), significantly longer with melatonin in
- adult cardiac surgery patients (Ford et al. 2020), and not significantly different in a trial of ramelteon in
- patients undergoing pulmonary thromboendarterectomy (Jaiswal et al. 2019). The pooled estimate did
- not find a significant difference (MD 0.11 days, 95% CI -1.40–1.62, I²=82%). A subgroup analysis by
- 2853 medication did not find a significant effect. A subgroup analysis by type of surgery (cardiac/pulmonary
- vs. orthopedic) found a significant reduction in the orthopedic trial (MD -1.50 days, 95% CI -2.82 to -
- 2855 0.18) and a significant increase in the cardiac/pulmonary trials (MD 0.94 days, 95% C -1.40–1.62, I²=0%).
- However, the *P*-value for the interaction was not statistically significant (*P*=0.187).
- Taken together, four studies of sleep-related medications did not show an effect of treatment on the
 length of stay in ICU patients, but the pooled effect showed substantial heterogeneity (MD -0.79 days,
- 2859 95% Cl, -2.72–1.14, l²=90% [Abbasi et al. 2018; Azuma et al. 2018; Gandolfi et al. 2020; Nishikimi et al.
- 2860 2018]). Ramelteon differed from the other medications, showing a significant effect on ICU length of
- 2010 2010]). Kameleon unrered nom the other medications, showing a significant effect on ico length of
- stay for treatment compared with placebo (median 4.6 days vs. 5.9 days, *P*=0.028 in a multivariate
 model [Nishikimi et al. 2018]). A subsequent large study of melatonin showed no effect on ICU length o
- 2862 model [Nishikimi et al. 2018]). A subsequent large study of melatonin showed no effect on ICU length of 2863 stay (median: 5 days vs 5 days, *P*=0.135) or hospital length of stay (median: 14 days vs 12 days, *P*=0816)
- (Wibrow et al. 2022). Another study of 137 ICU patients (Abbasi et al. 2018) showed no effect of
- melatonin treatment on time spent in the hospital compared to placebo (18.1 days vs. 18.6 days, *P*=0.85).
- **2867** Effect of sleep-related medications on mortality and adverse events
- Three trials in post-operative patients reported on mortality during hospitalization (de Jonghe et al.
 2014; Ford et al. 2020; Jaiswal et al. 2019), and one also reported 90-day mortality (de Jonghe et al.
 2014). Overall, mortality was not different between the groups either during hospitalization (5% vs. 7%,
 RR 0.98, 95% CI 0.38–2.54, l²=0%) or at 90 days (21% vs. 21%, RR 0.98, 95% CI 0.67–1.45) (de Jonghe et
- 2872 al. 2014).
- 2873 Among 428 ICU patients, three trials reported deaths—two trials using melatonin (Abbasi et al. 2018;
- Gandolfi et al. 2020) and one ramelteon (Nishikimi et al. 2018). The trials showed no effect of sleeprelated medications on mortality (9.8% vs. 9.8%, RR 1.01, 95% CI 0.57–1.79, I²=0%). In a subsequent trial
 of melatonin compared to placebo, there was no significant difference in mortality at 90 days (15.5% vs
 15.6%, *P*=0.948 [Wibrow et al. 2022]). In addition, in ICU patients with a diagnosis of delirium, there was
 no statistically significant effect on mortality, and the estimate was imprecise (adjusted HR 0.31, 95% CI
- 2879 0.07–1.32 [Thom et al. 2019]).
- In terms of mortality in inpatients, the suvorexant trial included 72 patients, none of whom died ineither group (Hatta et al. 2017).
- 2882 Only one of the post-operative trials reported adverse events related to the study medications: nausea 2883 (5 ramelteon vs. 2 placebo), hypotension (2 ramelteon vs. 1 placebo), and dizziness (1 ramelteon vs. 2

placebo [E.S. Oh et al. 2021]). Logistic regression analysis for risk of any adverse event as a function of
assignment to ramelteon was not significant (*P*=0.95).

2886 One trial in 203 ICU patients did not show a significant difference in adverse events between melatonin 2887 and placebo (27% vs 35%, *P*=0.27 [Gandolfi et al. 2020]).

2888 In terms of adverse outcomes, one adverse event occurred in the melatonin trial, in a treated patient

2889 who withdrew because of nausea [Jaiswal et al. 2018]). In another trial that compared melatonin to

- 2890 placebo in ICU patients, no serious adverse events were reported in either group (Wibrow et al. 2022).
- 2891 In general medical inpatients with delirium as determined by the CAM, adverse events were similar
- 2892 between melatonin-treated and untreated patients (Lange et al. 2021). The ramelteon trial (Hatta et al.
- 2893 2014b) reported no adverse events in any patient in a mixed group of ICU and general inpatients.
- 2894 One trial of suvorexant in ICU patients reported that no patient in either group had an adverse event
- that investigators judged was attributable to the study drug (Azuma et al. 2018). There were no serious
- adverse events and no statistically significant differences in somnolence, headache, or dizziness
- 2897 between suvorexant and placebo in a mixed group of ICU and general inpatients, but events were few (0
- to 6 per outcome [Hatta et al. 2017]).
- 2899 Serious adverse events occurred in 67% of palliative care patients given melatonin and 57% given 2900 placebo (*P*=0.43), but these were not considered related to study medications (Lawlor et al. 2020).
- 2901 Effect of sleep-related medications on other outcomes
- Two trials of melatonin in post-operative patients reported on outcomes related to cognition, with no difference in cognitive decline (defined as Telephone Interview for Cognitive Status-Modified score <32) at discharge (1 trial [Ford et al. 2020]) or at 90 days post discharge (2 trials [de Jonghe et al. 2014; Ford et al. 2020]). One of these also reported on Katz Index of Independent in Activities of Daily Living scores at 90 days, again finding no difference between groups (de Jonghe et al. 2014). One of these trials also reported that anxiety and depression scores did not differ between groups.
- 2908 Several trials reported on use of rescue medication in trials of sleep-related medications. Two trials in 2909 post-operative patients, one of melatonin and one of ramelteon, reported on use of other medications
- 2910 such as antipsychotics and benzodiazepines and found no differences between groups (de Jonghe et al.
- 2911 2014; Jaiswal et al. 2019).
- 2912 In ICU patients, the mean cumulative dose of rescue haloperidol did not differ between individual who
- 2913 were given melatonin and those given placebo, according to an analysis adjusted for baseline
- 2914 characteristics in one trial (Abbasi et al. 2018). The other melatonin trial did not show differences in the
- use of rescue sedatives, antipsychotics, or α_2 agonists (Gandolfi et al. 2020). An additional trial in ICU
- 2916 patients showed no effect of suvorexant on rescue dexmedetomidine dose (Azuma et al. 2018).
- 2917 In general medical inpatients with delirium, rates of rescue medication and restraint use were
- 2918 comparable between patients treated with melatonin and untreated patients (Lange et al. 2021).

- 2919 Grading of the Overall Supporting Body of Research Evidence for Use of Melatonin or Ramelteon in the2920 Prevention or Treatment of Delirium
- 2921 o Magnitude of effect: Minimal to small. Most outcomes showed no effect of melatonin or
 2922 ramelteon. For some subgroup analyses, a small effect was present but typically did not reach statistical
 2923 significance and was not consistent in other outcomes or patient groups.
- 2924 o Risk of bias: Moderate. The majority of studies (11) had a moderate risk of bias with five studies 2925 having a low risk of bias and two with a high risk of bias. The predominant reasons for an increased risk 2926 of bias were related to inadequate allocation concealment and masking as well as problems with 2927 attrition and differences in treatment groups at baseline.
- 2928 Applicability: Studies were conducted in a wide range of countries, with only four trials 0 conducted in the United States or Canada. Approximately half of the studies were limited to older 2929 2930 individuals, but the remaining studies included a range of adult ages. A mix of men and women were 2931 represented in the studies, but few studies reported information on race or ethnicity. Individuals with 2932 delirium at baseline were excluded in about half of studies, but the others did not describe whether 2933 delirium was present at baseline. In terms of co-occurring dementia, half of studies did not report this 2934 information and of the remaining studies, only one-third included patients with dementia. The majority 2935 of studies were in post-operative patients with a smaller number of studies in ICU or inpatient samples.
- 2936 o Directness: Direct. The studies provided direct information on delirium related outcomes
 2937 including incidence as well as providing limited information on adverse events including mortality.
- 2938 o Consistency: Consistent. The majority of studies show minimal to no effect of melatonin or
 2939 ramelteon on prevention or treatment of delirium.
- 2940 o Precision: Imprecise. Many of the studies were small with sizable confidence intervals and there
 2941 was significant imprecision in terms of optimal information sizes.
- 2942 o Dose-response relationship: No available information.
- 2943 o Confounding factors (including likely direction of effect): The data may be confounded by 2944 variations in delirium assessment due to rater training. Several of the studies had differences in the 2945 treatment and control groups at baseline as well as evidence of differential attrition. However, the 2946 direction of effect from these potential confounding factors is not clear.
- 2947 o Publication bias: Not identified. Publication bias was not able to be assessed due to the small
 2948 number of trials and differences in comparators.
- 2949oOverall strength of research evidence: Low. The studies had a moderate risk of bias and were2950generally consistent in their findings; however, many of the studies were small and several studies had2951differences in the treatment and control groups at baseline as well as evidence of differential attrition.2952Only a few studies were available that assessed the effects of melatonin or ramelteon on treatment of2953delirium.

2954 Transitions of Care

2955 Statement 14 – Medication Review at Transitions of Care

APA recommends (1C) that, in patients with delirium or who are at risk for delirium, a detailed

2957 medication review, medication reconciliation, and reassessment of the indications for medications,
 2958 including psychotropic medications, be conducted at transitions of care within the hospital.

2959 This recommendation is based on a targeted review of the literature on the impact of medication

2960 interventions during transitions of care for patients with or at risk for delirium.

2961 Medication review, reconciliation, and reassessment are critical because inappropriate short- or long-2962 term psychotropic medication use may lead to unnecessary exposure to potential adverse effects of 2963 medications (e.g., increased mortality, development and worsening of cardiometabolic abnormalities, 2964 risk of falls), polypharmacy, and increased healthcare spending (Johnson et al. 2017; Lambert et al. 2965 2021). Additionally, adults ages 65 and older are highly vulnerable to adverse effects from psychotropic 2966 medications (Ćurković et al. 2016). For instance, antipsychotic use in older adults has been linked to an 2967 increased risk of mortality, hip fracture, falls, urinary infections, cerebrovascular events (e.g., stroke, 2968 seizures), and pneumonia (Ćurković et al. 2016; Johnson et al 2017). This is especially concerning 2969 considering a recent review found that healthcare professionals perceive antipsychotics as effective for 2970 delirium but do not perceive them as having enough of a risk to limit their prescribing practices

2971 (Jaworksa et al. 2022).

2972 Approximately one-quarter to one-half of ICU patients who received an antipsychotic medication for

delirium were continued on the medication with transition to a lower acuity setting of care (Dixit et al.,
2021; Flurie et al. 2015; Lambert et al. 2021). The highest rate of antipsychotic continuation was among

2975 patients in a community hospital of mixed ICU patients, whereas the lowest rate was among patients in

a surgical ICU. In one study of the patients who continued on antipsychotics following transfer from the

2977 ICU, 61% were assessed for inappropriate antipsychotic continuation and almost two-thirds of this

2978 group (64%) were determined to have been continued on the medication inappropriately (Flurie et al.2979 2015).

2980 A small number of trials were conducted at transitions of care and assessed the effects of multi-

component pharmacological interventions, such as medication review, medication reconciliation, and
 reassessment of the need for psychotropic medication. Findings support the use of medication-related
 interventions in this context. One trial conducted in the Netherlands assessed the effects of medication
 review on length of delirium, length of stay, mortality, and discharge destination among 93 patients (van

Velthuijsen et al 2018). Duration of delirium in patients who underwent medication review was shorter
than in controls (8.56 days vs 15.47 days). Patients who were taking up to 6 medications and who had a

- 2987 medication review had significantly shorter episodes of delirium than controls (MD 15.46 days,
- 2988 *P*<0.001). There were no differences between medication review patients and controls for length of 2989 stay, in-hospital mortality, or discharge destination (van Velthuijsen et al 2018).

In patients 70 years and older hospitalized for trauma, an individual pharmacotherapy management
 program appeared to effectively prevent complicating delirium, which the authors defined as "delirium

- 2992 necessitating further investigations as laboratory parameters, cranial computed tomography or
- 2993 magnetic resonance imaging, and/or psychiatric consultation" (N=404; Drewas et al. 2022). The
- 2994 pharmacotherapy management program was largely comprised of an electronic medication review and
- 2995 individualized recommendations based on identified medication risks and interdisciplinary consensus.
- 2996 Use of the intervention was associated with a 90% reduction in risk of complicating delirium (OR 0.09,
- 2997 95% CI 0.01–0.7, P=0.03). A Cochrane review of multi-component non-pharmacological interventions for
- 2998 delirium in non-ICU hospitalized patients (Burton et al. 2021) also found a small but favorable effect of
- 2999 medication review on reducing the risk of delirium (OR 0.81, 95% CI 0.21–3.02).
- 3000 Several other intervention trials did not look at delirium-related outcomes but did report significant 3001 improvements in unnecessary exposure to psychotropic medication. One trial explored the use of a 3002 multi-component intervention to reduce high-risk medications in adults ages 70 and older (N=70) in 3003 acute medical care or surgical units who were at risk for delirium (Adeola et al. 2018). The intervention 3004 included technology-assisted medication review as well as formulary and policy changes, best practice 3005 alerts, and prescriber education. Medication review included the use of electronic pharmacy 3006 surveillance and alerts for pharmacist review of high-risk medications, which were to be followed by 3007 dose reduction, medication discontinuation, medication switching, or (when appropriate) continuation 3008 of the medication after conducting a risk-benefit assessment with the prescribing healthcare 3009 professional. High-risk medications targeted for intervention were zolpidem, diphenhydramine, 3010 lorazepam, methocarbamol, hydroxyzine, diazepam, cyclobenzaprine, carisoprodol, and meperidine. 3011 Investigators found the proportion of patients who received at least one high-risk medication decreased 3012 from 45.6% to 31.3%, and mean number of doses decreased for seven of the nine high-risk medications. 3013 Of the 6,645 electronic pharmacy surveillance alerts that were triggered and responded to, 31% resulted 3014 in a change to the medication (i.e., a discontinuation, dose reduction, or switch). The intervention also 3015 included discharge reconciliation, in which 21,956 best practice alerts were generated—38% of which
- 3016 resulted in the high-risk medication being discontinued.
- 3017 A quality improvement trial designed to reduce inappropriate continuation of second-generation
- 3018 antipsychotics among patients with delirium discharged from the ICU (N=358) found that use of an
- 3019 electronic medication review and handoff tool was associated with reduced antipsychotic continuation
- 3020 at ICU discharge (78.7% continued pre-intervention vs 66.7% post-intervention, *P*=0.012 [Kram et al.
- 2019]). Finally, one study included medical ICU patients who had been prescribed antipsychotics for
- 3022 delirium and assessed antipsychotic continuation before and after introduction of a medication tapering
- 3023 bundle intervention (D'Angelo et al. 2019). The bundle intervention, which included medication
- 3024 education and an antipsychotic discontinuation algorithm, was associated with a significant decrease in
- 3025 antipsychotic continuation (27.9% vs 17.7%, OR 0.56, 95% CI 0.31–0.99, *P*<0.05) and lower odds of
- 3026 antipsychotic continuation (OR 0.47, 95% CI 0.26–0.86, P=0.014) at ICU discharge (D'Angelo et al. 2019).
- 3027 Grading of the Overall Supporting Body of Research Evidence for Medication Review at Transitions of3028 Care
- 3029 In the absence of a detailed systematic review on the medication review at transitions of care for
- 3030 patients with delirium, no grading of the body of research evidence is possible.

3031 Statement 15 – Follow-up Planning at Transitions of Care

- APA recommends **(1C)** that, when patients with delirium are transferred to another setting of care, plans for follow-up include:
- continued assessments for persistence of delirium;
- 3035•detailed medication review, medication reconciliation, and reassessment of the3036indications for medications, including psychotropic medications;
- 3037•assessment of consequences of delirium (e.g., post-traumatic symptoms, cognitive3038impairment); and
- psychoeducation about delirium for patients and their care partners.
- This recommendation is based on a targeted review of the literature on follow-up care for patients with delirium following transition to another care setting or discharge home.
- 3042 Medication Review, Reconciliation, and Reassessment

3043 As discussed in the evidence for Statement 14, a detailed medication review and medication 3044 reconciliation is important at transitions of care, including transfer of patients to other care settings. A 3045 systematic review of medication reconciliation studies showed reductions in drug discrepancies at 3046 transitions of care, although the quality of the evidence was low (Redmond et al. 2018). More recently, a 3047 cluster randomized trial in Canada examined the benefits of electronic retrieval of outpatient 3048 medication information in facilitating medication reconciliation in 3,491 discharged patients and also 3049 found a reduction in medication discrepancies (Tamblyn et al. 2019). Although studies have not found 3050 differences in other outcomes, such as risks of adverse drug effects, follow-up has usually been limited 3051 to 30 days of discharge (McDonald et al. 2022; Redmond et al. 2018; Tamblyn et al. 2019). Furthermore, 3052 other guidelines support reviewing medications to reduce those that are associated with higher risks of 3053 adverse effects in older individuals (American Geriatrics Society Beers Criteria® Update Expert Panel 3054 2023).

3055 Multiple retrospective studies suggest that a significant fraction of individuals with in-hospital delirium 3056 are discharged on an antipsychotic or sedative medication without receiving instructions to taper or 3057 discontinue the medication. In three studies of ICU patients who were on an antipsychotic medication 3058 for delirium when transitioned out of the ICU, 21% to 61% remained on the medication when discharged 3059 from the hospital (Boncyk et al. 2021; Dixit et al., 2021; Flurie et al. 2015). One retrospective chart 3060 review of 691 patients older than 65 who were prescribed an antipsychotic during hospital stay (i.e., 3061 ICU, general medical, and surgical patients) found approximately 30% were discharged on the 3062 antipsychotic (Johnson et al. 2017). Of those, 82% had a diagnosis of delirium. Only approximately 12% 3063 of patients with delirium who were discharged on an antipsychotic received instructions to discontinue 3064 the antipsychotic (Johnson et al. 2017). In another study about half of patients (49%) discharged from an 3065 ICU on an antipsychotic medication received instructions in their discharge letter regarding tapering 3066 their medication, following up with a neurologist, seeking a psychiatric consultation, or explaining 3067 conditions in which their antipsychotic dose should be increased (Lambert et al. 2021).

3068 Detailed medication review, medication reconciliation, and reassessment of the need for psychotropics 3069 may be able to decrease patients' exposure to inappropriate continuation of medication after 3070 transitions of care (Adeola et al. 2018; D'Angelo et al. 2019; Kram et al 2019; Stuart et al. 2020; see 3071 Appendix C, Statement 14). Although use of an electronic medication review and handoff tool reduced 3072 prescribing of antipsychotic medications on transitioning from the ICU, it was not associated with a 3073 reduced odds of antipsychotic prescribing at hospital discharge (OR 0.97, 95% CI 0.57–1.65) in one study 3074 (Kram et al. 2019). In contrast, other studies show benefits of medication-related interventions at 3075 discharge. For example, a cluster randomized trial in Canada used a software product aimed at 3076 identifying deprescribing opportunities in 5,698 hospitalized participants ages 65 and older who were 3077 taking at least five medications per day (McDonald et al. 2022). Although the primary outcome of 3078 adverse drug effects after discharge was no different between groups, rates of deprescribing were 3079 greater for individuals in the intervention group when compared to medication reconciliation alone 3080 (55.4% vs. 29.8%) (McDonald et al. 2022). In another Canadian study that used an interrupted time 3081 series analysis in 15,932 patients ages 66 and older (18,405 hospital discharges), the proportion of patients who received a prescription for a benzodiazepine, antipsychotic, or gastric acid suppressant 3082 3083 declined from 16.3% to 13.4% with implementation of electronic medication reconciliation (Welk et al. 3084 2021). For patients newly treated in the hospital with a benzodiazepine or antipsychotic medication, 3085 there was a small but significant decline in the proportion who returned to the hospital with a fracture 3086 or fall within 90 days of discharge (Welk et al. 2021). A study of 158 ICU patients prescribed 3087 antipsychotics for delirium had a significant decrease in antipsychotic prescribing at hospital discharge 3088 (32.9% vs 7.6%, P<0.001) following a pharmacist-led antipsychotic discontinuation protocol for delirium 3089 (Stuart et al. 2020). A medication tapering bundle intervention (D'Angelo et al. 2019) was also 3090 associated with significantly lower odds of antipsychotic continuation at hospital discharge (OR 0.40, 3091 95% CI .018-0.89, P=0.024).

3092 Continued Assessment for Persistence and Consequences of Delirium

3093 In support of helping patients achieve better recovery, practice guidelines and consensus statements 3094 recommend continued assessment of cognitive and physical functioning at the next level of care 3095 following transition or at home/in the community following hospital discharge (Guthrie et al. 2018; 3096 Mikkelsen et al. 2020). Ongoing cognitive assessment for persistence of delirium after discharge is 3097 crucial because delirium is a powerful predictor of new-onset dementia compared with patients without 3098 delirium (OR 11.9, 95% CI 7.29–19.6, P<0.001 [Pereira et al. 2021]). In a prospective survey of ICU 3099 patients (median age 65), the 171 patients with delirium (18.7%) had higher scores on a questionnaire of 3100 cognitive failures at 18 months post-discharge compared to those without delirium (van den Boogaard 3101 et al. 2012). Of 821 adults with respiratory failure or shock in a medical or surgical ICU, persistent 3102 cognitive impairment occurred and persisted in at least one-third of patients (Pandharipande et al. 3103 2013). In addition, global cognitive impairment and worse executive function were found in patients 3104 with longer durations of delirium (P<0.05 or less at 3 and 12 months for both measures) (Pandharipande 3105 et al. 2013). Persistence of delirium in the months following discharge is also associated with greater 3106 rates of emergency visits, hospitalization, or death (Cole et al. 2017). Further, a meta-analysis of 23 3107 studies among surgical and nonsurgical populations found a significant association between delirium 3108 and cognitive decline at 3 or more months following the delirium episode (Hedges g=0.45, 95% CI 0.340.57, P<0.001 [Goldberg et al. 2020]). Over the long term (e.g., 24 to 36 months), ongoing cognitive
assessment may be useful for monitoring disease course and fluctuations in symptoms (Cole and
McCusker 2016). Physically, patients who develop delirium during hospitalization are at risk of greater

functional decline and disability than hospitalized patients without delirium (Wilson et al. 2020).

3113 In addition to post-discharge assessment of cognition, other long-term consequences of delirium can 3114 include anxiety, depression, posttraumatic stress disorder (PTSD), and lower quality of life (Bolton et al. 3115 2021; Ramnarain et al. 2023; Wilson et al. 2020). Assessing for PTSD is particularly important for ICU 3116 patients with delirium, who in some studies demonstrate an increased risk of PTSD for up to 1 year 3117 following ICU stay (Bolton et al. 2021). For example, in 556 adults (median age 62) who had been hospitalized in an ICU with respiratory failure and/or shock, depression occurred in 36% and PTSD in 5% 3118 3119 at 3- and 12-months post-discharge (Rengel et al. 2021). In an observational multicenter study in 3120 Norway, univariate analysis suggested that adult ICU patients (N=273) were more likely to exhibit 3121 evidence of post-traumatic stress at 3 months (as measured by the Impact of Event Scale-Revised [IES-3122 R]) if they experienced delirium during the ICU stay although this was no longer significant on 3123 multivariable analysis (Friberg et al. 2023). Delirium was also associated with an increased risk of PTSD 3124 symptoms (as measured by the PTSD checklist—civilian version) on univariate and multivariable 3125 analyses in 205 patients with a nontraumatic intracerebral hemorrhage (Griffin et al. 2023). An 3126 Australian prospective cohort study of 103 adults who were mechanically ventilated in an ICU found that 3127 the 36% of patients with delirium were more likely to have symptoms of PTSD at 12 months on the IES-R 3128 (Bulic et al. 2020). A study of 198 adult patients who had stayed at least 4 days in an ICU in South Wales 3129 and visited an ICU follow-up clinic found that increased rates of PTSD as measured by the UK-Post-3130 Traumatic Stress Syndrome 14-Questions Inventory were associated with a diagnosis of delirium as well 3131 as lower age, lower illness severity, and pre-illness psychopathology (Battle et al. 2017). However, other 3132 studies do not show an increased risk of PTSD with delirium as compared to ICU patients without 3133 delirium, although both groups show increased rates of PTSD and other psychiatric symptoms after 3134 discharge (Weidman et al. 2022; Wolters et al. 2016). Collectively, this evidence underscores the need 3135 for continued assessment post discharge to monitor patients for changes in functioning and, where 3136 possible, inform the use of interventions to help slow physical, cognitive, and psychosocial decline.

3137 Little research has examined the quality of documentation of patients with delirium at discharge. The 3138 impact of follow-up interventions after delirium or critical care hospitalization has also been 3139 insufficiently studied (Schofield-Robinson et al. 2018). One retrospective chart review among Canadian 3140 patients with probable or definite delirium during hospitalization (N=110; Chuen et al. 2021) found only 3141 about one-quarter (25.4%) included instructions for follow-up care (e.g., cognitive assessment, specialist 3142 appointment). Other studies also suggest significant gaps in documentation at discharge (Johnson et al. 3143 2017; Lambert et al. 2021) in patients who have experienced delirium in the hospital. This suggests post 3144 discharge care may be suboptimal for many patients and could benefit from strategies to ensure that 3145 quality standards are met.

3146 Psychoeducation About Delirium

- 3147 Caregivers and family could also help play a role in ensuring patients receive recovery-enhancing
- 3148 interventions. A recent literature review on interventions to support recovery from delirium found that

- 3149 strategies increasing the chances of long-term recovery include physical activities, such as rehabilitation
- and exercise programs to improve functioning and reduce frailty; cognitive activities, such as reality
- 3151 orientation, memory exercises, and cognitive stimulation; and emotional strategies, such as discussing
- any negative emotions about their delirium experience with a trusted person (O'Rourke et al. 2021).
- Caregiver and family education are a necessary aspect of quality post discharge care for patients with
- delirium. A recent systematic literature review found families often do not receive enough information
- about delirium from healthcare professionals but that they would like to be more informed and included
- in helping to recognize and monitor for delirium in their loved one (Shrestha and Fick 2020). Desired
- 3157 information includes content about delirium etiology, pathologies, treatments, disease course, and non-
- 3158 pharmacological interventions to prevent and manage illness (Shrestha and Fick 2020). Studies suggest
- 3159 that, when properly educated, families can be reliable informants and can accurately identify and
- describe in detail the patient's delirium symptoms (Shrestha and Fick, 2020).
- 3161 Finally, a small randomized controlled feasibility trial (N=35) pilot tested a transition-to-home model of
- 3162 care for older adults with delirium and their caregivers (Khan et al. 2022). The model included a multi-
- 3163 component intervention that involved assessment for diagnosis of a cognitive disorder, medication
- review, patient and family education, assessment of functioning, and setting health goals. The
- 3165 intervention demonstrated feasibility but resulted in no differences in 30-day readmission or emergency
- 3166 department visits between intervention and control patients.
- 3167 More research is needed to understand the effects of other caregiver- or family-led delirium
- 3168 interventions following release from the hospital. The TRAnsport and DElirium in older people (TRADE)
- project is currently being pilot tested in Germany and aims to determine the effects of a complex
- 3170 caregiver intervention both during hospital stay and after discharge (e.g., to home, to rehabilitation) on
- 3171 outcomes of delirium incidence and cognitive functioning (Leinert et al. 2021). Included in the
- 3172 intervention is education about non-pharmacologic intervention strategies that can be implemented by
- families at home, such as supporting orientation, adapting communication, and promoting exercise.
- 3174 Positive findings from this and similar studies could lead to increased efforts to incorporate caregivers
- and family in the dissemination of post discharge interventions.
- 3176 Grading of the Overall Supporting Body of Research Evidence for Follow-up Planning at Transitions of
- 3177 Care
- 3178 In the absence of a detailed systematic review on follow-up planning at transitions of care for patients
- 3179 with delirium, no grading of the body of research evidence is possible.

3180 Appendix D. Evidence Tables for Individual Studies Supporting Guideline Statements

3181 Non-Pharmacological Interventions for Prevention of Delirium

3182 Multi-Component Interventions

Author	Study	Study protocol including numbers of	Study population	Sample demographics	Results including main	Risk of
(year); trial	characteristics	participants, interventions, duration, and	including main		outcomes and attrition rates	Bias
name		follow-up	inclusion and exclusion			
			criteria			
Abbasinia et	Design: RCT	Randomized N: 60	Inclusion: ≥18 years,	Mean (SD) age: 57.7 (10.24)	Main outcomes: There were	Moderate
al. (2021)	Setting: ICU	Analyzed N: 60	candidate for CABG,	Female %: 45	no significant differences in	
	Country: Iran	Intervention (N=30): Video tutorial before	and alert at the time of	Race %: NR	the rate of delirium episodes	
	Funding: None	surgery and HELP protocol after surgery;	admission	Delirium %: NR	and mean scores of RASS	
		HELP consisted of reorientation,	Exclusion: Being	Function: NR	between both groups in the	
		therapeutic activities, reduced use and	admitted due to	Dementia %: NR	2 nd (p=0.301, p=0.125) and 3 rd	
		doses of psychoactive drugs, early	infectious disease,	Postop %: 100	days (p=0.389, p=0.057) after	
		mobilization, promotion of sleep,	deterioration of the	Cancer %: NR	surgery, respectively.	
		maintenance of adequate hydration and	patient's condition		However, the mean duration	
		nutrition, and provision of vision and	after surgery, or history		of ICU stays after surgery was	
		hearing adaptations.	of previous major		significantly lower in the	
		Control (N=30): Usual care	surgery		intervention group compared	
		Duration: During ICU stay			with the control group	
		Follow-up (days): 3, Discharge			(p=0.042).	
					Overall attrition: 0%	
Avendano-	Design: RCT	Randomized N: 50	Inclusion: ≥65 years	Mean (SD) age: 86 (5.5)	Main outcomes: Delirium	Moderate
Cespedes et	Setting:	Analyzed N: 50	hospitalized patients	Female %: 48	prevalence (33.3% vs. 48.3%)	
al. (2016);	Inpatient	Intervention (N=21): Multi-component	Exclusion: Severe	Race %: NR	and incidence (14.3% vs.	
MID-Nurse-P	Country: Spain	nurse-led intervention of risk factor	cognitive decline	Delirium %: 18	41.4%, p=0.039) were	
	Funding:	analysis and interventions for identified		Pfeiffer's Short Portable	reduced in the intervention	
	Government	risk factors; provided within first 24 hours		Mental Status Questionnaire	group vs. control. Total	
		of admission and daily until discharge		(0-10 errors) score: 4.5	delirium severity was lower in	
		Control (N=29): Usual care		Dementia %: "severe"	the intervention group vs.	
		Duration: During hospitalization		cognitive decline excluded	control (35.0 vs. 65.0,	
		Follow-up (days): 16		Postop %: NR	p=0.040). Mortality was not different between groups	
				Cancer %: NR	(19.0% vs. 17.2%).	
					Overall attrition: 0%	

Author (year); trial	Study characteristics	Study protocol including numbers of participants, interventions, duration, and	Study population including main	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
name		follow-up	inclusion and exclusion criteria			
Boockvar et al. (2020); HELP-LTC	Design: RCT Setting: Nursing homes Country: U.S. Funding: Mixed	Randomized N: 219 Analyzed N: 219 Intervention (N=114): Long-term care facility adapted HELP; a multi-component intervention targeting delirium risk factors of cognitive impairment, immobility, dehydration, and malnutrition; delivered by certified nursing assistants Control (N=105): Usual care Duration: During acute illness Follow-up (days): 7, 30	Inclusion: Care homes residents who were suspected of having onset of acute illness or change in condition within the prior 24-48 hours Exclusion: Receiving hospice care or not determined to have a change in condition after further screening	Mean (SD) age: 81.7 (1.1) Female %: 65.3 Race %: Caucasian: 33.3 Black/African American: 35.2 Asian: NR Hispanic: 29.7 Other: 1.8 Delirium %: NR Mean (SD) physical function, ADL score: 15.2 (0.7) Non-Alzheimer's dementia %: 52.5 Alzheimer's disease %: 10.5 Postop %: NR Cancer %: NR Hospitalized in the past 12 months %: 60.7	Main outcomes: Delirium symptoms declined over the course of the episode (mean CAM-S=3.63 at start vs. 3.27 at end). Overall, 33.8% of the total sample experienced incident delirium. After adjusting for baseline cognitive function, no significant differences were found in delirium or delirium severity (CAM-S=3.6 for the intervention group vs. 2.8 for the control group) between groups. Hospitalization was not significantly different between groups. Attrition at follow-up: 11% vs. 21%	High
Boustani et al. (2012); Khan et al. (2013); e- CHAMPS trial	Design: RCT Setting: Inpatient Country: U.S. Funding: Government	Randomized N: 424 Analyzed N: 424 Intervention (N=199): Clinical decision support system to alert physicians to the presence of cognitive impairment, recommend early referral to a geriatrician, and suggest discontinuation of the use of urinary catheters, physical restraints, and anticholinergic drugs Control (N=225): Usual care Duration: During hospitalization Follow-up (days): Until discharge, 30	Inclusion: ≥65 years, hospitalized, with cognitive impairment Exclusion: Those with aphasia	Mean (SD) age: 77.2 (8.1) Female %: 65.7 Race %: Caucasian: NR Black/African American: 59.5 Asian: NR Other: NR Delirium %: 30.6 Mean (SD) Charlson Comorbidity Index: 2.1 (1.9) Dementia %: NR Mean (SD) SPMSQ: 5.1 (2.7) Postop %: NR Cancer %: NR	Main outcomes: No difference was found in the incidence of delirium (33.7% vs. 31.1%, p=0.78). Similar results were found when analyzing those with delirium at baseline only (data NR). Attrition: NR	Moderate

Author	Study	Study protocol including numbers of	Study population	Sample demographics	Results including main	Risk of
(year); trial	characteristics	participants, interventions, duration, and	including main		outcomes and attrition rates	Bias
name		follow-up	inclusion and exclusion			
			criteria			
Caplan et al. (2006); The REACH-OUT trial	Design: RCT Setting: Inpatient Country: Australia	Randomized N: 104 Analyzed N: 70 Intervention (N=70): Home rehabilitation service provided by a hospital-based multidisciplinary outreach service made	Inclusion: Patients with a LOS >6 days who were referred for geriatric rehabilitation, expected to return	Mean (SD) age: 83.9 (7.55) Female %: 62.5 Race %: NR Delirium %: NR Mean (SD) FIM: 76.44	Main outcomes: Lower odds of delirium were found in the home rehabilitation group (OR 0.17, 95% CI 0.03 to 0.65).	Moderate
Fundi	Funding: Government	g: up of nurses, physiotherapists, g: occupational therapists, and doctors	home, and lived reasonably independent after rehabilitation Exclusion: Patients who lived in a nursing home	(21.17) Dementia %: 25 Postop %: NR Cancer %: NR Mean (SD) number of medications at baseline: 5.66 (3.22)	Attrition: 24% vs. 26%	
Chen et al. (2011); mHELP	Design: Non- RCT Setting: Inpatient Country: Taiwan Funding: Government	Randomized N: 189 Analyzed N: 179 Intervention (N=107): mHELP consisting of early mobilization, nutritional assistance, and therapeutic (cognitive) activities implemented by a trained nurse Control (N=82): Usual care Duration: Daily during hospitalization Follow-up (days): Unclear	Inclusion: ≥65 years, admitted to the 36-bed GI ward, scheduled for elective abdominal surgery, and expected LOS of >6 days Exclusion: Profound sensory impairment or aphasia, intubation or respiratory isolation, severe dementia, coma, or critical condition	Mean (SD) age: 73 (5.71) Female %: 45 Race %: NR Delirium %: NR Mean (SD) MMSE (scale 0- 30): 26.6 (4.05) Dementia %: "severe" dementia excluded Postop %: 100 Cancer %: 78 Mean (SD) duration of surgery minutes: 214.8 (82.2)	Main outcomes: Delirium rate was significantly lower in the mHELP group (0%) vs. the control group (16.7%) (p<0.001). Attrition: 5% vs. 6%	Moderate
Chen et al. (2017); mHELP	Design: RCT Setting: Postop, abdominal Country: Taiwan	Randomized N: 377 Analyzed N: 375 Intervention (N=197): mHELP consisting of daily orienting communication, oral and nutritional assistance, and early mobilization Control (N=180): Usual care	Inclusion: ≥65 years, admitted to 1 of two 36-bed GI wards of a single hospital, scheduled for elective abdominal surgery, and expected LOS >6 days	Mean (SD) age: 74 (5.9) Female %: 44 Race %: NR Delirium %: NR Mean (SD) MMSE (scale 0- 30): 26.9 (3.48) Dementia %: NR	Main outcomes: POD occurred in 13/196 (6.6%) mHELP participants vs. 27/179 (15.1%) control individuals (RR 0.44 in the mHELP group) (95% CI 0.23 to 0.83, p=0.008). The	Moderate

Author (year); trial name	Study characteristics Funding:	Study protocol including numbers of participants, interventions, duration, and follow-up Duration: Daily during hospitalization	Study population including main inclusion and exclusion criteria Exclusion: NR	Sample demographics Postop %: 100	Results including main outcomes and attrition rates intervention group had a	Risk of Bias
	Government	Follow-up (days): Unclear		Cancer %: 91 Median (IQR) duration of surgery minutes: 195 (105) vs. 213 (98)* *Not reported overall or with means to be able to calculate	shorter median LOS (12.0 days) vs. control participants (14.0 days) (p=0.04). Attrition: 3% vs. 2%	
Dong et al. (2020); mHELP	Design: RCT Setting: Inpatient Country: China Funding: Government	Randomized N: 106 Analyzed N: 103 Intervention (N=53): mHELP including delirium and dementia improvement plans and multiple medication management plan; the assessment of delirium risk factors, delirium diagnosis, and multidisciplinary intervention for elderly patients with severe acute pancreatitis Control (N=53): Usual care Duration: During hospitalization Follow-up (days): 14	Inclusion: ≥70 years with severe acute pancreatitis and expected hospital stay >2 weeks Exclusion: History of severe acute pancreatitis, coma, mental disorders, dementia, low immune function, or end-stage disease	Mean (SD) age: 76.1 (4.5) Female %: 36 Race %: NR Delirium %: NR Function: NR Dementia %: 0 (excluded) Postop %: NR Cancer %: NR	Main outcomes: The incidence of delirium was 4.00% in the intervention group and 16.98% in the control group; the difference was statistically significant (p=0.033). Attrition: 6% vs. 0%	Moderate
Guo et al. (2016)	Design: RCT Setting: Postop, cancer Country: China Funding: None	Randomized N: 182 Analyzed N: 160 Intervention (N=91): Multi-component, non-pharmacologic intervention focusing on general geriatric approaches and supportive nursing care; nursing staff received training and guidance from a geriatric specialist and pre-operatively provided this guidance to the patient. Tools (e.g., calendars, clocks, glasses, etc.) were repeatedly offered to accomplish time, place, and character orientation. For patients with endotracheal intubation or a tracheostomy, communication card and	Inclusion: Age 65-80 years undergoing tumor resection surgery with a duration of postop stay in the ICU ≥3 days Exclusion: History of CNS disorder or mental illness or MMSE <24 or dementia	Mean (SD) age: 73.5 (5.6) Female %: 59 Race %: NR Delirium %: NR Mean (SD) preop Charlson's Comorbidity Index: 1.6 (0.8) Mean (SD) preop MMSE: 27.2 (1.9) Dementia %: 0 (excluded) Postop %: 100 Cancer %: 100 Mean (SD) LOS minutes: 213 (68)	Main outcomes: Compared with usual care, the intervention group experienced less POD (incidence and duration, p<0.05). Attrition: 11% vs. 13%	Moderate

Author	Study	Study protocol including numbers of	Study population	Sample demographics	Results including main	Risk of
(year); trial	characteristics	participants, interventions, duration, and	including main		outcomes and attrition rates	Bias
name		follow-up	inclusion and exclusion			
			criteria			
		WordPad were created. Noise was				
		decreased as much as possible, and				
		measures were adopted to create a good				
		sleep-wake cycle. Sleep mask and ear				
		plugs were allocated. If possible, no				
		restraints or indwelling catheters were				
		applied. Bedside MP3 players were				
		provided to play light music.; three times a day				
		Control (N=91): Usual care				
		Duration: During ICU stay				
		Follow-up (days): 1, 2, 3				
Hamzehpour	Design: RCT	Randomized N: 100	Inclusion: ≥18 years,	Mean (SD) age: 47.7 (22.6)	Main outcomes: Mean	Moderate
et al. (2018)	Setting: ICU	Analyzed N: 100	GCS >7, with no mental	Female %: 27	Neecham score on 4 th day	
	Country: Iran	Intervention (N=50): Based on the Roy	illness	Race %: NR	was lower in the control	
	Funding:	adaptation model for identifying and	Exclusion: Those who	Delirium %: NR	group vs. intervention (17.40	
	University	converting maladaptive behaviors	died during the study	Mean GCS at baseline: 11.6	vs. 20.58, p<0.028) as well as	
		(delirium) to adaptive behaviors in 7		Dementia %: NR, but	on the 4 th night (16.78 vs.	
		physiological dimensions by increasing,		excluded mental illness	21.35, p<0.001).	
		decreasing, or adjusting each trigger		Postop %: 98	Overall attrition: 0%	
		Control (N=50): Usual care		Cancer %: NR		
		Duration: During ICU stay		Received MV %: 30		
		Follow-up (days): 7				
Hempenius	Design: RCT	Randomized N: 297	Inclusion: ≥65 years,	Mean (SD) age: 77.54 (7.22)	Main outcomes: Delirium	Moderate
et al. (2013;	Setting:	Analyzed N: 260	undergoing elective	Female %: 64	occurred in 31/260 patients	
2016); LIFE	Postop, cancer	Intervention (N=148): Geriatric team	surgery for a solid	Race %: NR	(11.9%), and there was no	
trial	Country: The	delivered a multi-component intervention	tumor, and frail	Delirium %: NR	significant difference on the	
	Netherlands	focused on best supportive care and the	Exclusion: Unable to	Mean (SD) SF-36 Physical	incidence of delirium	
	Funding:	prevention of delirium; a preop checklist	complete the study	Function Scale: 48.03 (30.53)	between the intervention	
	Government	of medical history was completed, and an	protocol, follow-up	Dementia %: NR	group and the usual care	
		individual treatment plan was drawn up	schedule before	Mean (SD) MMSE: 26.5	group (9.4% vs. 14.3%, OR	
		based on patient-related risk factors.;	inclusion, and fill in the	(3.47)	0.63, 95% CI 0.29 to 1.35).	
		daily	questionnaires			

Author (year); trial	Study characteristics	Study protocol including numbers of participants, interventions, duration, and	Study population including main	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
name		follow-up	inclusion and exclusion			
			criteria			
		Control (N=149): Usual care		Postop %: 100	There were no differences	
		Duration: During hospitalization		Cancer %: 100	between the groups for any	
		Follow-up (days): Until discharge			of the outcomes 3 months	
					after discharge. The presence	
					of POD was associated with	
					an increased risk of decline in	
					ADL functioning (OR 2.65,	
					95% CI 1.02 to 6.88), an	
					increased use of supportive	
					assistance (OR 2.45, 95% CI	
					1.02 to 5.87), and a decreased	
					chance to return to the	
					independent preop living	
					situation (OR 0.18, 95% CI	
					0.07 to 0.49).	
					Attrition at follow-up: 14% vs.	
					11%	
Hosie et al.	Design: RCT	Randomized N: 72	Inclusion: ≥18 years	Mean (SD) age: 71.8 (12.9)	Main outcomes: One-third of	Moderate
(2020);	Setting:	Analyzed N: 65	with advanced (stage 4)	Female %: 44	control site patients (8/25,	
PRESERVE	Palliative	Intervention (N=20): Multi-component	cancer and 1 of the 4-	Race %: NR	32%) became delirious within	
Pilot Study	Country:	intervention consisting of 6 domains:	specialist palliative care	Delirium %: NR	7 days of admissions vs. one-	
	Australia	eating and drinking, sleep, exercise,	inpatient units	Function: NR	fifth (4/20, 20%) at	
	Funding: Mixed	reorientation, vision and hearing, and	Exclusion: NR	Dementia %: NR	intervention and waitlist sites	
		family partnership		Postop %: NR	(p=0.5). Mean (SD) delirium	
		Intervention 2 (N=27): Waitlist		Cancer %: 100	severity (DRS-R-98) scores	
		Control (N=25): No intervention			were 16.8 (12.0) control sites	
		Duration: During admission			vs. 18.4 (8.2) (p=0.6)	
		Follow-up (days): 7			intervention and 18.7 (7.8)	
					(p=0.5) waitlist sites. The	
					intervention caused no	
					adverse events.	
					Attrition: 0% vs. 26% vs. 0%	

Author	Study	Study protocol including numbers of	Study population	Sample demographics	Results including main	Risk of
(year); trial	characteristics	participants, interventions, duration, and	including main		outcomes and attrition rates	Bias
name		follow-up	inclusion and exclusion			
			criteria			
Khan et al.	Design:	Randomized N: 60 (those transferred to	Inclusion: ≥65 years,	Mean (SD) age: 74.6 (8.4)	Main outcomes: No	Moderate
(2013);	Subgroup	the ICU for at least 1 day among the	enrolled in the e-	Female %: 52	difference was found in the	
Boustani et	analysis of RCT	original 424 patients enrolled in the e-	CHAMPS trial,	Race %:	incidence of delirium	
al. (2012);	Setting: ICU	CHAMPS trial)	transferred to the ICU	Caucasian: NR	(intervention: 27% vs. usual	
e-CHAMP	Country: U.S.	Analyzed N: 60	during hospital stay	Black/African American: 45%	care: 29%, p=0.85).	
trial	Funding:	Intervention (N=30): Clinical decision	Exclusion: Those who	Asian: NR	Attrition: NR	
	Government	support system to alert physicians to the	had previously been	Other: NR		
		presence of cognitive impairment,	enrolled in any other	Delirium %: 0% (excluded)		
		recommend early referral to a	study, were aphasic, or	Mean (SD) Charlson		
		geriatrician, and suggest discontinuation	were unresponsive at	Comorbidity Index: 2.3 (1.8)		
		of the use of urinary catheters, physical	the time of screening	Mean (SD) APS: 32.4 (17.6)		
		restraints, and anticholinergic drugs		Mean (SD) SPMSQ: 5.0 (2.9)		
		Control (N=30): Usual care		Dementia %: NR		
		Duration: During hospitalization		Postop %: NR		
		Follow-up (days): Until discharge, 30		Cancer %: NR		
				Received MV: 17%		
Moon and	Design: RCT	Randomized N: 134	Inclusion: ≥18 years,	Mean (SD) age: 69.7 (13.1)	Main outcomes: Application	Moderate
Lee (2015)	Setting: ICU	Analyzed N: 123	hospitalized for ≥48	Female %: 51.2	of the intervention had no	
	Country: South	Intervention (N=65): Multi-component	hours in the ICU	Race %: NR	significant effect on delirium	
	Korea	intervention of delirium risk monitoring	Exclusion: Persistent	Delirium %: NR	incidence, in-hospital	
	Funding:	and screening cognitive, sensory, physical,	score of -4 or -5 on	Function: NR	mortality, re-admission to the	
	University	and social changes; cognitive assessment	RASS, MMSE-K score of	Dementia %: NR	ICU, or ICU LOS. Whereas the	
		and orientation; environment	≤23, admission to	Postop %: NR	risk of 30-day in-hospital	
		interventions; and early therapeutic	isolation ward due to	Cancer %: NR	mortality was not significantly	
		interventions	infection, or death or	Ever used ventilator %: 21.1	lower in the intervention than	
		Control (N=69): Usual care	discharge on the day of		in the control group (OR 0.33,	
		Intervention duration: Daily for 7 days	admission		95% CI 0.10 to 1.09), a	
		Control duration: Daily during			significantly decreased 7-day	
		hospitalization			in-hospital mortality was	
		Follow-up (days): 7, 30			found in the intervention	
					group (HR 0.09, 95% CI 0.01	
					to 0.72).	

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
	D : DOT				Attrition: 8% vs. 9%	
Lapane et al. (2011); GRAM software	Design: RCT Setting: Nursing homes Country: U.S. Funding: Government	Randomized N: Unclear Analyzed N: 3,538 Intervention (N=1,769): GRAM software used to identify patients with risk factors for falls and delirium, and when identified, implementing a resident assessment protocol Control (N=1,769): Usual care Intervention duration: Within 24 hours of admission for new admissions and every 30 days for long-term residents Control duration: Unclear Follow-up (days): Unclear	Inclusion: ≥50 geriatric bed, Medicare and Medicaid certified nursing homes with few short-stay residents Exclusion: NR	Mean age: 65-85 Female %: 70 Race %: Caucasian: NR Black/African American: NR Asian: NR Other: 14.5 Delirium %: 3 Moderate cognitive impairment %: 47 Severe cognitive impairment %: 24 Dementia %: 39 Postop %: NR Cancer %: 10 Taking 6-9 medications at time of intervention %: 30.3 Taking ≥10 medications at	Main outcomes: Newly admitted residents in the intervention homes experienced a lower rate of potential delirium onset (adjusted HR 50.42, 95% CI 50.35 to 0.52), overall hospitalization (adjusted HR 50.89, 95% CI 50.72 to 1.09), and mortality (adjusted HR 50.88, 95% CI 50.66 to 1.16) than those in usual care homes. In longer stay residents, the effects of the intervention were attenuated. Attrition: NR	High
	D : DOT			time of intervention %: 56.3		
Lundström et al. (2005)	Design: RCT Setting: Inpatient Country: Sweden Funding: Mixed	Randomized N: 400 Analyzed N: 400 Intervention (N=200): Geriatric ward' staff education in delirium assessment, prevention, and treatment; re- organization from a task-allocation care system to a patient-allocation system with individualized care Control (N=200): Usual care Intervention duration: Daily until discharge	Inclusion: ≥70 years admitted to 2 wards over an 8-month period Exclusion: NR	Mean (SD) age: 80.0 (5.9) Female %: 55.7 Race %: NR Delirium %: NR Function: NR Dementia %: 4.5 Mean (SD) MMSE: 25.2 (6) Postop %: NR Cancer %: NR	Main outcomes: Delirium was equally common on the day of admission at the 2 wards, but fewer patients remained delirious on day 7 on the intervention ward (19/63, 30.2%) vs. in the usual care group (37/62, 59.7%) (p=0.001). Attrition: NR	Moderate

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up Control duration: During hospitalization Follow-up (days): Until discharge	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
Lundström et al. (2007); Stenvall et al. (2012)	Design: RCT Setting: Postop, orthopedic Country: Sweden Funding: Government	Randomized N: 199 Analyzed N: 199 Intervention (N=102): Postop multi- factorial intervention program in a 24-bed geriatric unit specializing in geriatric orthopedic patients where the staff worked as a team, applying comprehensive geriatric assessment, management, and rehabilitation Control (N=97): Usual care Intervention duration: Daily until discharge Control duration: During hospitalization Follow-up (days): Until discharge	Inclusion: ≥70 years, with femoral neck fracture Exclusion: Severe RA, hip osteoarthritis, and renal failure; pathological fracture; patients bedridden before the fracture	Mean (SD) age: 82.1 (6.1) Female %: 74.4 Race %: NR Delirium %: 26.3 Functioning: NR Dementia %: 32 Postop %: 100 Cancer %: NR Mean (SD) number of medications: 5.8 (3.7)	Main outcomes: Days with POD were fewer in the intervention group vs. control group (5.0 days [7.1] vs. 10.2 days [13.3], p=0.009). A lower proportion of the intervention patients was delirious post-operatively vs. controls (56/102 [54.9%] vs. 73/97 [75.3%], p=0.003). 18% in the intervention group vs. 52% controls were delirious after the postop day 7 (p<0.001). Intervention patients suffered from fewer complications, such as decubitus ulcers, urinary tract infections, nutritional complications, sleeping problems, and falls than controls. Attrition: 6% vs. 7%	Moderate
Rice et al. (2017); mHELP	Design: RCT Setting: ICU Country: U.S.	Randomized N: 134 Analyzed N: 125 Intervention (N=67): Multi-component	Inclusion: ≥50 years admitted to a 32-bed neurological ICU or a	Mean (SD) age: 66 (10) Female %: 43 Race %:	Main outcomes: Delirium incidence was 8% (10/125) with 3 subjects in the	Moderate
	Funding: Non- profit	intervention including all standardized stroke care; the intervention was also augmented by 1) therapeutic activities twice daily based on mHELP and 2) calculated anticholinergic burden and	44-bed stroke unit Exclusion: Delirium at baseline, aphasia, or LOS <48 hours	Caucasian: 48 Black/African American: 47 Asian: 1.6 Other: 3.2 Delirium %: 0 (excluded)	intervention group vs. 7 in the usual care group. Attrition at follow-up: 12% vs. 1%	

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up drug risk each day by clinical pharmacists, using AChB and ADS, to guide medication recommendations Control (N=67): Usual care	Study population including main inclusion and exclusion criteria	Sample demographics Function: NR Dementia %: NR Mean (SD) NIHSS: 4.76 (4.91)	Results including main outcomes and attrition rates	Risk of Bias
		Duration: Daily during hospitalization Follow-up (days): Unclear		(4.91) Mean (SD) MoCA: 20.4 (5.95) Postop %: NR Cancer %: NR		
Rood et al. (2021); UNDERPIN- ICU study	Design: RCT Setting: ICU Country: the Netherlands Funding: Government	Randomized N: 1,749 Analyzed N: 1,749 Intervention (N=924): Customized nursing interventions to reduce delirium aimed at visual and hearing impairment, orientation loss, sleep deprivation, cognitive impairment, and immobility Control (N=825): Usual care Duration: During ICU stay Follow-up (days): 28	Inclusion: ≥18 years, medical, surgical, and trauma critically ill patients that were at high-risk to develop delirium (E-PRE-DELIRIC score ≥35%), and delirium-free at time of ICU admission Exclusion: Expected ICU stay <1 day or reliable assessment of delirium not possible (acute brain injury, sustained coma during completed ICU stay [RASS score ≤- 3], audiovisual disorders, language problems, mental disability, or aphasia)	Mean (SD) age: 71 (10) Female %: 40 Race %: NR Delirium %: NR Median (IQR) E-PRE-DELIRIC score %: 42 (37-49%) Mean (SD) APACHE-IV score: 82 (30) Dementia %: NR -Documented history of cognitive impairment % (dementia, mild cognitive impairment, or delirium): 11.1 Postop %: 9.6 Cancer %: NR	Main outcomes: Patients in the intervention period had median 23 (IQR 4-27) delirium-free and coma-free days alive, compared to median 23 (IQR 5-27) days for patients in the control group (mean difference -1.21 days, 95% CI -2.84 to 0.42 days, p=0.15). Also, the number of delirium days was similar: median 2 days (IQR 1-4) (ratio of medians 0.90, 95% CI 0.75 to 1.09, p=0.27). Overall attrition: 0%	Moderate
Siddiqi et al. (2016); Stop Delirium!	Design: RCT Setting: Nursing homes Country: U.K.	Randomized N: 215 Analyzed N: 160 Intervention (N=103): Stop Delirium!; a 16-month-enhanced educational package	Inclusion: Residents of included care homes Exclusion: Those	Mean (SD) age: 84 (8.4) Female %: 69 Race %:	Main outcomes: 1-month delirium prevalence was 4.0% in intervention vs. 7.1% in control homes.	High

Author	Study	Study protocol including numbers of	Study population	Sample demographics	Results including main	Risk of
(year); trial	characteristics	participants, interventions, duration, and	including main		outcomes and attrition rates	Bias
name		follow-up	inclusion and exclusion			
			criteria			
	Funding:	incorporating multiple strategies to	receiving end of life	Caucasian: 99.5	Attrition: 27% vs. 24%	
	Government	support care home staff to address key	care	Black/African American: 0.5		
		delirium risk factors		Asian: 0		
		Control (N=112): Usual care		Other: 0		
		Duration: Unclear		Delirium %: 1.4		
		Follow-up (days): 480		Cognitive impairment % (6-		
				CIT score ≥8): 70		
				Median Charlson		
				comorbidity score (scale 0-		
				37): 1.0 (range 0-8)		
				Dementia %: 42		
				Postop %: NR		
				Cancer %: NR		
				End of life/palliative care %:		
				0 (excluded)		
				Mean (SD) number of		
				medications taken at		
				baseline: 7.3 (4.1)		
Verloo et al.	Design: RCT	Randomized N: 114	Inclusion: ≥65 years,	Mean age: 83	Main outcomes: There were	Moderate
(2015)	Setting: Home	Analyzed N: 103	recently discharged	Female %: 65	no statistical differences	
	care	Intervention (N=56): Multi-component	from hospital with a	Race %: NR	regarding symptoms of	
	Country:	person-centered nursing interventions	prescription for home	Delirium %: NR	delirium (p=0.085), cognitive	
	Switzerland	consisting of assessment, detection,	health care	Mean number of delirium	impairment (p=0.151), and	
	Funding:	monitoring, support, dispensed care,	Exclusion: Those who	symptoms at baseline (CAM	functional status (p=0.235)	
	Government	health promotion, and education	had outpatient	0-9): 2.5	between the intervention and	
	and university	Control (N=58): Usual care	treatment within the	Dementia %: NR	control groups at study entry	
		Intervention 1 duration: Within 2 days of	hospital premises and a	Mean MMSE: 23.88	and at 1 month. After	
		starting study, then again on days 3, 7, 14,	medical prescription for	Mean IQCODE: 3.68	adjustment, statistical	
		and 21	a single intervention of	Postop %: NR	differences were found in	
		Control duration: Mean (SD) of 2.28 (0.84)	home health care and	Cancer %: NR	favor of the intervention	
		weekly visits per person	were outside the study		group for symptoms of	
		Follow-up (days): 30	reach		delirium (p=0.046), cognitive	

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
					impairment (p=0.015), and functional status (p=0.033). Attrition at follow-up: 9% vs. 10%	
Wang Y.Y. et al. (2020); t- HELP	Design: RCT Setting: Postop, elective other Country: China Funding: Government	Randomized N: 281 Analyzed N: 281 Intervention (N=152): t-HELP consisting of 3 universal protocols and 8 targeted protocols; the universal protocols included orientation, therapeutic activities, and early mobilization protocol; the targeted protocols were tailored for each patient based on delirium-related risk factors. Control (N=129): Usual care Duration: Daily until POD 7 or discharge Follow-up (days): 30	Inclusion: ≥70 years, scheduled for an elective surgical procedure with expected LOS >2 days Exclusion: Delirium at baseline or severe dementia	Mean (SD) age: 75.7 (5.2) Female %: 39 Race %: NR Delirium %: 0 (excluded) Cognitive function intact %: 83 Median (IQR) APACHE II: 15 (12-20) vs. 14 (12-20)* *Reported as median for each group, not overall Dementia %: "severe" dementia excluded Postop %: 100 Cancer %: 96	Main outcomes: POD occurred in 4 participants (2.6%) in the intervention group vs. 25 (19.4%) in the control group (RR 0.14, 95% CI 0.05 to 0.38). NNT to prevent 1 case of POD was 5.9 (95% CI 4.2 to 11.1). Attrition: 13% vs. 11%	Low
Watne et al. (2014); Oslo Orthogeriatr ic Trial	Design: RCT Setting: Postop, orthopedic Country: Norway Funding: Mixed	Randomized N: 329 Analyzed N: 329 Intervention (N=163): Multi-component intervention in the acute geriatric ward; geriatric assessment by nurses, nursing assistants, physiotherapists, occupational therapists, nutritionists, and social workers and daily interdisciplinary meetings Intervention 2 (N=166): Usual care in the orthopedic ward Intervention 1 duration: Daily until discharge	Inclusion: Patients admitted acutely to the hospital with a hip fracture Exclusion: Hip fracture was a part of a high energy trauma (defined as a fall from higher than 1 m) or if they were moribund on admission	Median age: 85 Female %: 75.7 Race %: NR Delirium %: 29.5 Median (IQR) Charlson Comorbidity Index: 1 (0-2) Mean (SD) APACHE II: 9.4 (2.7) Median Barthel Index: 18 Dementia %: 49 Postop %: 100 Cancer %: NR	Main outcomes: No significant difference was found in delirium rates (49% intervention group vs. 53% usual care group, p=0.51) or 4-month mortality (17% vs. 15%, p=0.50) between the intervention and the control groups. Attrition: 2% vs 1%	Moderate

Author (year); trial	Study characteristics	Study protocol including numbers of participants, interventions, duration, and	Study population including main	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
name		follow-up	inclusion and exclusion			
			criteria			
		Control duration: During hospitalization		Median (IQR) medications		
		Follow-up (days): 5, until discharge, 120,		used regularly: 4.5 (2-7)		
		365				
Young et al.	Design: RCT	Randomized N: 713	Inclusion: ≥65 years	Mean (SD) age: 82.8 (7.9)	Main outcomes: Rates of	Moderate
(2020)	Setting:	Analyzed N: 713	admitted to study	Female %: 68.3	new-onset delirium were	
	Inpatient	Intervention (N=343): Multi-component	wards	Race %:	lower than expected and did	
	Country: U.K.	intervention consisting of actions	Exclusion: Delirium	Caucasian: 91.7	not differ between groups (24	
	Funding: Mixed	centered on 10 risk factors associated	present on admission,	Black/African American: NR	[7.0%] intervention group vs.	
		with the development of delirium;	discharge planned	Asian: NR	33 [8.9%] control group, OR	
		interventions directly affect the patient	within 48 hours,	Other: NR	0.68, 95% CI 0.37 to 1.26,	
		experience of care and include optimizing	delirium assessment	Delirium %: 0 (excluded)	p=0.2225).	
		hydration and nutrition, reducing	not performed by a	Mean (SD) Charlson	Attrition at 10-day follow-up:	
		environmental triggers (excessive noise,	researcher within 24	comorbidity index score: 1.7	8% vs. 6%	
		multiple moves), increasing orientation to	hours of admission or	(1.9)		
		time and place, improving communicative	preop, end of life care	Cognitive impairment		
		practices (personally meaningful	being provided, or	and/or dementia %: 21		
		interaction and cognitive stimulation), and	under the care of	Postop %: NR		
		supporting and/or encouraging mobility	another ward	Cancer %: NR		
		and better management of pain and				
		infection.				
		Control (N=370): Usual care				
		Duration: During hospitalization				
		Follow-up (days): 10, 30, 90				

3183 Abbreviations. AChB=Anticholinergic Cognitive Burden scale; ADL=activities of daily living; ADS=Anticholinergic Drug Scale; APACHE II=Acute Physiology and Chronic Health Evaluation II; APACHE-3184 IV=Acute Physiology and Chronic Health Evaluation-IV; APS=Acute Physiology Score; CABG=coronary artery bypass graf; CAM=Confusion Assessment Method; CAM-S=Confusion Assessment Method-3185 Severity; CI=confidence interval; 6-CIT=6 item cognitive impairment test; CNS=central nervous system; DRS-R-98=Delirium Rating Scale-Revised-1998; e-CHAMPS=enhanced Care for Hospitalized older 3186 Adults with Memory Problems; E-PRE-DELIRIC=Early Prediction of Delirium in ICU Patients; FIM=functional independence measure; GCS=Glasgow Coma Scale; GI=gastrointestinal; GRAM=Geriatric Risk 3187 Assessment MedGuide; HELP=Hospital Elder Life Program; HELP-LTC=Hospital Elder Life Program-Long Term Care; HR=hazard ratio; ICU=intensive care unit; IQCODE=Informant Questionnaire on 3188 Cognitive Decline in the Elderly; IQR=interguartile range; LIFE=Liaison Intervention in Frail Elderly; LOS=length of stay; mHELP=modified Hospital Elder Life Program; MID-Nurse-P=preventive multi-3189 component non-pharmacologic nurse-led intervention randomized clinical trial; MMSE=Mini-Mental State Examination; MMSE-K=Mini-Mental State Examination-Korean version; MoCA=Montreal 3190 Cognitive Assessment; MV=medical ventilation; N=number; NIHSS=National Institutes of Health Stroke Scale; NNT=number needed to treat; NR=not reported; OR=odds ratio; POD=post-operative 3191 delirium; postop=post-operative; preop=pre-operative; RA=rheumatoid arthritis; RASS=Richmond Agitation Sedation Scale; RCT=randomized controlled trial; REACH-OUT=Rehabilitation Of Elderly And 3192 Care At Home Or Usual Treatment; RR=relative risk; SD=standard deviation; SF-36=Short Form-36; t-HELP=Tailored, Family-Involved Hospital Elder Life Program; SPMSQ=Short Portable Mental Status 3193 Questionnaire: UNDERPIN-ICU=Nursing Delirium Preventive Interventions in the Intensive Care Unit.

3194 Single-Component Interventions

3195 Family Member Interventions

Author	Study	Study protocol including numbers of	Study population including	Sample demographics	Results including main	Risk of
(year);	characteristics	participants, interventions,	main inclusion and exclusion		outcomes and attrition	Bias
trial		duration, and follow-up	criteria		rates	
name						
Eghbali-	Design: RCT	Randomized N: 68	Inclusion: Age 18-70 years	Mean (SD) age: 55 (12.11)	Main outcomes: Incidence of	Moderate
Babadi	Setting:	Analyzed N: 68	Exclusion: Delirium,	Female %: 59	delirium in the morning after	
et al.	Postop, cardiac	Intervention (N=34): Family member	consciousness level disorder,	Race %: NR	surgery (2 nd day) was 11.76%	
(2017)	Country: Iran	education about delirium and were	mental diseases, history of	Delirium %: 0 (excluded)	in intervention group vs.	
	Funding:	permitted to attend by the patient	blindness or deafness,	Cognitive status: NR	23.53% in control group,	
	University	for 30-40 minutes and	intubated with a tracheal	Dementia %: NR	p=0.04; for the 3 rd day,	
		communicated based on the	tube, or death during the	Postop %: 100	8.83% vs. 20.58%, p=0.03. In	
		education; received twice a day	study	Cancer %: NR	the control group, the	
		Control (N=34): Usual care		Mean (SD) length of surgery	incidence of delirium in the	
		Duration: During ICU stay		hours: 4.5 (1.26)	evening was 32.35%, which	
		Follow-up (days): 2, 3			was more than that in the	
					morning, p=0.004.	
					Attrition: NR	
Martinez	Design: RCT	Randomized N: 287	Inclusion: Older adults	Mean (SD) age: 78.2 (6.2)	Main outcomes: Delirium	Moderate
et al.	Setting:	Analyzed N: 287	hospitalized and at risk for	Female %: 63.7* *The text	occurred during the	
(2012)	Inpatient	Intervention (N=144): Family	delirium	says female and the table	hospitalization in 5.6% of the	
	Country: Chile	member education about delirium; a	Exclusion: Those with	says males for this %	patients in the intervention	
	Funding: None	clock and calendar available for the	delirium on admission and in	Race %: NR	group and in 13.3% of the	
	reported	patient; sensory deprivation avoided	a room with ≥2 beds	Delirium %: 0 (excluded)	patients in the control group	
		(glasses, dentures, and hearing aids		Previous Delirium %: 3.8	(RR 0.41, 95% CI 0.19 to	
		available); presence of familiar		Median Charlson Comorbidity	0.92, p=0.027).	
		objects in the room (photographs,		Index: 2	Attrition: 3% vs. 6%	
		cushions, and radio); reorientation		Mild cognitive impairment %:		
		(current date and time, recent		8		
		events) by family members; and		Dementia %: 5.9		
		extended visitation times (5 hours		Postop %: NR		
		daily)		Cancer %: 17.7		
		Control (N=143): Usual care		Started on risky medications:		
		Duration: Daily during hospitalization		5.2		
		Follow-up (days): Until discharge				

Author (year); trial	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
name						
				Received anticholinergics %: 1 Received opioids %: 0.3		
Mitchell	Design: RCT	Randomized N: 61	Inclusion: ≥16 years, expected	Mean (SD) age: 56.2 (26.8)	Main outcomes: No	Moderate
et al.	Setting: ICU	Analyzed N: 61	to be in ICU ≥4 days	Female %: 65.5	significant differences	
(2017)	Country:	Intervention (N=29): Family member	Exclusion: Unable to	Race %: NR	between groups were found	
	Australia	delivered intervention containing	communicate in both written	Delirium %: NR	on outcomes of delirium.	
	Funding:	orientation (memory clues),	and spoken English	Functioning: NR	Attrition: 0% vs. 3%	
	University	therapeutic engagement (engage		Dementia %: NR		
		patient), and if applicable sensory		Postop %: 18.0		
		(making sure glasses are on and		Cancer %: NR		
		hearing aids in place/working)		On MV in ICU %: 98.4		
		Control (N=32): Usual care		Median (IQR) days on MV in		
		Intervention 1 duration: Daily during		ICU: 9.0 (7) intervention vs.		
		ICU stay		10.0 (10) control		
		Control duration: Daily for up to 30				
		days				
		Follow-up (days): Unclear				
Munro	Design: RCT	Randomized N: 30	Inclusion: ≥18 years, within	Mean (SD) age: 59.5 (17)	Main outcomes: The family	Moderate
et al.	Setting: ICU	Analyzed N: 30	24 hours of ICU admission	Female %: 36.7	voice group had more	
(2017)	Country: U.S.	Intervention 1 (N=10): Family	Exclusion: Expected imminent	Race %:	delirium free days than the	
	Funding: NR	member recorded messages to	patient death	Caucasian: 83.3	non-family voice group, and	
		reorient the patient about being in		Black/African American: 16.7	significantly more delirium	
		the ICU and their condition there		Asian: NR	free days (p=0.0437) than	
		Intervention 2 (N=10): Generic		Other: NR	the control group.	
		female recorded messages to		Delirium %: 13.3	Attrition: 70% vs. 50% vs.	
		reorient the patient about being in		Mean (SD) APACHE score:	40%	
		the ICU and their condition there		63.6 (20.7)		
		Control (N=10): Usual care		Dementia %: NR		
		Duration: Daily during ICU stay		Postop %: NR		
		Follow-up (days): 3		Cancer %: NR		
Rosa et	Design: RCT	Randomized N: 1,685	Inclusion: ≥18 years, admitted	Mean (SD) age: 58.5 (18.2)	Main outcomes: Incidence of	Moderate
al.	Setting: ICU	Analyzed N: 1,685	to participating ICUs	Female %: 47.2	delirium during ICU stay was	

Author	Study	Study protocol including numbers of	Study population including	Sample demographics	Results including main	Risk of
(year);	characteristics	participants, interventions,	main inclusion and exclusion		outcomes and attrition	Bias
trial		duration, and follow-up	criteria		rates	
name						
(2019)	Country: Brazil	Intervention (N=837): Flexible family	Exclusion: Coma for ≥96	Race %: NR	not significantly different	
	Funding:	visitation schedule for up to 12 hours	hours, presence of delirium,	Delirium %: 0 (excluded)	between flexible and	
	Government	per day, along with education about	brain death, exclusive	Median (IQR) Charlson	restricted visitation (18.9%	
		the ICU environment, common	palliative care, expected ICU	Comorbidity Index: 1.0 (0-2)	vs. 20.1%, adjusted	
		procedures, multidisciplinary work,	stay of <48 hours, or	Dementia %: 0.9	difference –1.7%, 95% Cl	
		infection control, palliative care, and	prisoners	Postop %: 42.6	–6.1% to 2.7%, p=0.44). For	
		delirium		Cancer %: NR	family members, median	
		Control (N=848): Usual care;		Hazardous alcohol	anxiety (6.0 vs. 7.0, adjusted	
		restricted visitation (median 1.5		consumption %: 7.1	difference −1.6, 95% Cl −2.3	
		hours/day)		Taking opioids %: 18.7	to -0.9, p<0.001) and	
		Duration: Daily during ICU stay		Taking vasopressors %: 27.0	depression scores (4.0 vs.	
		Follow-up (days): 30 or until		Taking corticosteroids %: 18.7	5.0, adjusted difference	
		discharge		Taking parenteral	–1.2, 95% CI –2.0 to –0.4,	
				sedatives %: 14.2	p=0.003) were significantly	
				Taking benzodiazepines %:	better with flexible	
				12.7	visitation.	
					Overall attrition: 0%; no lost	
					to follow-up but primary	
					outcome data were not	
					available for 9 patients (6 vs.	
					3).	

3196 3197 Abbreviations. APACHE=Acute Physiology and Chronic Health Evaluation; CI=confidence interval; ICU=intensive care unit; MV=medical ventilation; N=number; NR=not reported; postop=postoperative; RCT=randomized controlled trial; RR=relative risk; SD=standard deviation.

3198 Individualized Education

Author	Study	Study protocol including numbers of	Study population including	Sample demographics	Results including main	Risk of
(year);	characteristics	participants, interventions, duration, and	main inclusion and exclusion		outcomes and attrition	Bias
trial		follow-up	criteria		rates	
name						
Chevillon	Design: RCT	Randomized N: 132	Inclusion: ≥18 years with no	Mean age: 54	Main outcomes: The 2	Moderate
et al.	Setting: ICU	Analyzed N: 129	prior pulmonary	Female %: 55	groups did not differ	
(2015)	Country: U.S.	Intervention (N=63): Individualized	thromboendarterectomy	Race %:	significantly in anxiety,	
	Funding: None		Exclusion: History of			

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
		education Control (N=69): Usual care Duration: Preop Follow-up (days): Until discharge	Alzheimer disease, dementia, or inability to give consent	Caucasian: 67 Black/African American: 19 Hispanic: 8 Asian: 2 Other: 3 Delirium %: NR Function: NR Dementia %: 0 (excluded) Postop %: NR Cancer %: NR	incidence of delirium, or ICU days. Attrition: 3% vs. 1%	
Fahimi et al. (2020)	Design: RCT Setting: Postop, cardiac Country: Iran Funding: None	Randomized N: 110 Analyzed N: 110 Intervention (N=55): Multimedia education consisting of 3 videos on the nature of the surgery, respiratory exercises, and prior patients' experiences Control (N=55): Usual care Intervention duration: Preop Control duration: During hospitalization Follow-up (days): Until discharge	Inclusion: Undergoing CABG for the first time and non- development of postop cardiogenic shock or myocardial rupture Exclusion: Not willing to continue the study and died during the intervention	Mean (SD) age: 58 (12.21) Female %: 50 Race %: NR Delirium %: 0 (excluded) Baseline scale of function: NR Dementia %: NR Postop %: 100 Cancer %: NR	Main outcomes: Considering the lower incidence of POD in patients who experienced multimedia education than the control group, the use of this non-pharmaceutical method is recommended to prevent delirium in such patients. Overall attrition: 0%	Moderate
Xue et al. (2020)	Design: RCT Setting: Postop, cardiac Country: China Funding: Non- profit	Randomized N: 156 Analyzed N: 133 Intervention (N=67): Individualized education based on patient's age, gender, education level, and surgery type, along with leaflets given to the patient and family, and a tour Control (N=66): Routine preop education	Inclusion: ≥18 years who received routine elective CPB surgery Exclusion: Cognitive impairment, serious organ dysfunction relying on mechanical support, or undergone cardiothoracic surgery before	Mean (SD) age: 58.0 (16.2) Female %: 54.9 Race %: NR Delirium %: NR Function: NR Dementia %: NR, cognitive impairment excluded	Main outcomes: The incidence of delirium in the intervention group was significantly lower than that in the control group (10.4% vs. 24.2%, p=0.038). Overall attrition: 15%	Moderate

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
		Duration: 3 days prior to surgery Follow-up (days): Until discharge		Postop %: 100 Cancer %: NR		

3199 3200 Abbreviations. CABG=coronary artery bypass graf; CPB=cardiopulmonary bypass; ICU=intensive care unit; N=number; NR=not reported; POD=post-operative delirium; postop=post-operative;

preop=pre-operative; RCT=randomized controlled trial; SD=standard deviation.

3201 Exercise/Mobilization

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year);	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
trial		interventions, duration, and			rates	
name		follow-up				
Jeffs et	Design: RCT	Randomized N: 649	Inclusion: ≥65 years in hospital for <48	Mean (SD) age: 79 (7.7)	Main outcomes: 4.9%	Moderate
al.	Setting:	Analyzed N: 648	hours	Female %: 48	(95% CI 2.3 to 7.3)	
(2013)	Inpatient	Intervention (N=305): A program	Exclusion: Severe dysphasia, isolation	Race %: NR	intervention group vs.	
	Country:	of progressive resistance exercise,	for infection control, death expected	Delirium %: 0 (excluded)	5.9% (95% CI 3.8 to 9.2)	
	Australia	mobilization, and orientation in	within 24 hours, contraindication to	Median (IQR) Barthel Index:	usual care group had	
	Funding:	addition to usual care, delivered	mobilization, or admission to stroke	90 (71-100)	delirium. There was no	
	University,	twice daily by ward staff until	unit or ICU	Median (IQR) IADL: 6 (3-8)	difference between the	
	government	discharge		Premorbid cognitive	groups (p=0.5).	
		Control (N=344): Usual care		impairment %: 14	Attrition: 6% vs. 6%	
		Duration: During hospital stay		Median (IQR) MMSE score:		
		(median 5.5 days)		26 (19-28)		
		Follow-up: Every 2 days until		Mean (SD) APACHE II score:		
		discharge (median 5.5 days)		14 (5)		
				Median (IQR) Charlson		
				score: 2 (1-3)		
				Dementia %: NR		
				Postop %: NR		
				Cancer %: NR		
Karadas	Design: RCT	Randomized N: 94	Inclusion: ≥65 years, no previous	Mean (SD) age: 74 (7.2)	Main outcomes:	Moderate
and	Setting: ICU	Analyzed N: 94	delirium, and ICU stay ≥24 hours	Female %: 53	Although delirium	
Ozdemir	Country:	Intervention (N=47): Range of	Exclusion: Amputated extremity,	Race %: NR	incidence and duration	
(2016)	Turkey	motion exercises were performed	undergoing invasive MV and	Delirium %: 0 (excluded)	decreased by 2.5-fold in	
-		once a day until the patients were	procedures limiting mobility, a RASS	Functioning: NR	the intervention group	

Author (year); trial name	Study characteristics Funding: Unclear	Study protocol including numbers of participants, interventions, duration, and follow-up discharged Control (N=47): Usual care Duration: Duration of hospital stay (median 5 days)	Study population including main inclusion and exclusion criteria score of -4 and -5, advanced osteoporosis, terminal illness, increased intracranial pressure, active gastrointestinal system bleeding, or	Sample demographics Dementia %: 0 (excluded) Postop %: NR Cancer %: NR	Results including main outcomes and attrition rates vs. the control group, there was no significant relationship between the intervention and control	Risk of Bias
		Follow-up (days): Until discharge	arrhythmia and active myocardial ischemia		groups. Attrition: NR	
Martinez -Velilla et al. (2019)	Design: RCT Setting: Inpatient Country: Spain Funding: Government	Randomized N: 370 Analyzed N: 370 Intervention (N=185): Exercise sessions, with morning sessions including individualized supervised progressive resistance, balance, and walking training exercises; and evening sessions including functional unsupervised exercises using light loads Control (N=185): Usual care Intervention duration: 2 sessions daily for 5-7 consecutive days Control duration: During hospitalization Follow-up (days): Until discharge	Inclusion: ≥75 years, Barthel Index score ≥60, and admitted to 1 of the ACE units Exclusion: Expected LOS <6 days, very severe cognitive decline, terminal illness, uncontrolled arrhythmias, acute pulmonary embolism, recent MI, recent major surgery, or extremity bone fracture in the past 3 months	Mean (SD) age: 87.4 (4.9) Female %: 56.5 Race %: NR Delirium %: 14.3 Mean (SD) MMSE: 22 (4) Mean (SD) Barthel Index: 83.5 (17) Dementia %: NR, severe cognitive decline excluded Cancer %: NR Postop %: NR Mean (SD) number of diseases/person: 9 (6)	Main outcomes: No significant differences between groups were found in incident delirium (p>0.10). Attrition: 17% vs. 15%	Moderate
Morris et al. (2016)	Design: RCT Setting: ICU Country: U.S. Funding: Government	Randomized N: 300 Analyzed N: 300 Intervention (N=150): Passive range of motion, PT, and progressive resistance exercise administered as 3 separate sessions every day Control (N=150): Usual care Intervention duration: Daily until discharge	Inclusion: ≥18 years admitted to a medical ICU, MV via endotracheal tube or noninvasive ventilation by mask, and PaO2/FIO2 ratio <300 Exclusion: Inability to walk without assistance prior to the acute ICU illness, cognitive impairment prior to acute ICU illness, acute stroke, BMI >50, neuromuscular disease impairing weaning from MV, acute hip fracture, unstable cervical spine or pathologic	Mean (SD) age: 56 (15) Female %: 55.3 Race %: Caucasian: 77.3 Black/African American: 21.3 Hispanic or Latino: 1.3 Asian: NR Other: NR Delirium %: NR Mean (SD) APACHE II: 76 (27)	Main outcomes: No differences in CAM positive days were found between intervention and control groups. Attrition at discharge: 13% vs. 16%	Moderate

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up Control duration: During	Study population including main inclusion and exclusion criteria fracture, MV >80 hours or current	Sample demographics Dementia %: NR, cognitive	Results including main outcomes and attrition rates	Risk of Bias
Nydahl et al. (2020)	Design: RCT Setting: ICU Country:	hospitalization Follow-up (days): Discharge, 60, 120, 180 Randomized N: 274 Analyzed N: 272 Intervention (N=122):	hospitalization >7 days, orders for do not intubate on admission, or considered to be moribund Inclusion: ≥18 years and order for mobilization Exclusion: Palliative state, immobility	impairment excluded Postop %: NR Cancer %: NR Median age: 70 vs. 74 Female %: 44.8 Race %: NR	Main outcomes: Secondary outcomes, such as days with MV,	Moderate
	Germany Funding: NR	Mobilization Control (N=152): Usual care Intervention duration: Each day during hospitalization Control duration: During hospitalization Follow-up (days): Discharge, 28	order, or not documented mobilization	Delirium %: NR Median (IQR) RASS: 0 (-1-0) Frailty index ≥5 %: 36.3 Dementia %: NR Postop %: NR Cancer %: NR	delirium, and in ICU and hospital stay, did not significantly differ. Attrition: 2% vs. 0%	
Nydahl et al. (2022)	Design: RCT Setting: ICU Country: Germany Funding: Government	Randomized N: 53 Analyzed N: 46 Intervention (N=122): Evening mobilization ranging from 3 minutes to 2 hours a session based on tolerability by the patient Control (N=122): Usual care Intervention duration: Each evening for 3 days Control duration: NR Follow-up (days): 3, discharge	Inclusion: ≥18 years, RASS ≥ -3 and responsive, were able to be mobilized out of bed according to local policies, and expected to spend ≥1 night in ICU Exclusion: Expectation of death within 72 hours, pre-existing immobility, delirium already present before recruitment, or not possible to assess for delirium	Mean (SD) age: 62.5 (14.5) Female %: 28.3 Race %: NR Delirium %: 0 (excluded) Median (IQR) Charlson Comorbidity Index: 4 (3-6) Dementia %: 0 Postop %: NR Cancer %: NR	Main outcomes: There was less delirium in the intervention group (not significant). Overall attrition: 13%	Moderate
Schweick ert et al. (2009)	Design: RCT Setting: ICU Country: U.S. Funding: Unclear	Randomized N: 104 Analyzed N: 104 Intervention (N=49): Exercise and mobilization Control (N=55): Standard care with physical and occupational therapy as ordered by primary	Inclusion: ≥18 years on MV <72 hours and expected to continue ≥24 hours; excluded patients not functionally independent Exclusion: Rapidly developing neuromuscular disease,	Median age: 56 Female %: 50 Race %: Caucasian: NR Black/African American: 58.7 Asian: NR	Main outcomes: Patients in the intervention group experienced fewer delirium days than in the control group (median 4 vs. 2, p=0.02) and less	Moderate

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year);	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
trial		interventions, duration, and			rates	
name		follow-up				
		care	cardiopulmonary arrest, irreversible	Other: NR	time in ICU with delirium	
		Duration: During MV	disorders with 6-month mortality	Delirium %: NR	(33% vs. 57%, p=0.02).	
		Follow-up (days): Until discharge	estimated at >50%, raised intracranial	APACHE II: 19.5	Overall attrition: 0%	
			pressure, absent limbs, or enrollment	Dementia %: NR		
			in another trial	Postop %: NR		
				Cancer %: 2.9		
Shirvani	Design: RCT	Randomized N: 92	Inclusion: Patients who underwent	Mean (SD) age: 60.4 (8.6)	Main outcomes: The	High
et al.	Setting:	Analyzed N: 90	elective CABG, had GCS score of 15,	Female %: 17.8	intervention group had	
(2020)	Postop, cardiac	Intervention (N=46): Early	no neurological and movement	Race %: NR	significantly higher	
	Country: Iran	planned mobilization	disorders, and were conscious	Delirium %: NR	Neecham scores on	
	Funding: None	Control (N=46): Usual care	Exclusion: Undergoing emergency	Function: NR	postop day 2 (22.49	
		Intervention duration: Daily	CABG or any physiologic or	Dementia %: NR	[2.03] vs. 26.82 [2.10],	
		during ICU stay	hemodynamic instability after surgery	Postop %: 100	p=0.001). Multivariable	
		Control duration: During ICU stay		Cancer %: NR	analysis showed	
		Follow-up (days): Discharge, 30,			significant associations	
		180			between Neecham score	
					and age (p=0.022),	
					ejection fraction	
					(p=0.015), myocardial	
					infarction (p=0.016),	
					systolic pressure	
					(p=0.009), and diastolic	
					pressure (p=0.008).	
					Attrition at follow-up: 2%	
					vs. 2%	

3202 3203

2 Abbreviations. ACE=acute care of elderly; APACHE II=Acute Physiology and Chronic Health Evaluation II; BMI=body mass index; CABG=coronary artery bypass graf; CAM=Confusion Assessment

Method; Cl=confidence interval; GCS=Glasgow Coma Scale; IADL=independent activities of daily living; ICU=intensive care unit; IQR=interquartile range; LOS=length of stay; MI=myocardial infarction;
 MMSE=Mini-Mental State Examination; MV=medical ventilation; N=number; NR=not reported; postop=post-operative; PT=physical therapy; RASS=Richmond Agitation Sedation Scale;

3204 3205

205 RCT=randomized controlled trial; SD=standard deviation.

3206 Bright Light Therapy/Light Therapy

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
Ono et al. (2011)	Design: RCT Setting: Postop, esophageal cancer Country: Japan Funding: None	Randomized N: 26 Analyzed N: 22 Intervention (N=10): Bright light therapy Control (N=12): Usual care Intervention duration: 2 hours/day starting POD 2 for 4 days Control duration: During hospitalization Follow-up (days): 6	Inclusion: ≥18 years scheduled to undergo surgical resection and reconstruction through a right thoracotomy for the treatment of thoracic esophageal cancer Exclusion: NR	Mean (SD) age: 63.6 (8.7) Female %: 0 Race %: NR Delirium %: NR Mean (SD) APACHE II: 8.2 (2.3) Dementia %: NR Cancer %: 100 Postop %: 100 Mean (SD) operation time minutes: 444 (80)	Main outcomes: The occurrence rate of POD tended to be lower in the light exposure group (1/10 vs. 5/12), but there was no significant difference. Attrition: 23% vs. 8%	Moderate
Potharajar oen et al. (2018)	Design: RCT Setting: Postop, mixed Country: Thailand Funding: University	Randomized N: 62 Analyzed N: 62 Intervention (N=31): Bright light therapy plus usual care Control (N=31): Usual care Intervention duration: Started by POD 1-3 Control duration: Postop Follow-up (days): 3	Inclusion: ≥50 years, postop patients' admittance to SICU, and APACHE II score ≥8 Exclusion: Alzheimer's, Parkinson's, multiple sclerosis, psychiatric illness, couldn't sit in a 30-45° position, due to c-spine injury, or eye problems	Mean (SD) age: 68.2 (11.47) Female %: 56 Race %: NR Delirium %: NR APACHE II: 14.4 (3.9) vs. 16.4 (4.9) Dementia %: NR Postop %: 100 Cancer %: NR Mean number of medications taken at baseline: NR (11% taking hypnotics)	Main outcomes: 2 subjects in the intervention group (2/31) vs. 11 controls (11/31) had a delirium diagnosis at the endpoint. Generalized estimating equations analysis showed a significant preventive effect of bright light therapy on delirium, which was independent of risk or treatment factors. Attrition: 3% vs. 0%	Moderate
Simons et al. (2016)	Design: RCT Setting: ICU Country: The Netherlands	Randomized N: 734 Analyzed N: 734 Intervention (N=361): Dynamic lighting to achieve 800-1000 lux bluish-white	Inclusion: ≥18 years in the ICU longer than 24 hours and could be assessed for delirium Exclusion: Life expectancy <48 hours or who could not be	Mean (SD) age: 65.33 (13.26) Female %: 41.5 Race %: NR Delirium %: NR PRE-DELIRIC mean (SD): 58.8	Main outcomes: Delirium occurred in 137/361 (38%) dynamic lighting patients and 123/373 (33%) control	High

Author (year); trial name	Study characteristics Funding: None; "Philips supplied the lighting system for the study but had no role	Study protocol including numbers of participants, interventions, duration, and follow-up light Control (N=373): Usual care Duration: During hospitalization Follow-up (days): 28	Study population including main inclusion and exclusion criteria assessed for delirium (e.g., severe hearing or visual impairment, unable to understand Dutch, or severe mental impairment)	Sample demographics (31.8) vs. 55.4 (30.6) APACHE II score: 22.7 (8.6) vs. 22.4 (8.1) Dementia %: NR Postop %: 25 Cancer %: NR	Results including main outcomes and attrition rates patients (OR 1.24, 95% CI 0.92 to 1.68, p=0.16). No adverse events were noted in patients or staff. Attrition: 2% vs. 3%	Risk of Bias
Taguchi et al. (2007)	in the study design or conduct." Design: RCT Setting: Postop, esophageal cancer Country: Japan Funding: Unclear	Randomized N: 15 Analyzed N: 11 Intervention (N=8): Bright light therapy Control (N=7): Usual care Intervention duration: 3 days after surgery Control duration: Postop Follow-up (days): 5	Inclusion: Age 29-68 years, middle-aged or aged patients with no mental or ophthalmologic disorders Exclusion: Reintubation, medical complications, or deterioration of the condition* *Excluded post randomization	Mean number of medications taken at baseline: NR Mean (SD) age: 57.6 (12.8) Female %: 0 Race %: Caucasian: NR Black/African American: NR Asian: 100 Other: NR Delirium %: NR (implies 0%) Baseline scale of function: NR* *circadian rhythm, sleep-awake rhythm: NR Dementia %: NR Postop %: 100 Cancer %: 100, esophageal Mean number of medications taken at baseline: NR	Main outcomes: A significant difference was observed in the delirium score on the morning of day 3 of the bright light therapy (p=0.014). Attrition: 25% vs. 29%	High
Zhang K.S. et al. (2021)	Design: RCT Setting: ICU Country: U.S. Funding: Non- profit	Randomized N: 108 Analyzed N: 78 Intervention (N=54): Bright light therapy with peaks of 10,000 lux white light Control (N=54): Standard light of 150 lux Intervention duration: Started at 7:30am and	Inclusion: ≥18 years and expected ICU stay of ≥24 hours Exclusion: Confirmed psychiatric history of bipolar disorder	Median age: 63.5 vs. 64 Female %: 42.3 Race %: NR Delirium %: NR Function: NR Dementia %: NR Past neurological or behavioral impairment %: 51.3	Main outcomes: Daily morning 10,000 lux bright light therapy of 30-minute duration alone was not associated with a significant decrease in ICU-acquired delirium incidence or duration compared to	High

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
name		interventions, duration,			rates	
		and follow-up				
		lasted for 30 minutes		Postop %: 17.9	standard hospital	
		during ICU stay		Cancer %: NR	lighting.	
		Control duration: During			Attrition: 30% vs. 26%	
		ICU stay				
		Follow-up (days): NR				

3207 3208

Abbreviations. APACHE II=Acute Physiology and Chronic Health Evaluation II; CI=confidence interval; ICU=intensive care unit; N=number; NR=not reported; OR=odds ratio; postop=post-operative;

POD= post-operative delirium; PRE-DELIRIC=Prediction of Delirium in ICU Patients; RCT=randomized controlled trial; SD=standard deviation; SICU=surgical intensive care unit.

3209 Ear Plugs/Eye Mask

Author (year); trial name Arttawejkul	Study characteristics Design: RCT	Study protocol including numbers of participants, interventions, duration, and follow-up Randomized N: 17	Study population including main inclusion and exclusion criteria Inclusion: ≥18 years admitted to a medical	Sample demographics Mean (SD) age: 71.8 (28.9)	Results including main outcomes and attrition rates Main outcomes: The	Risk of Bias Moderate
et al. (2020)	Setting: ICU Country: Thailand Funding: Non- profit	Analyzed N: 17 Intervention (N=8): Earplugs and eye masks Control (N=9): Usual care Intervention duration: During the night while in the ICU Control duration: During ICU stay Follow-up (days): NR	ICU, expected to remain in the ICU for >24 hours, GCS score ≥13, RASS -1 to +1, and did not require medication or intervention to facilitate sleep Exclusion: Bilateral deafness, bilateral blindness, severe encephalopathy, severe dementia, hepatic encephalopathy, uremic encephalopathy, encephalitis, increased intracranial pressure, metabolic derangements, severe hemodynamic instability, high vasopressure requirement, or severe respiratory failure	Female %: 35.3 Race %: NR Delirium %: NR Mean (SD) APACHE II: 14.5 (4.9) Dementia %: NR, severe dementia excluded Postop %: NR Cancer %: NR	prevalence of delirium, the use of sedation, duration of ICU stay, and duration of MV were not different between the groups. Overall attrition: 0%	
Leong et al. (2021)	Design: RCT Setting: Postop, colorectal Country: Singapore Funding: Non- profit	Randomized N: 100 Analyzed N: 93 Intervention (N=51): Earplugs and eye mask Control (N=49): No intervention	Inclusion: >21 years undergoing elective major colorectal surgery and with a GCS of ≥10 post-operatively in the study Exclusion: Known hearing impairment, dementia, confusion, delirium, pre- existing tracheostomy, or who returned post-operatively to the ward after 22.00	Median age: 67 vs. 60 Female %: 45.2 Race %: Chinese: 83.9 Malay: 5.4 Indian: 8.6 Others: 2.1	Main outcomes: There were no differences in patient satisfaction, reduction in frequency of nursing demands, or incidence of delirium on	Moderate

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up Intervention duration: Nightly until POD 3 Control duration: NR Follow-up (days): 1, 2, 3	Study population including main inclusion and exclusion criteria	Sample demographics Delirium %: 0 (excluded) ASA I %: 2.1 ASA II %: 65.6 ASA III %: 31.2 Dementia %: 0 (excluded) Postop %: 100, colorectal Concert %: ND	Results including main outcomes and attrition rates postop days 1-3 after major abdominal surgery. Attrition: 6% vs. 8%	Risk of Bias
Obanor et al. (2021)	Design: RCT Setting: ICU Country: U.S. Funding: NR, but no conflicts reported	Randomized N: 90 Analyzed N: 87 Intervention (N=44): Earplugs and eye mask Control (N=43): Usual care Intervention duration: Each night during ICU stay Control duration: During ICU stay Follow-up (days): Discharge	Inclusion: ≥18 years and female patients admitted to the ICU following plastic surgical breast free flap procedures requiring hourly postop assessments Exclusion: Current incarceration and diagnosis of sleep apnea, insomnia, or other sleep disturbance	Cancer %: NR Mean (SD) age: 51.05 (9.01) Female %: 100 Race %: White: 72.4 Black: 19.5 Hispanic: 4.6 Unknown/NR: 3.4 Delirium %: NR ASA I %: 3.4 ASA II %: 77.0 ASA III %: 19.5 Dementia %: NR Postop %: 100 Cancer %: NR	Main outcomes: There were no significant group differences for CAM for the ICU scores. Overall attrition: 3%	Moderate
Van Rompaey et al. (2012)	Design: RCT Setting: ICU Country: Belgium Funding: None	Randomized N: 136 Analyzed N: 136 Intervention (N=69): Sleeping with earplugs during the night Control (N=67): Usual care Duration: At night during ICU stay Follow-up (days): 5	Inclusion: ≥18 years with expected ICU stay of ≥24 hours and GCS ≥10 Exclusion: Dementia, confusion or delirium, or receiving sedation	Mean (SD) age: 59 Female %: 44 Race %: NR Delirium %: 0 (excluded) Functioning: NR Dementia %: 0 (excluded) Postop %: 74.3 Cancer %: NR ≥1 comorbidity %: 72	Main outcomes: The patients in the earplug group showed 15% mild confusion vs. 40% in the control group. A HR for delirium or mild confusion with earplugs was 0.47 (95% CI 0.27 to 0.82). Attrition: NR	Moderate

- 3210 *Abbreviations.* APACHE II=Acute Physiology and Chronic Health Evaluation II; ASA=American Society of Anesthesiologists; CAM=Confusion Assessment Method; CI=confidence interval; GCS=Glasgow Coma Scale; HR=hazard ratio; ICU=intensive care unit; MV=medical ventilation; N=number; NR=not reported; POD=post-operative delirium; postop=post-operative; RASS=Richmond Agitation
- 3212 Sedation Scale; RCT=randomized controlled trial; SD=standard deviation.

3213 Listening to Music

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk o
(year);	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition rates	Bias
trial		interventions, duration, and	criteria			
name		follow-up				
Browning	Design: RCT	Randomized N: 6	Inclusion: Patients in the	Mean (SD) age: 67.5 (9.7)	Main outcomes: Although no	High
et al.	Setting: ICU	Analyzed N: 6	medical ICU who were on MV	Female %: 66.6	statistical significance was	
(2020)	Country: U.S.	Intervention (N=3): Therapeutic	Exclusion: Hard of hearing or	Race %: NR	established relative to the	
	Funding: None	music listening in 1-hour	hearing impaired, baseline	Delirium %: NR (but cognitive	small sample size, the pilot	
		increments; twice a day from	cognitive dysfunction, prisoners,	dysfunction at baseline	study results indicated the	
		10-11am and 9-10pm	moribund, receiving comfort or	excluded)	music group experienced less	
		Control (N=3): Usual care	end-of-life care, or no family or	Function: NR	proportion of time CAM+ (the	
		Duration: During ICU stay	friend present	Dementia %: NR	presence of ICU delirium)	
		Follow-up (days): Discharge		Postop %: NR	(33%) than the control group	
		from ICU		Cancer %: NR	did (67%).	
					Attrition: NR	
Johnson	Design: RCT	Randomized N: 40	Inclusion: >55 years and	Mean (SD) age: 72 (9.2)	Main outcomes: The CAM-ICU	High
et al.	Setting: ICU	Analyzed N: 40	oriented to person, time, and	Female %: 85	for both groups remained	
(2018)	Country: U.S.	Intervention (N=20): Listening to	place on admission	Race %:	negative at each data	
	Funding: None	music for 60 minutes; 2 times	Exclusion: Not able to pass the	Caucasian: 85	collection time point.	
		per day	Whisper Test, intubated	Black/African American: 0.025	Attrition: No patients	
		Control (N=20): Usual care	patients, or CAM-ICU positive	Asian: 0.025	withdrew from the study, but	
		Duration: During hospitalization		Other: 10	it appears some patients	
		for 3 days		Delirium %: 0 (excluded)	missed doses.	
		Follow-up (days): 3		Functioning: NR		
				Dementia %: NR		
				Postop %: NR		
				Cancer %: NR		
Khan et	Design: RCT	Randomized N: 52	Inclusion: ≥18 years and	Mean age:	Main outcomes: The median	High
al. (2020)	Setting: ICU	Analyzed N: 52	admitted to the ICU and	18-49: 23%	number (IQR) of	
	Country: U.S.	Intervention 1 (N=17):	receiving MV ≥24 hours but ≤48	50-64: 52%	delirium/coma-free days by	
	Funding:	Personalized music playlist; two	hours	>64: 25%	day 7 was 1 (1-6) for	
	Unclear	1-hour sessions per day	Exclusion: Neurological injury,		personalized music, 3 (1-6) for	

Intervention 2 (N=17): Relaxing	chronic neurologic disease,	Female %: 52	slow tempo music, and 2 (0-3)
slow-tempo music playlist; two	uncorrected hearing or vision	Race %:	for attention control (p=0.32).
1-hour sessions per day	impairments, were in a coma	Caucasian: 56	Median delirium severity was
Intervention 3 (N=18): Attention	after cardiac arrest, or	Black/African American: 40	5.5 (1-7) vs. 3.5 (0-7) vs. 4 (1-
control (audiobook); two 1-hour	incarcerated	Asian: NR	6.5) (p-0.78).
sessions per day		Other: 4	Attrition: 6% vs. 6% vs. 6%
Duration: During hospitalization		Delirium %: NR	
for up to 7 days		ADL index: Median 6 (3 to 6)	
Follow-up (days): Up to 7 days		IQCODE: Median 3 (3.0-3.1)	
		Dementia %: NR	
		Postop %: 27	
		Cancer %: NR	
		Carlson comorbidity index:	
		Median 1 (0-3)	

3214 3215 Abbreviations. ADL=activities of daily living; CAM-ICU=Confusion Assessment Method for the ICU; ICU=intensive care unit; IQCODE=Informant Questionnaire on Cognitive Decline in the Elderly;

IQR=interquartile range; MV=medical ventilation; NR=not reported; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

3216 Cognitive Therapy Plus Physical Therapy

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year);	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
trial name		interventions, duration,				
		and follow-up				
Brummel	Design: RCT	Randomized N: 87	Inclusion: ≥18 years being	Median age:62 vs. 62 vs. 60	Main outcomes: Cognitive,	Moderate
et al.	Setting: ICU	Analyzed N: 87	treated for respiratory failure	Female %: 43.7	functional, and health-	
(2014)	Country: U.S.	Intervention 1 (N=43):	and/or septic, cardiogenic, or	Race %: NR	related quality of life	
	Funding: None	Cognitive therapy + PT	hemorrhagic shock	Delirium %: NR	outcomes did not differ	
		Intervention 2 (N=22): PT	Exclusion: Been critically ill for	Median APACHE II: 27 vs. 21.5	between groups at 3-month	
		only	>72 hours since the opportunity	vs. 25	follow-up.	
		Control (N=22): Usual care	to administer early cognitive and	Dementia %: NR, severe pre-	Attrition: 35% vs. 27% vs.	
			physical therapy had passed,	existing dementia excluded	27%	
	Intervention 1, Intervention 2: Daily	been in the ICU >5 days in the	Postop %: 18.4			
		during ICU stay	previous 30 days, unlikely to	Cancer %: NR		
		Control: During ICU stay	benefit from the rehabilitation			
		control. During ico stay	targeting acute declines in			
		Follow-up (days): 90	cognitive or functional status due			
			to the moribund status, severe			
			pre-existing dementia or physical			

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
			disability in ADLs, or unlikely to			
			continue in outpatient setting			

3217 *Abbreviations.* ADL=activities of daily living; APACHE II=Acute Physiology and Chronic Health Evaluation II; ICU=intensive care unit; N=number; NR=not reported; postop=post-operative; PT=physical therapy; RCT=randomized controlled trial.

3219 Cognitive Exercises or Test

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
name		interventions, duration,				
		and follow-up				
Dai et al.	Design: RCT	Randomized N: 76	Inclusion: >18 years ICU patients	Mean (SD) age: 41.8 (14.01)	Main outcomes: After 1 week	High
(2021)	Setting: ICU	Analyzed N: 76	without delirium, expected to be	Female %: 48.7	of treatment, the incidences	
	Country: China	Intervention (N=38):	treated for >1 week, and had a	Race %: NR	of delirium in the	
	Funding: None	Cognitive function training	family member who agreed to	Delirium %: 0 (excluded)	intervention group were	
		Control (N=38): Usual care	participate	Mean (SD) Barthel Index:	significantly lower than they	
		Duration: During ICU stay	Exclusion: Patients in	45.44 (6.51)	were in the control group	
		Follow-up (days): 7	deteriorated condition, patients	Mean (SD) MMSE: 18.7 (3.2)	(23.68% vs. 42.11%, p<0.05).	
			who couldn't express their ideas,	Postop %: NR	Attrition: NR, but 2 deaths vs.	
			missing relevant data, other	Cancer %: NR	1 death	
			malignant tumor, or experienced			
			delirium during their			
			hospitalization before the study			
Humeidan	Design: RCT	Randomized N: 268	Inclusion: ≥60 years undergoing	Median (IQR) age: 67 (63-71)	Main outcomes: The delirium	Moderate
et al.	Setting: Preop,	Analyzed N: 251	major noncardiac or	Female %: 64.9	rate among control	
(2021)	mixed	Intervention (N=134):	nonneurological surgery under	Race %: NR	participants was 23.0%	
	Country: U.S.	Cognitive exercises for a	general anesthesia with an	Delirium %: NR	(29/126). With intention-to-	
	Funding: University	total of 10 hours	anticipated hospital stay of ≥72	ASA I-II %: 14.3	treat analysis, the delirium	
		Control (N=134): Usual	hours and immediate postop	ASA III %: 81.3	rate in the intervention	
		care	extubation	ASA IV %: 4.4	group was 14.4% (18/125,	
		Intervention duration: The	Exclusion: Cognitive impairment	Median (IQR) Charlson	p=0.08).	
		days prior to surgery	on the modified MMSE (score,	Comorbidity Index: 2 (1-3)	Attrition: 7% vs. 6%	
		(suggested 1 hour a day	<26 of 30 or <24 of 30 if the	Median (IQR) MMSE: 29 (28-		
			patient's education level was less	30)		

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up for 10 days, but was at patient's discretion) Control duration: Prior to surgery Follow-up (days): 7, discharge	Study population including main inclusion and exclusion criteria than high school) or evidence of active depression (GDS; score >9 of 15) during their visit	Sample demographics Postop %: 100 -General %: 37.5 -Orthopedic %: 47.0 -Gynecologic %: 4.0 -Thoracic %: 2.4 -Urology %: 3.6 -Plastic %: 4.4	Results including main outcomes and attrition rates	Risk of Bias
O'Gara et al. (2020); PEaPoD study	Design: RCT Setting: Postop, cardiac Country: U.S. Funding: University	Randomized N: 45 Analyzed N: 40 Intervention (N=22): Cognitive training software used to train users in the cognitive domains of memory, attention, problem solving, flexibility, and processing speed Control (N=23): Usual care Intervention duration: Trained for 2 separate 15- minute sessions per day, from the day of enrollment until 4 weeks after surgery including the immediate postop period Control duration: During hospitalization Follow-up (days): 28	Inclusion: Age 60-90 years scheduled to undergo cardiac surgery ≥10 days from enrollment Exclusion: History of psychiatric illness that increased risk of POD, other forms of cognitive decline, and score <10 on MoCA (indicating severe cognitive impairment)	-Other %: 1.2 Cancer %: NR Mean (SD) age: 69.5 (6.5) Female %: 27.5 Race %: NR Delirium %: NR Functioning: NR Dementia %: NR, severe cognitive impairment excluded Solid tumor nonmetastatic %: 30 Solid tumor metastatic %: 2.5 Postop %: 100	Main outcomes: Incidence of POD was not statistically significant (cognitive training group 5/20 [25%] vs. control 3/20 [15%], p=0.69). Attrition: 9% vs. 13% vs. 11%	Moderate
Vlisides et al. (2019)	Design: RCT Setting: Postop, mixed	Randomized N: 61 Analyzed N: 52 Intervention (N=30): Computer-based cognitive	Inclusion: ≥60 years, scheduled noncardiac, non-major vascular, or nonintracranial surgery, and	Mean (SD) age: 67 (5.2) Female %: 48 Race %: NR	Main outcomes: POD incidence was 6/23 (26%) in the intervention group vs.	High

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
name		interventions, duration,				
		and follow-up				
	Country: U.S.	training battery that	daily access to computer and	Delirium %: 0 (excluded)	5/29 (17%) in the control	
	Funding: University	specifically targets	internet use before surgery	Functioning: NR	group (p=0.507).	
		executive function,	Exclusion: Preop delirium, mild	Dementia %: 0 (excluded)	Attrition: 23% vs. 6%	
		attention, working	cognitive impairment, or	Postop %: 100		
		memory, and visuospatial	dementia	Cancer %: NR		
		processing				
		Control (N=31): Usual care				
		Intervention duration:				
		~20-minute sessions,				
		every day for 7 days prior				
		to surgery				
		Control duration: Unclear				
		Follow-up (days): 3				

3220

Abbreviations. ASA=American Society of Anesthesiologists; GDS=Geriatric Depression Score; ICU=intensive care unit; IQR=interguartile range; MMSE=Mini-Mental State Examination; MoCA=Montreal 3221 Cognitive Assessment; N=number; NR=not reported; PEaPoD=Prevention of Early Post-operative Decline; POD=post-operative delirium; postop=post-operative; preop=pre-operative; RASS=Richmond

3222 Agitation Sedation Scale; RCT=randomized controlled trial; SD=standard deviation.

3223 Massage

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year);	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
trial		interventions, duration,				
name		and follow-up				
Fazlollah	Design: RCT	Randomized N: 60	Inclusion: Age 35-70 years, ejection	Mean (SD) age: 64.3 (7.2)	Main outcomes: Delirium	Moderate
et al.	Setting:	Analyzed N: 60	fraction >40%, non-emergency surgery,	Female %: 52	occurred in 8 (26.7%) and 7	
(2021)	Postop, cardiac	Intervention (N=30): Foot	negative history of stroke or other	Race %: NR	(23.3%) of patients in the	
	Country: Iran	reflexology massage for 20	severe neurologic disorders, healthy	Delirium %: NR	intervention and control	
	Funding: Non-	minutes	feet, and non-redo surgery	Function: NR	groups, respectively (p>0.05).	
	profit	Control (N=30): No	Exclusion: Drainage of >400 mL at first 4	Dementia %: NR	The pain intensity was	
		intervention	hours after surgery, hemodynamic	Postop %: 100	decreased in the intervention	
		Intervention duration:	instability, loss of consciousness, and	Cancer %: NR	group (p<0.001).	
		Once a day for 2 days	requiring MV >24 hours after the		Overall attrition: 0%	
		Control duration: None	surgery			
		Follow-up (days): 2				

3224 Abbreviations. MV=medical ventilation; N=number; NR=not reported; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

3225 Occupational Therapy

Author	Study	Study protocol including numbers of	Study population	Sample demographics	Results including main outcomes	Risk of
(year);	characteristics	participants, interventions, duration,	including main inclusion		and attrition rates	Bias
trial		and follow-up	and exclusion criteria			
name						
Alvarez	Design: RCT	Randomized N: 140	Inclusion: ≥60 years, non-	Median age: 68 vs. 71	Main outcomes: The intervention	Low
et al.		Analyzed N: 140	intubated, and	Female %: 50	group had lower duration (risk	
(2017)	Setting: ICU	Intervention (N=70): Occupational	hospitalized within 24	Race %: NR	incidence ratios 0.15 [95% CI 0.12 to	
	Country: Chile	therapy (early and intensive), with	hours in the ICU	Delirium %: 0 (excluded)	0.19, p=0.000] vs. 6.6 [95% CI 5.23	
	Funding:	standard non-pharmacologic	Exclusion: CAM positive	Baseline PRE-DELIRIC %:	to 8.3, p=0.000]) and incidence of	
	Government	prevention; twice a day, once in the	patients with cognitive	16.5	delirium (3% vs 20%, p=0.001), and	
		morning, once in the evening for	decline, severe	Median (range) APACHE II:	had higher scores in Motor	
		consecutive 5 days	communication	10 (9-12) vs. 11 (8-12)	Functional Independence Measure	
		Control (N=70): Usual care	disorders, delirium	Dementia %: 0	(59 points vs. 40 points, p=0.0001),	
			before ICU admission, or	SIU %: 64	cognitive state (MMSE: 28 points vs	
		Duration: During hospitalization within	a requirement for	Cancer %: 16	26 points, p=0.05), and grip	
		24 hours of ICU admission	invasive MV	Medications taken at	strength in the dominant hand (26	
		Follow-up (days): 5, Discharge		baseline: NR	kg vs. 18 kg, p=0.05), compared	
					with the control group.	
					Attrition: 7% vs. 9%	

Abbreviations. APACHE II=Acute Physiology and Chronic Health Evaluation II; CAM=Confusion Assessment Method; CI=confidence interval; ICU=intensive care unit; MMSE=Mini-Mental State Examination; MV=medical ventilation; N=number; NR=not reported; PRE-DELIRIC=Prediction of Delirium in ICU Patients; RCT=randomized controlled trial; SIU=Surgical Intermediate Unit.

3226 3227

Use of Mirrors 3228

Author	Study	Study protocol including numbers of	Study population	Sample demographics	Results including main outcomes	Risk of
(year);	characteristics	participants, interventions, duration,	including main		and attrition rates	Bias
trial		and follow-up	inclusion and			
name			exclusion criteria			
Giraud	Design: RCT	Randomized N: 223	Inclusion: ≥70 years	Mean (SD) age: 77 (4.9)	Main outcomes: The intervention	Moderate
et al.	Setting: ICU	Analyzed N: 223	and admitted to ICU	Female %: 24	did not significantly reduce ICU	
(2016)	Country: U.K.	Intervention (N=115): Structured mirrors	after elective or urgent	Race %: NR	delirium incidence (mirrors:	
	Funding: Non-	intervention to support mental status and	cardiac surgery	Delirium %: NR	20/115 [17%] vs. usual care:	
	profit	attention, physical mobilization, and	Exclusion: Severe	Baseline scale of function: NR	17/108 [16%]) or duration	
		multisensory feedback integration	visual impairment,	Dementia %: NR		

administered	by nursing and	physical or	Postop %: 100	(mirrors: 1 [1-3]) vs. usual care: 2	
physiotherap	y teams; timing of	communication	Cancer %: NR	[1-8]).	
intervention	followed change in patient's	barriers, severe		Attrition: 10% vs. 0%	
mental status	5	mental disability, or			
Control (N=1	08): Usual care	history of psychiatric			
Duration: Du	ring hospitalization; median	illness previously			
ICU stay of 2	days	requiring			
Follow-up (da	ays): 84	hospitalization			

3229 *Abbreviations.* ICU=intensive care unit; N=number; NR=not reported; RCT=randomized controlled trial; SD=standard deviation.

3230 Non-Pharmacological Interventions for Treatment of Delirium

3231 Multi-Component Interventions

Author	Study	Study protocol including numbers	Study population	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristic	of participants, interventions,	including main inclusion		and attrition rates	Bias
name	s	duration, and follow-up	and exclusion criteria			
Cole et al.	Design: RCT	Randomized N: 88	Inclusion: ≥75 years	Mean (SD) age: 86.1 (6.1)	Main outcomes: Delirium was	Moderate
(1994)	Setting:	Analyzed N: 88	admitted to the hospital	Female %: 65	diagnosed in 16% of the control	
	Inpatient	Intervention (N=42): Geriatric	and diagnosed with	Race %: NR	cases. 28% in the treatment group	
	Country:	internist or psychiatrist performed	delirium	Delirium %: 100	had delirium alone, 56% had delirium	
	Canada	consultations to determine	Exclusion: Those	Mean (SD) CGBRS: 33.0	superimposed on dementia	
	Funding: Non-	probable predisposing,	admitted to the ICU or	(8.8)	(Alzheimer's disease in most cases),	
	profit	precipitating, and perpetuating	cardiac monitoring unit	Mean (SD) SPMSQ: 8.8	and 16% had delirium superimposed	
		factors of delirium and resulted in		(1.7)	on another psychiatric disorder. The	
		management recommendations		Postop %: NR	delirium was attributed to drugs	
		that were carried out by study		Cancer %: NR	(n=1), cardiovascular disease (n=1),	
		nurses following an intervention			infection (n=4), other causes (n=7),	
		protocol			or a combination of factors (n=16).	
		Control (N=46): Usual care			The cause was not determined in 10	
		Duration: Daily until discharge			cases.	
		Follow-up (days): Until discharge, 56			Attrition: 7% vs. NR (14/46 received a	
					consultation by a geriatrician or	
					geriatric psychiatrist)	
Cole et al.	Design: RCT	Randomized N: 227	Inclusion: ≥65 years	Mean (SD) age: 82.3 (7.3)	Main outcomes: 48% in intervention	Moderate
(2002)	Setting:	Analyzed N: 218	admitted to the hospital	Female %: 54	group vs. 45% in control group had	
	Inpatient	Intervention (N=113): Geriatric	with prevalent or	Race %: NR	their delirium improved. HR for	
	Country:	internist or psychiatrist performed	incident delirium within	Prevalent Delirium %: 81	shorter time to improvement was	

Author	Study	Study protocol including numbers	Study population	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristic	of participants, interventions,	including main inclusion		and attrition rates	Bias
name	s	duration, and follow-up	and exclusion criteria			
	Canada	consultations to determine	1 week of admission	Incident Delirium %: 19	1.10 (95% CI 0.74 to 1.63), outcomes	
	Funding:	probable predisposing,	Exclusion: Those with a	Mean (SD) Charlson	between the 2 groups did not differ	
	Government	precipitating, and perpetuating	primary diagnosis of	Comorbidity Index: 3.2	statistically significantly for patients	
		factors of delirium and resulted in	stroke, ICU LOS, or	(2.1)	without dementia (HR 1.54, 95% Cl	
		management recommendations	cardiac monitoring unit	Mean (SD) clinical severity	0.80 to 2.97), for those who had less	
		that were carried out by study	>48 hours	of illness (scale of 1=mild to	comorbidity (HR 1.36, 95% CI 0.75 to	
		nurses following an intervention		9=moribund): 5.8 (1.2)	2.46), or for those with prevalent	
		protocol		Suspected Dementia %: 58	delirium (HR 1.15, 95% CI 0.48 to	
		Control (N=114): Usual care		Postop %: NR	2.79).	
		Duration: Daily until discharge		Cancer %: NR	Attrition: 6% vs. 2%	
		Follow-up (days): Until discharge, 56				
Khalifezade	Design: RCT	Randomized N: 40	Inclusion: Age 17-70	Mean age: Range: 17-70	Main outcomes: There was	High
h et al.	Setting:	Analyzed N: 40	years, ≥9 for level of	Female %: NR	significant difference in irritability	
(2011)	Postop,	Intervention (N=20): Multi-	consciousness, and 6 on	Race %: NR	and delirium severity status on the	
	neurosurgery	component nurse-led intervention	GCS	Delirium %: 100	1 st day of admission and the 5 th day	
	Country: Iran	of clear information, effective	Exclusion: Dementia and	RASS score of +1: 100	which indicated the reduction in the	
	Funding:	communication, assurance, and	those who died before	Dementia %: 0 (excluded)	irritability severity, which was higher	
	None	emotional support from the	the 5 th day after delirium	Postop %: 100	in the intervention group vs. control	
		researcher, his partners, and the	diagnosis	Cancer %: NR	group. The number of subjects with	
		nurses. The patients' families in the			delirium in both groups reduced on	
		intervention group were allowed to			the 5 th day vs. the 1 st day of	
		have regular daily visits twice a day;			admission with a significant	
		once in the morning shift and once			difference between these 2 days. The	
		in the afternoon for 45 minutes			number of samples without delirium	
		Control (N=20): Usual care			in the intervention group was almost	
		Duration: During ICU stay			two times higher vs. the control	
		Follow-up (days): 5			group on the 5 th day.	
					Attrition: NR	
Kolanowski	Design: RCT	Randomized N: 16	Inclusion: ≥65 years,	Mean (SD) age: 86.5 (4.3)	Main outcomes: Delirium, severity of	Moderate
et al.	Setting:	Analyzed N: 16	with mild to moderate	Female %: 58.5	delirium, attention approached	
(2011)	Rehab	Intervention (N=11): Cognitive	stage dementia, and	Race %:	significance, and improvement over	
	Country: U.S.	stimulation delivered using simple	presence of delirium	Caucasian: 100	time favored the intervention group.	
		recreational activities that were		Black/African American: 0	Although not statistically significant,	

Author	Study	Study protocol including numbers	Study population	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristic	of participants, interventions,	including main inclusion		and attrition rates	Bias
name	s	duration, and follow-up	and exclusion criteria			
	Funding:	increasingly challenging, mentally	Exclusion: Neurological	Asian: 0	a difference in mean (7.0 vs. 3.27)	
	University	stimulating, and tailored to each	or neurosurgical	Other: 0	and median (7.0 vs. 3.0) days with	
		person's interests and functional	disease associated with	Delirium %: 100	delirium was found, with the control	
		ability; the recreational activities	cognitive impairment	Mean (SD) CDR: 1.1 (0.3)	group having more days of delirium.	
		target cognitive domains affected	other than dementia,	Dementia %: 100	Attrition: NR	
		by delirium: attention, orientation,	nonverbal, severe	Postop %: 100		
		memory, abstract thinking, and	hearing or vision	Cancer %: NR		
		executive functioning; <30 (mean	impairment, or no family			
		26.1, SD 8) minutes each time	or caregiver to interview			
		Control (N=5): Usual care				
		Duration: Daily for up to 30 days				
		Follow-up (days): 30				
Kolanowski	Design: RCT	Randomized N: 283	Inclusion: ≥65 years,	Mean (SD) age: 85.78 (6.8)	Main outcomes: Mean percentage of	Moderate
et al.	Setting:	Analyzed N: 282	with mild to moderate	Female %: 64.6	delirium-free days was similar	
(2016)	Rehab	Intervention (N=141): Cognitive	stage dementia, and	Race %:	between intervention vs. control	
	Country: U.S.	stimulation delivered using simple	presence of delirium	Caucasian: 97.5	(64.8% [95% CI 59.6 to 70.1] vs.	
	Funding:	recreational activities that were	Exclusion: Any	Black/African American: 2.4	68.7% [95% CI 63.9 to 73.6], p=0.37,	
	Government	increasingly challenging, mentally	neurological or	Asian: NR	Wilcoxon's rank sums test). Delirium	
		stimulating, and tailored to each	neurosurgical disease	Other: NR	severity was similar between	
		person's interests and functional	associated with cognitive	Delirium %: 100	intervention and control (10.77 [95%	
		ability; the recreational activities	impairment, nonverbal,	Mean (SD) Charlson	CI 10.10 to 11.45] vs. 11.15 [95% CI	
		target cognitive domains affected	having a life expectancy	Comorbidity Index: 3.00	10.50 to 11.80]; a difference of 0.37,	
		by delirium %: attention,	of 6 months or less,	(1.93)	95% CI 0.56 to 1.31, p=0.43).	
		orientation, memory, abstract	acute major depression	Mean (SD) CDR: 1.25 (0.5)	Attrition: 1% vs. 4%	
		thinking, and executive functioning;	or psychosis, and severe	Dementia %: 100		
		<30 minutes each day delivered 5	hearing or vision	Postop %: 100		
		days a week	impairment	Cancer %: NR		
		Control (N=142): Usual care		Mean (SD) number of		
		Duration: Daily for up to 30 days		medications: 15.38 (4.7)		
		Follow-up (days): 30 or discharge		Mean (SD) number of		
				anticholinergic		
				medications: 1.61 (1.1)		

Author	Study	Study protocol including numbers	Study population	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristic	of participants, interventions,	including main inclusion		and attrition rates	Bias
name	s	duration, and follow-up	and exclusion criteria			
Marcantoni	Design: RCT	Randomized N: 126	Inclusion: ≥65 years,	Mean (SD) age: 79 (8)	Main outcomes: Delirium occurred in	Moderate
o et al.	Setting:	Analyzed N: 126	admitted directly from	Female %: 79	20/62 (32%) intervention patients vs.	
(2001)	Nursing	Intervention (N=62): Proactive	an acute medical or	Race %:	32/64 (50%) usual care patients	
	homes	geriatrics consultation; geriatrician's	surgical hospitalization	Caucasian: 90	(p=0.04, RR 0.64, 95% CI 0.37 to 0.98)	
	Country: U.S.	daily visits	Exclusion: End-stage	Black/African American: NR	for the consultation group.	
	Funding:	Control (N=64): Usual care	dementia and those who	Asian: NR	Overall attrition: 0%	
	Government	Intervention duration: At admission;	had complete functional	Other: NR		
		if negative, again when warranted	dependence before	Delirium %: 100		
		Control duration: At admission	hospitalization	Charlson index ≥4 %: 36		
		Follow-up (days): Until discharge		Clinical Dementia %: 40		
				Postop %: 33		
				Cancer %: NR		
Marcantoni	Design: RCT	Randomized N: 457	Inclusion: ≥65 years,	Mean age: 84	Main outcomes: Nurses at DAP sites	High
o et al.	Setting:	Analyzed N: 370	admitted directly from	Female %: 64	detected delirium in 41% of	
(2010)	Nursing	Intervention (N=282): Delirium	an acute medical or	Race %:	intervention participants vs. 12% in	
	homes	Abatement Program (DAP); 1)	surgical hospitalization	Caucasian: 92	usual care sites (p<0.001). The DAP	
	Country: U.S.	assessment for delirium within 5	Exclusion: End-stage	Black/African American: NR	intervention had no effect on	
	Funding:	days of post-acute care admission,	dementia and those who	Asian: NR	delirium persistence based on 2	
	Government	2) assessment and correction of	had complete functional	Other: NR	measurements at 2 weeks (68% vs.	
		common reversible causes of	dependence before	Delirium %: 100	66%) and 1 month (60% vs. 51%)	
		delirium, 3) prevention of	hospitalization	Mean delirium severity at	(adjusted p=0.20). Adjusting for	
		complications of delirium, and 4)		baseline (scale 0 to 30):	baseline differences between DAP	
		restoration of function		12.4	and usual care participants and	
		Control (N=175): Usual care		Mean Charlson comorbidity	restricting analysis to DAP	
		Intervention duration: At admission;		score (mean, scale 0 to 37):	participants in whom delirium was	
		if negative, again when warranted		2.6	detected did not alter the results.	
		Control duration: At admission		Clinical Dementia %: 40	Attrition at 4 weeks: 25% vs. 21%	
		Follow-up (days): 14, 28		Postop %: NR		
				Cancer %: NR		
Pitkälä et	Design: RCT	Randomized N: 174	Inclusion: >69 years	Mean age: 83	Main outcomes: Delirium was	Moderate
al. (2006;	Setting:	Analyzed N: 174	admitted to the general	Female %: 73.6	alleviated more rapidly during	
2008)	Inpatient	Intervention (N=87): Multi-	medicine services at 1	Race %: NR	hospitalization, and cognition	
		component intervention consisting	hospital	Delirium %: 100		

Author	Study	Study protocol including numbers	Study population	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristic	of participants, interventions,	including main inclusion		and attrition rates	Bias
name	s	duration, and follow-up	and exclusion criteria			
	Country:	of geriatric assessment and	Exclusion: Admission	Mean (SD) delirium	improved significantly at 6 months in	
	Finland	recognition of delirium, avoidance	from permanent	severity, MDAS: 12.5 (5.1)	the intervention group.	
	Funding:	of conventional neuroleptics and	institutional care to the	Mean (SD) Barthel Index:	Attrition at 3- and 6-month follow-	
	University	administering atypical	hospital	79 (19.7)	up: 0% vs. 5%	
		antipsychotics as necessary, general		Mean (SD) Charlson		
		orientation (calendars, clocks,		comorbidity index: 2.4 (1.9)		
		photos), physiotherapy, general		Dementia %: 30.4		
		geriatric interventions (nutritional		Mean (SD) MMSE: 14.3		
		supplements, calcium, hip		(5.2)		
		protectors, etc.), cholinesterase		Cancer %: NR		
		inhibitors if needed, and		Postop %: NR		
		comprehensive discharge planning		Mean (SD) number of		
		(social worker consultation, OT		medications: 7.3 (3.7)		
		home visit, discharge planning with				
		caregivers)				
		Control (N=87): Usual care				
		Duration: During hospitalization				
		Follow-up (days): 90, 180, 365				

Abbreviations. CDR=Clinical Dementia Rating; CGBRS=Crichton Geriatric Behavioural Rating Scale; Cl=confidence interval; ; DAP=Delirium Abatement Program; GCS=Glasgow Coma Scale; HR=hazard ratio; HR=hazard ratio; ICU=intensive care unit; LOS=length of stay; MDAS Memorial Delirium Assessment Scale; MMSE=Mini-Mental State Examination; N=number; NR=not reported; postop=post-operative; OT=occupational therapy; RCT=randomized controlled trial; RR=relative risk; SD=standard deviation; SPMSQ=Short Portable Mental Status Questionnaire.

3235 Single-Component Interventions

3236 Computerized Decision Support

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
name		interventions, duration, and				
		follow-up				
Campbell	Design: RCT	Randomized N: 200	Inclusion: ≥18 years, within 24	Mean (SD) age: 61.8 (14.3)	Main outcomes: Neither	Moderate
et al.	Setting: ICU	Analyzed N: 200	hours of ICU admission, with	Female %: 59	median delirium/coma-free	
(2019)	Country: U.S.	Intervention (N=99):	delirium on any day of the ICU	Race %:	days (p=0.361) nor median	
	Funding:	Computerized decision aid	stay, and patients with	Caucasian: NR	change in delirium severity	
	Government	consisting of 2 methods: (1) a	contraindication to haloperidol or	Black/African American: 52	scores (p=0.582 for DRS-R-98;	
		computerized decision support	personal preference to avoid	Asian: NR	p=0.333 for CAM-ICU-7) were	

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
name		interventions, duration, and				
		follow-up				
		intervention to interrupt orders	exposure to haloperidol as a	Other: NR	different between groups. No	
		for strong anticholinergics and (2)	delirium treatment	Delirium %: 100	differences in adverse events	
		human (pharmacist) decision	Exclusion: Delirium due to alcohol	Mean (SD) APACHE II: 21.2	or mortality were identified.	
		support that included twice-daily	intoxication or aphasic stroke	(8.3)	Attrition: NR	
		surveillance of medication orders		Mean (SD) Charlson		
		and administration records		Comorbidity Index: 3.2		
		Control (N=101): Usual care		(2.5)		
		Duration: During ICU stay		Mean (SD) IQCODE: 3.3		
		Follow-up (days): 8, 30		(0.5)		
				Postop %: 17.6		
				Cancer %: NR		
				Mechanically ventilated %:		
				71.9		
Khan et al.	Design: RCT	Randomized N: 351	Inclusion: ≥18 years, admitted to	Mean (SD) age: 59.3 (16.9)	Main outcomes: There were	Moderate
(2019)	Setting: ICU	Analyzed N: 351	ICU ≥24 hours, and screened	Female %: 52	no differences between the	
	Country: U.S.	Intervention (N=174):	positive for delirium	Race %:	intervention vs. usual care	
	Funding:	Computerized decision support	Exclusion: Alcohol related delirium	Caucasian: NR	groups in median	
	Government	system that generated automated		Black/African American: 42	delirium/coma-free days at	
		interruptive messages that		Asian: NR	day 8 (4 [IQR 2 to 7] days vs.	
		alerted providers to the risk of		Other: NR	5 [IQR 1 to 7] days, p=0.888)	
		anticholinergic in delirium and		Delirium %: 100	or at day 30 (26 [IQR 19 to	
		offered alternative,		Mean (SD) Charlson	29] days vs. 26 [IQR, 14 to 29]	
		nonanticholinergic medications; if		Comorbidity Index: 3.2	days, p=0.991). There were	
		messages were ignored a study		(3.0)	no significant differences for	
		pharmacist called the physician		Dementia %: NR	decrease in delirium severity	
		the same day to discuss reducing		Postop %: 25.4	at day 8, but at hospital	
		or discontinuing the		Cancer %: NR	discharge, the intervention	
		anticholinergic medication.		Receiving MV %: 72.8	group showed a greater	
		Control (N=177): Usual care			reduction in delirium severity	
		Intervention duration: Continuous			(mean decrease in CAM-ICU-	
		through hospital stay			7 score: 3.2 [SD 3.3] vs. 2.5	
					[SD 3.2], p=0.046).	

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
name		interventions, duration, and				
		follow-up				
		Control duration: During			Attrition: 3% vs. 1%	
		hospitalization				
		Follow-up (days): 8, 30				

3237 3238

Abbreviations. CAM-ICU=Confusion Assessment Method for the ICU; DRS-R-98=Delirium Rating Scale-Revised-1998; ICU=intensive care unit; IQCODE=Informant Questionnaire on Cognitive Decline in the Elderly; IQR=interquartile range; MV=medical ventilation; N=number; NR=not reported; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

3239 Acupuncture

Author (year); trial	Study characteristics	Study protocol including numbers of participants,	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
name		interventions, duration, and follow-up				
Levy et al.	Design: RCT	Randomized N: 81	Inclusion: >65 years, hospitalized	Mean (SD) age: 84.5 (7.4)	Main outcomes: A	High
(2022)	Setting:	Analyzed N: 81	in a medical inpatient unit, and	Female %: 45.7	multivariate Cox regression	
	Inpatient	Intervention (N=50):	diagnosed with delirium or	Race %: NR	analysis showed a shorter	
	Country: Israel	Acupuncture plus usual care	subsyndromal delirium within the	Delirium on admission to	time-to first remission of	f Bias
	Funding: Non-	Control (N=31): Usual care	past 48 hours	hospital %: 51.8	delirium in acupuncture vs.	
	profit	Intervention duration: Once a	Exclusion: Contraindication to	Median APACHE II: 9 vs. 11	control (HR 0.267, 95% Cl	
		day, up to 5 days or discharge	acupuncture (e.g., platelets ≤20 x	Dementia %: NR, severe	0.098 to 0.726, p=0.010). In	High
		Control duration: Up to 5 days	109/L), a history of severe	dementia excluded	the 7 days of evaluation, a	
		or discharge	dementia (documented history	Postop %: NR	significantly higher number of	
		Follow-up (days): 5, Discharge	and/or IQCODE score ≥4), an	Cancer %: NR	delirium-free days was found	
			acute neurological injury (stroke),		in acupuncture vs. control	
			a history of schizophrenia or a		(p<0.001), and CAM-S sum	
			formal thought disorder, an active		from day 2 to day 7 of	
			acute alcohol or drug withdrawal,		evaluation was significantly	
			a history of end stage liver failure		lower in acupuncture vs.	
			(to distinguish between delirium		control (p=0.002).	
			and hepatic encephalopathy), or		Overall attrition: 0%	
			language barriers preventing			
			delirium assessment			

3240 3241

Abbreviations. APACHE II=Acute Physiology and Chronic Health Evaluation II; CAM-S=Confusion Assessment Method-Severity; CI=confidence interval; HR=hazard ratio; ICU=intensive care unit;

IQCODE=Informant Questionnaire on Cognitive Decline in the Elderly; N=number; NR=not reported; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

3242 Family Member Delivered Intervention

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
name		interventions, duration, and				
		follow-up				
Mailhot et al.	Design: RCT	Randomized N: 30	Inclusion: POD, undergoing CABG	Mean age: 75	Main outcomes: Mean	Moderate
(2017)	Setting:	Analyzed N: 30	or heart valve surgery, and a family	Female %: NR	delirium severity scores	
	Postop cardiac	Intervention (N=16): Nurse	caregiver who could visit with 24	Race %: NR	showed similar trajectories on	
	Country:	mentor provided information	hours of delirium onset and visit	Delirium %: 100	days 1, 2 and 3 in both	
	Canada	on delirium and guidance to	twice a day during the study	Past episode of Delirium %:	groups.	
	Funding:	the family caregiver who was	Exclusion: Preop diagnosis of	16.7	Attrition: 2% vs. 0%	
	Government	there to intervene in delirium	cognitive impairment or	Functioning: NR		
		management	irreversible postop cognitive	Dementia %: NR, cognitive		
		Control (N=14): Usual care	damage	impairment excluded		
		Intervention duration: Twice a		Postop %: 100		
		day during hospitalization		Cancer %: NR		
		Control duration: During		Drank daily %: 10		
		hospitalization		Depression %: 33.3		
		Follow-up (days): Until				
		discharge				

3243 Abbreviations. CABG=coronary artery bypass graf; N=number; NR=not reported; POD=post-operative delirium; postop=post-operative; RCT=randomized controlled trial.

3244 Massage

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
name		interventions, duration, and				
		follow-up				
Makinian et	Design: RCT	Randomized N: 88	Inclusion: ≥60-year-old women	Mean age: 74.1	Main outcomes: After the	High
al. (2015)	Setting:	Analyzed N: 88	hospitalized in coronary care units,	Female %: 100	study intervention, the mean	
	Inpatient	Intervention (N=NR): Face,	received a diagnosis of delirium,	Race %: NR	total delirium score in the	
	Country: Iran	head, and neck massage	and not on MV	Delirium %: 100	intervention group was	
	Funding:	therapy plus single dose of	Exclusion: Those with skin lesions	Functioning: NR	significantly higher than that	
	University	haloperidol	or tender area in the face and the	Dementia %: NR, excluded	of the control group (17.6 vs.	
		Control (N=NR): Single dose of	head and those needing another	those with cognitive	16.7, p=0.03).	
		haloperidol	dose of haloperidol	disorders	Attrition: NR	

Intervention duration: Twice a	Postop %: NR	
day for 2 days; haloperidol at	Cancer %: NR	
admission		
Control duration: At admission		
Follow-up (days): Until		
discharge		

3245 Abbreviations. MV=medical ventilation; N=number; NR=not reported; postop=post-operative; RCT=randomized controlled trial.

3246 Bright Light Therapy

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
name		interventions, duration, and				
		follow-up				
Yang et al.	Design: RCT	Randomized N: 36	Inclusion: DRS score >12	Mean (SD) age: 69.58	Main outcomes: Risperidone	Moderate
(2012)	Setting:	Analyzed N: 36	(moderate to severe)	(15.13)	with light therapy group	
	Inpatient,	Intervention 1 (N=20):	Exclusion: Other axis I disorders on	Female %: 36	showed a significantly greater	
	psychiatry	Adjuvant bright light therapy	the DSM-IV, prolonged QTc	Race %: NR	decrease in the DRS score	
	Country:	with risperidone starting at 0.5	interval on electrocardiography,	Delirium %: 100 (DRS score	than the risperidone-only	
	South Korea	mg/day; increased daily until a	history of hypersensitivity or	>12)	group (F=2.87, p=0.025), but	
	Funding: None	score <12 on the DRS or a 50%	intolerance to risperidone, and	Baseline scale of function	the MDAS score was not	
		reduction of the baseline DRS	injected with antipsychotics or	(physical or cognitive)	significantly different	
		score was achieved during the	benzodiazepines before screening	CGI-S: 5.31±0.95 vs.	between the 2 groups.	
		study period		5.05±0.76	Attrition: NR	
		Intervention 2 (N=16):		Dementia %: 0, excluded if		
		Risperidone alone, starting at		had other axis I disorders		
		0.5 mg/day; increased daily		on the DSM-IV		
		until a score <12 on the DRS or		Postop %: 55		
		a 50% reduction of the		Cancer %: NR		
		baseline DRS score was		Hepatic or renal		
		achieved during the study		impairment: NR		
		period		Alcohol use: NR		
		Duration: During		Drug use: NR		
		hospitalization; 5 days		Mean (SD) number of		
		Follow-up (days): 0, 1, 2, 3, 4, 5		medications taken at		
				baseline: NR		

Abbreviations. CGI-S=Clinical global impression-severity; DRS=Delirium Rating Scale; DSM-IV= Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition; MDAS Memorial Delirium

3247 3248 Assessment Scale; MV=medical ventilation; N=number; NR=not reported; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

- 3249 Pharmacological Interventions for Prevention of Delirium
- 3250 Dexmedetomidine

3251 Dexmedetomidine vs. Usual Care/Normal Saline

3252 In Surgical Setting

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year);	characteristics	numbers of participants,	main inclusion and exclusion		and attrition rates	Bias
trial name		interventions, duration, and	criteria			
		follow-up				
Chen et	Design: RCT	Randomized N: 160	Inclusion: Age ≥20 years,	Mean age: 57.5	Main outcomes: The	Low
al. (2021)	Setting: Intra-	Analyzed N: 160	elective cranial surgery for brain	Female %: 60.6	dexmedetomidine group had a	
	operative,	Intervention (N=80):	tumor resection, aneurysm	Race %: NR	more favorable ICDSC score, with	
	cranial surgery	Dexmedetomidine 0.5	clipping, intracranial bypass, and	Delirium %: NR	more patients receiving an ICDSC	
	Country: Taiwan	μg/kg/hour IV	microvascular decompression	ASA I-III %: 100	score of 0 than the control group	
	Funding:	Control (N=80): Normal saline	Exclusion: Age >80 years,	Dementia %: NR	(84.6% vs. 64.2%, p=0.012).	
	Unclear	Duration: Intra-operative	metastatic brain tumor, revision	Postop %: 100	Overall attrition: 0%	
		Follow-up (days): Until	surgery, history of arrhythmia or	Tumor excision %: 69.4		
		discharge	heart failure, liver cirrhosis, or	Aneurysm clipping %: 13.1		
			renal insufficiency	Intracranial bypass %:		
				10.6		
				Microvascular		
				decompression %: 6.9		
He et al.	Design: RCT	Randomized N: 90	Inclusion: Age 75-90 years with	Mean (SD) age: 82.5 (5.6)	Main outcomes: The incidence rate	Moderate
(2018)	Setting: Intra-	Analyzed N: 90	thoracic or lumbar vertebral	Female %: 42	of POD in the dexmedetomidine	
	operative,	Intervention 1 (N=30):	fractures and receiving selective	Race %: NR	group was apparently lower than	
	orthopedic	Dexmedetomidine 0.5 μg/kg	operation at grade I to III in the	Delirium %: NR	those in the other 2 groups	
	Country:	initial bolus, then maintained	ASA classification	Function: NR	(p<0.05); the incidence rate of POD	
	Funding: China	at 0.4 μg/kg/hour	Exclusion: CNS disease, mental	Dementia %: NR	at 1-2 days after operation in	
	Government	Intervention 2 (N=30):	illness, or ≤23 on MMSE	Postop %: NR	midazolam group was higher than	
		Midazolam IV of 0.03 mg/kg		Cancer %: NR	that in the normal saline group	
		Intervention 3 (N=30): Normal			(p<0.05). There was no significant	
		saline			difference in the incidence rate of	
		Intervention 1 duration: 10			POD at 3-5 days after operation	
		minutes before anesthesia			between the midazolam and normal	
		induction, then during			saline groups (p>0.05).	
		surgery			Attrition: NR	

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year);	characteristics	numbers of participants,	main inclusion and exclusion		and attrition rates	Bias
trial name		interventions, duration, and	criteria			
		follow-up				
		Intervention 2, Intervention 3				
		duration: Before anesthesia				
		Follow-up (days): 5				
Hu et al.	Design: RCT	Randomized N: 177	Inclusion: Age 60-80 years with	Mean (SD) age: 69.3 (4.8)	Main outcomes: Delirium occurred	Low
(2020)	Setting: Intra-	Analyzed N: 177	ASA I-III and scheduled for an	Female %: 17.6	in 15 (16.7%) of 90 cases given	
	operative,	Intervention (N=90):	open transthoracic	Race %: NR	dexmedetomidine and in 32 (36.8%)	
	esophagectomy	Dexmedetomidine IV loading	esophagectomy under general	Delirium %: NR	of 87 cases given saline (p=0.0036).	
	Country: China	dose of 0.4 ml/kg over 15	endotracheal anesthesia	ASA II %: 72.3	Attrition: 14% vs. 14%	
	Funding:	minutes, then 0.1 ml/kg/hour	Exclusion: BMI >30, severe	Dementia %: 0 (excluded)		
	Government	Control (N=87): Usual care	pulmonary, cardiac, renal,	Postop %: 100		
		Intervention duration:	hepatic, cerebrovascular,	Cancer %: NR		
		Loading dose immediately	comorbidities, chronic pain, or			
		prior to induction of	substance abuse disorders, or			
		anesthesia, then until 1 hour	dementia or being treated with			
		until anticipated end of	antipsychotic agents			
		surgery				
		Control duration: During				
		surgery				
		Follow-up (days): 4				
Huyan et	Design: RCT	Randomized N: 360	Inclusion: ≥65 years having	Mean (SD) age: 70.5	Main outcomes: During postop days	Moderate
al. (2019)	Setting: Intra-	Analyzed N: 346	radical pulmonary resection	(5.52)	1-7, delirium occurred in both	
	operative,	Intervention (N=180):	Exclusion: Patients with ICDSC	Female %: 47	groups but was lower in the group	
	cardiothoracic	Dexmedetomidine continuous	score >0 and patients	Race %: NR	receiving dexmedetomidine (precise	
	Country: China	IV infusion of 0.5µg/kg bolus	discharged to ICU after surgery	Delirium %: 0	numbers not provided, graph only).	
	Funding: Mixed	preop followed by 0.1		ASA II, III %: 100	Attrition: 4% vs. 4%	
		µg/kg/hour intra-operatively		Dementia %: NR		
		Control (N=180): Normal		Postop %: 100 pulmonary		
		saline		Cancer %: 100 lung		
		Intervention duration: Preop				
		to 30 minutes before end of				
		surgery				

Author (year); trial name Kim J.A. et al. (2019)	Study characteristics Design: RCT Setting: Intra- operative,	Study protocol including numbers of participants, interventions, duration, and follow-up Control duration: Unclear on details Follow-up (days): Through day 7 Randomized N: 143 Analyzed N: 120 Intervention 1 (N=73):	Study population including main inclusion and exclusion criteria Inclusion: Age 18-75 years undergoing elective video- assisted thoracoscopic	Sample demographics Sample demographics Median age: 61 Female %: 48 Race %: NR Definition of the	Results including main outcomes and attrition rates Main outcomes: The incidence of delirium after discharge from post anesthesia care unit was not	Risk of Bias
	cardiothoracic Country: South Korea Funding: Industry	Dexmedetomidine continuous IV infusion of 0.5 µg/kg/hour Intervention 2 (N=70): Saline (sevoflurane) 0.125 mL/kg/hour Duration: Just prior to induction of anesthesia and discontinued at end of surgery Follow-up (days): Through day 3	lobectomy/segmentectomy for lung cancer Exclusion: Patients with dementia	Delirium %: NR ASA I-III %: 100 Dementia %: 0 Postop %: 100 pulmonary surgery Cancer %: 100 lung cancer	different between groups (25% vs. 25%). Attrition: 18% vs. 14%	
Lee et al. (2018)	Design: RCT Setting: Intra- operative, noncardiac Country: South Korea Funding: University	Randomized N: 354 Analyzed N: 318 Intervention 1 (N=118): Dexmedetomidine IV 1µg/kg bolus followed by 0.2-0.7 µg/kg/hour Intervention 2 (N=118): Dexmedetomidine IV 1µg/kg bolus Intervention 3 (N=118): Saline Duration: Intra-operative Follow-up (days): Through day 5	Inclusion: >65 years undergoing laparoscopic major non-cardiac surgery under general anesthesia Exclusion: Patients with cognitive impairment	Mean (SD) age: 73.07 (6.01) Female %: 56 Race %: NR Delirium %: NR ASA I, II %: 68.2 Cognitive Impairment %: 0 Postop %: 100 non-cardiac surgery Cancer %: NR	Main outcomes: The incidence of POD was 9.5% and 18.4% in the 2 groups receiving dexmedetomidine compared with usual care (24.8%, p=0.017). Attrition at follow-up: 19% vs. 3% vs. 8%	Moderate

Author	Study characteristics	Study protocol including	Study population including main inclusion and exclusion	Sample demographics	Results including main outcomes	Risk of
(year);	characteristics	numbers of participants,			and attrition rates	Bias
trial name		interventions, duration, and	criteria			
Lee et al.	Design: RCT	follow-up Randomized N: 217	Inducione >10 years undergaing	Mean (SD) age: 55.5	Main outcomes: There was no	Low
	-		Inclusion: ≥18 years undergoing			Low
(2019)	Setting: Intra-	Analyzed N: 201	liver transplant (recipient)	(range 50-62)	significant difference in delirium	
	and post-	Intervention (N=109):	Exclusion: Pregnancy, preop	Female %: 28	incidence in the dexmedetomidine	
	operative, liver	Dexmedetomidine IV	comatose state, preexisting	Race %: NR	group compared to the control	
	transplant	1µg/kg/hour	neurologic deficit, preexisting	Delirium %: NR	group (9% vs. 5.9%, p=0.44).	
	Country: South	Control (N=108): Normal	psychiatric disorders, allergy to	APACHE II: 23.5	Attrition: 8% vs. 6%	
	Korea	saline	dexmedetomidine, no Korean	Dementia %: NR		
	Funding:	Duration: Intra-operative and	speaker, and hemodynamic	Postop %: 100 liver		
	Unclear	postop for 2 days	instability for >1 hour	transplant		
		Follow-up (days): Until		Cancer (original		
		discharge		diagnosis) %: 63		
				Cancer surgery %: 0		
Li X. et al.	Design: RCT	Randomized N: 285	Inclusion: ≥60 years undergoing	Mean (SD) age: 66.95	Main outcomes: Dexmedetomidine	Low
(2017)	Setting: Intra-	Analyzed N: 285	elective CABG and/or valve	(5.35)	did not decrease the incidence of	
	and post-	Intervention (N=142):	replacement surgery	Female %: 31	delirium (4.9% vs. 7.7%, p=0.341).	
	operative,	Dexmedetomidine IV 0.6	Exclusion: Parkinson disease or	Race %: NR	Attrition: 5% vs. 8%	
	cardiac	µg/kg for 10 minutes followed	severe dementia	Delirium %: 0		
	Country: China	by 0.4 μg/kg/hour until end of		ASA I, II %: 64.2		
	Funding:	surgery then 0.1 μg/kg/hour		Severe Dementia %: 0		
	University	until end of MV		Postop %: 100 cardiac		
		Control (N=143): Normal		surgery		
		saline		Cancer %: 0		
		Duration: Intra-operatively				
		and during MV				
		Follow-up (days): 1 to 5				
Li et al.	Design: RCT	Randomized N: 620	Inclusion: ≥60 years undergoing	Mean (SD) age: 69.0 (6.5)	Main outcomes: The incidence of	Low
(2020)	Setting: Intra-	Analyzed N: 619	elective major non-cardiac	Female %: 60	delirium within 5 days of surgery	
	operative,	Intervention (N=310):	surgery under general	Race %: NR	was lower with dexmedetomidine	
	noncardiac	Dexmedetomidine IV 0.6	anesthesia with an expected	Delirium %: 0	treatment (5.5% vs. 10.3%,	
	Country: China	µg/kg bolus followed by 0.5	duration of 2 hours or more	ASA I, II %: 89.5	p=0.026).	
	Funding: Mixed	µg/kg/hour until 1 hour	Exclusion: Patients with	Dementia %: NR (excluded	Attrition: 0% vs. 0%	
		before end of surgery	Parkinson's disease	Parkinson's)		

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year);	characteristics	numbers of participants,	main inclusion and exclusion		and attrition rates	Bias
trial name		interventions, duration, and	criteria			
		follow-up				
		Control (N=310): Normal		Postop %: 100 noncardiac		
		saline		surgery		
		Duration: Intra-operative		Cancer %: 0		
		Follow-up (days): Up to day 5				
		or discharge				
Likhvants	Design: RCT	Randomized N: 175	Inclusion: >45 years undergoing	Mean (SD) age: 62.5 (9.6)	Main outcomes: A decrease in the	Low
ev et al.	Setting: Intra-	Analyzed N: 169	elective CABG or valve surgery	Female %: 27.8	rate of delirium for	
(2021)	operative,	Intervention (N=87):	or a combination of the 2 with	Race %: NR	dexmedetomidine vs. placebo was	
	cardiac surgery	Dexmedetomidine 100	СРВ	Delirium %: NR	demonstrated (6/84 [7.1%] vs.	
	Country: Russia	mg/mL	Exclusion: Evidence of preop	Function: NR	16/85 [18.8%], p=0.02, OR 0.33	
	Funding: None	Control (N=88): Placebo;	mental impairment or	Dementia %: NR, though	[95% CI 0.12 to 0.90).	
		usual care	underwent a second surgery	excluded mental	Attrition: 3% vs. 3%	
		Duration: Started at induction	before ICU discharge	impairment; implied 0%		
		of anesthesia and lasted		Postop %: 100		
		throughout the procedure		Cancer %: NR		
		Follow-up (days): Until				
		discharge				
Liu Y. et	Design: RCT	Randomized N: 200	Inclusion: Age 65-80 years	Mean (SD) age: 72.83	Main outcomes: Dexmedetomidine	Low
al. (2016)	Setting: Intra-	Analyzed N: 197	undergoing total hip, knee, or	(8.39)	treatment significantly decreased	
	operative,	Intervention (N=100):	shoulder replacement with	Female %: 51	POD incidence for patients with and	
	orthopedic	Dexmedetomidine IV 0.2-0.4	general anesthesia	Race %: NR	without mild cognitive impairment	
	Country: China	μg/kg/hour until end of	Exclusion: Neurological diseases	Delirium %: NR	relative to placebo (p<0.05, both	
	Funding:	surgery	that may affect cognitive	Function: NR	comparisons).	
	Unclear	Control (N=100): Placebo;	function (e.g., subdural	Dementia %: NR, though	Attrition: 1% vs. 2%	
		normal saline	hematoma, vascular dementia,	excluded mental		
		Duration: Intra-operative	frontotemporal dementia,	impairment; implied 0%		
		Follow-up (days): 1, 3, 7	hypothyroidism, alcoholic	Postop %: 100		
			dementia, vitamin B12	Cancer %: NR		
			deficiency, encephalitis),			
			hypoxic pulmonary disease, and			
			perioperative serious			
			cardiopulmonary complications			

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year);	characteristics	numbers of participants,	main inclusion and exclusion		and attrition rates	Bias
trial name		interventions, duration, and	criteria			
		follow-up				
Massoumi	Design: RCT	Randomized N: 93	Inclusion: Age 40-80 years	Mean (SD) age: 61.55	Main outcomes: Administration of	Moderate
et al.	Setting: Postop,	Analyzed N: 88	undergoing CABG surgery	(4.80)	dexmedetomidine significantly	
(2019)	cardiac	Intervention (N=46):	Exclusion: History of dementia,	Female %: 18	decreased delirium compared to	
	Country: Iran	Dexmedetomidine 1 µg/kg	"defect in the examined data,"	Race %: NR	placebo (9.1% vs 20.5%, p=0.040).	
	Funding:	over 10 minutes then infusion	need for reoperation due to	Delirium %: NR	Attrition: 4% vs. 6%	
	University	of 0.2-0.7 µg/kg/hour in 50cc	hemorrhage, "excessive	Baseline scale of function:		
		volume by syringe pump until	sensitivity" to haloperidol and	NR		
		extubation	phenothiazines, glaucoma, or	Dementia %: 0 (excluded)		
		Control (N=47): Placebo;	receiving lithium medication	Postop %: 100		
		infusion of normal saline with		Cancer %: NR		
		the same volume as drug by				
		the syringe pump				
		Duration: NR				
		Follow-up (days): 3				
Momeni	Design: RCT	Randomized N: 420	Inclusion: ≥60 years having on-	Mean age: 70.5	Main outcomes: There was no	Moderate
et al.	Setting: Postop,	Analyzed N: 349	pump cardiac surgery	Female %: 24.2	difference between treatments in	
(2021)	cardiac	Intervention 1 (N=210):	Exclusion: Patients with hepatic	Race %: NR	the incidence of POD (p=0.687).	
	Country:	Dexmedetomidine 0.4	dysfunction (liver enzyme 3 x	Delirium %: 0 (excluded)	Attrition: 16% vs. 18%	
	Belgium	µg/kg/hour plus propofol 1-3	the upper limit of normal + a	Function: NR		
	Funding:	mg/kg/hour	serum albumin concentration	Dementia %: NR		
	Medical	Intervention 2 (N=210):	below the normal reference	Postop %: 100		
	associations	Propofol 1-3 mg/kg/hour plus	limit), preop delirium, surgery	Cancer %: NR		
		saline 0.9%	without CPB, minimally invasive			
		Intervention 1 duration:	or robotic cardiac surgery,			
		Perioperative (Intra-operative	emergency surgery, or patients			
		and postop)	on chronic renal replacement			
		Intervention 2 duration:	therapy			
		Postop				
		Follow-up (days): Until				
		discharge				

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year);	characteristics	numbers of participants,	main inclusion and exclusion		and attrition rates	Bias
trial name		interventions, duration, and	criteria			
		follow-up				
Shi et al.	Design: RCT	Randomized N: 168	Inclusion: ≥60 years undergoing	Mean (SD) age: 74.46	Main outcomes: There was no	Low
(2019)*	Setting: Intra-	Analyzed N: 164	cardiac surgery	(7.45)	significant difference in the	
	operative,	Intervention 1 (N=84):	Exclusion: Patients with	Female %: 27	incidence of POD between the	
	cardiac	Dexmedetomidine IV 0.4-0.6	previous history of POD	Race %: NR	dexmedetomidine group and the	
	Country: China	μg/kg/hour		Delirium %: 0 with	propofol (usual care) group (39.3%	
	Funding: Mixed	Intervention 2 (N=84): Usual		previous POD	vs. 26.3%, p=0.0758).	
		care; propofol		Function; NR	Attrition: 0% vs. 5%	
		Duration: Intra-operative		Dementia %: NR		
		Follow-up (days): POD 5		Postop %: 100 cardiac		
				surgery		
				Cancer %: NR		
Shi et al.	Design: RCT	Randomized N: 106	Inclusion: ≥65 years males,	Mean (SD) age: 68.7	Main outcomes: The incidence of	Low
(2020)	Setting: Intra-	Analyzed N: 106	scheduled for thoracoscopic	(4.06)	postop cognitive dysfunction and	
	operative,	Intervention (N=53):	lobectomy with one-lung	Female %: 0	POD in the dexmedetomidine group	
	thoracic	Dexmedetomidine IV 0.5	ventilation, and received	Race %: NR	was 13.2 and 7.5%, respectively,	
	Country: China	μg/kg/hour	general anesthesia	Delirium %: NR	while that in the saline group was	
	Funding:	Control (N=53): Normal saline	Exclusion: Neurologically	ASA II %: 88.7	35.8 and 11.3%, respectively.	
	Government	Duration: Started at induction	impaired (MMSE ≤23); systolic	Dementia %: 0 (excluded)	Overall attrition: 0%	
		of anesthesia and continued	BP ≥180 or <90 mmHg or	Postop %: 100		
		until chest closure	diastolic BP ≥110 or <60 mmHg;	Cancer %: NR		
		Follow-up (days): 1, 3, 7	serious heart, liver, kidney, lung,			
			endocrine, or nervous system			
			diseases; severe infection;			
			abnormal results on MMSE,			
			MoCA, or CAM; epidural			
			puncture failure; sleep disorders			
Shu et al.	Design: RCT	Randomized N: 60	Inclusion: Age 45-75 years	Mean (SD) age: 47.25	Main outcomes: The POD score of	Moderate
(2017)	Setting: Intra-	Analyzed N: 60	undergoing elective cardiac	(8.08)	the dexmedetomidine group was	
	operative,	Intervention (N=30):	valve replacement	Female %: 43	significantly decreased (15.8±4.2)	
	cardiac	Dexmedetomidine IV 1.0	Exclusion: NR	Race %: NR	compared with the control group	
	Country: China	µg/kg bolus preop, followed		Delirium %: NR	(18.6±6.2) (p<0.05). There was no	
				ASA II, III %: 100	difference in the incidence of	

Author (year); trial name	Study characteristics Funding: Unclear	Study protocol including numbers of participants, interventions, duration, and follow-upby 0.5 μg/kg/hour Control (N=30): Normal saline Duration: Preop, Intra- operativecolored	Study population including main inclusion and exclusion criteria	Sample demographics Dementia %: NR Postop %: 100 cardiac surgery Cancer %: 0	Results including main outcomes and attrition rates delirium in the dexmedetomidine group compared with the control group (23.3% vs. 13.3%, p>0.05). Attrition: NR	Risk of Bias
Soh et al. (2020)	Design: RCT Setting: Intra- and post- operative, cardiac Country: South Korea Funding: None	Follow-up (days): Discharge Randomized N: 108 Analyzed N: 108 Intervention (N=54): Dexmedetomidine 200 µg mixed with 0.9% saline to achieve a concentration of 4 µg/kg/hour Control (N=54): Normal saline Duration: Started immediately after anesthetic induction and continued for 24 hours Follow-up (days): 7	Inclusion: ≥20 years scheduled for aortic surgery under CPB using either moderate hypothermic circulatory arrest with antegrade cerebral perfusion via the right axillar artery or aortic cross clamp interrupting renal blood flow Exclusion: Congestive heart failure with a left ventricular ejection fraction <30%, uncontrolled arrhythmia combined with unstable hemodynamics, acute coronary syndrome, estimated glomerular filtration rate <15 ml/minute/1.73 m ² , or use of ventricular assist devices	Mean age: 65 Female %: 38.9 Race %: NR Delirium %: NR Katz grade I and II %: 10.2 Katz grade III %: 38.0 Katz grade IV %: 27.8 Katz grade V %: 8.3 Dementia %: NR Postop %: 100 Cancer %: NR	Main outcomes: Secondary outcomes, including stroke, mortality, and delirium, were similar between subjects randomized to dexmedetomidine and control groups (16/54 [30%] vs. 22 [41%], OR 0.61, 95% CI 0.28 to 2.36). POD in the 7 days after surgery was also similar between the groups (2/54 [4%] vs. 7/54 [13%], OR 0/26, 95% CI 0.05 to 1.31). Attrition: 6% vs. 2%	Low
Su et al. (2016) Zhang et al. (2019)	Design: RCT Setting: Postop, noncardiac Country: China Funding: Mixed	Randomized N: 700 Analyzed N: 700 Intervention (N=350): Dexmedetomidine IV 0.1 µg/kg/hour Control (N=350): Placebo; normal saline	Inclusion: ≥65 years who underwent elective noncardiac surgery under general anesthesia Exclusion: Patients with parkinsonism or profound dementia	Mean (SD) age: NR Female %: NR Race %: NR Delirium %: NR APACHE II: 10.4 Severe Dementia %: 0 Postop %: 100 noncardiac surgery Cancer %: NR	Main outcomes: The incidence of POD was significantly lower in the dexmedetomidine group compared with placebo (9% vs. 23%, p<0.001). Attrition: 33% vs. 22%	Low

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year);	characteristics	numbers of participants,	main inclusion and exclusion		and attrition rates	Bias
trial name		interventions, duration, and	criteria			
		follow-up				
		Duration: Postop				
		Follow-up (days): Through				
		POD 7				
Sun et al.	Design: RCT	Randomized N: 618	Inclusion: ≥65 years undergoing	Median age: 68.5	Main outcomes: The incidence of	Low
(2019)*	Setting: Postop,	Analyzed N: 557	major elective noncardiac	Female %: 43	POD was not different between	
	noncardiac	Intervention (N=309):	surgery without a planned ICU	Race %: NR	dexmedetomidine and placebo	
	Country: China	Dexmedetomidine IV 0.1	stay	Delirium %: NR	(11.7% vs. 13.8%, p=0.47).	
	Funding: None	μg/kg/hour	Exclusion: Parkinson's or frank	ASA I-II: 79.5	Attrition: 9% vs. 11%	
		Control (N=309): Placebo;	dementia	MMSE: 24.5		
		saline		Postop %: 100 noncardiac		
		Duration: Postop		surgery		
		Follow-up (days): Through		Cancer %: 50		
		POD 5				
Tang et al.	Design: RCT	Randomized N: 112	Inclusion: Age 18-70 years	Mean (SD) age: 61.56	Main outcomes: There was less	Moderate
(2018)	Setting: Intra-	Analyzed N: 106	undergoing brain aneurysm	(7.91)	severe POD in the group that	
	operative, brain	Intervention (N=56):	embolism surgery with Glasgow	Female %: 53	received dexmedetomidine than	
	Country: China	Dexmedetomidine IV 1.0	coma scale >11	Race %: NR	normal saline (p=0.038).	
	Funding:	µg/kg bolus followed by 0.3	Exclusion: Coagulation	Delirium %: NR	Attrition: 4% vs. 7%	
	Unclear	μg/kg/hour	dysfunction, history of drug	ASA I-IV %: 100		
		Control (N=56): Normal saline	allergy to dexmedetomidine or	Dementia %: NR		
		(sevoflurane)	sevoflurane, severe	Postop %: 100 brain		
		Duration: Intra-operative	hypertension or cardiovascular	vascular surgery		
		Follow-up (days): 1	disease, liver or kidney	Cancer %: NR		
			dysfunction, use of sedatives			
			within 2 days prior to surgery,			
			sinus bradycardia, known			
			history of second- or third-			
			degree heart block, and			
			ischemic heart disease			
Tang C. et	Design: RCT	Randomized N: 60	Inclusion: Age 18-80 years with	Mean (SD) age: 61.5 (7.7)	Main outcomes: The simultaneous	Moderate
al. (2020)	Setting: Postop,	Analyzed N: 53	ASA status I-III and undergoing	Female %: 47.2	administration of dexmedetomidine	
	esophageal	Intervention 1 (N=30):	thoracoscopic-laparoscopic	Race %: NR	and sufentanil significantly reduced	

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year);	characteristics	numbers of participants,	main inclusion and exclusion		and attrition rates	Bias
trial name		interventions, duration, and	criteria			
		follow-up				
	cancer	Dexmedetomidine 2.5 µg/mL	esophagectomy	Delirium %: NR	plasma interleukin-6 and tumor	
	Country: China	plus sufentanil 1 µg/mL PCA	Exclusion: Obstructive or	ASA I %: 32.1	necrosis factor-α concentrations	
	Funding:	Intervention 2 (N=30):	restrictive lung disease with	ASA II %: 62.3	and increased interleukin-10 level	
	Government	Sufentanil 1 µg/mL PCA	FEV1/FVC% < 70% and 50%	ASA III %: 5.7	(p<0.0001, p=0.0003, and p=0.0345,	
		Duration: During post	predict FEV1 < 80% predict,	Dementia %: 0 (excluded)	respectively), accompanied by	
		anesthesia care unit stay	asthma and sleep apnea	Postop %: 100	better POD categories and health	
		Follow-up (days): 1, 2	syndrome, liver or urinary	Cancer %: 100	statuses of patients (p=0.024 and	
			bladder disorders, regular use of		p<0.05, respectively). There was no	
			pain perception-modifying drugs		hypotension, bradycardia,	
			and opioids or sedative		respiratory depression, or over	
			medications in the week prior to		sedation in the dexmedetomidine	
			surgery, known history of		group.	
			second- or third-degree heart		Attrition: 10% vs. 13%	
			block and ischemic heart			
			diseases, difficulties with the			
			use of PCA, known cognitive			
			dysfunction/dementia, and BMI			
			>35 kg/m ²			
Turan et	Design: RCT	Randomized N: 798	Inclusion: Age 18-85 years who	Mean (SD) age: 62.5	Main outcomes: The incidence of	Moderate
al. (2020);	Setting: Intra-	Analyzed N: 794	were scheduled for cardiac	(11.5)	delirium was 67 patients (17%) in	
DECADE	and post-	Intervention (N=400):	surgery with CPB and who had	Female %: 29.8	the dexmedetomidine group and 46	
	operative,	Dexmedetomidine IV bolus	heart rates ≥50 beats per	Race %:	patients (12%) in the placebo group	
	cardiac	(0.1 μg/kg/hour), then 0.2	minute	Caucasian: 91.7	(RR 1.48, 97.8% CI 0.99 to 2.23,	
	Country: U.S.	µg/kg/hour during surgery	Exclusion: Sick-sinus or Wolff-	Black/African American:	p=0.026 [p≤0.022 required for	
	Funding:	and 0.4 µg/kg/hour postop	Parkinson-White syndromes,	NR	significance]).	
	Industry	surgery	atrioventricular block, atrial	Asian: NR	Attrition: 1% vs. 1%	
		Control (N=398): Placebo;	fibrillation within 30 days,	Other: NR		
		normal saline	permanent pacemaker,	Delirium %: NR		
		Duration: Bolus given before	amiodarone or	ASA III %: 25.3		
		induction of anesthesia, then	dexmedetomidine use within 30	Dementia %: NR		
		during surgery, and postop	days, an ejection fraction <30%	Postop %: 100		
			or severe heart failure, MI	Cancer %: NR		

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year);	characteristics	numbers of participants,	main inclusion and exclusion		and attrition rates	Bias
trial name		interventions, duration, and	criteria			
		follow-up				
		Follow-up (days): 5 or until	within 7 days, BMI ≥40, or			
		discharge	clonidine use within 48 hours			
van	Design: RCT	Randomized N: 63	Inclusion: ≥60 years, undergoing	Mean (SD) age: 70.5 (6.7)	Main outcomes: Dexmedetomidine	Moderate
Norden et	Setting: Intra-	Analyzed N: 60	either major elective cardiac or	Female %: 30	was associated with a reduced	
al. (2021)	operative,	Intervention (N=30):	major open abdominal surgery	Race %: NR	incidence of POD within the first 5	
	cardiac and	Dexmedetomidine 0.7 µg/kg	Exclusion: Valvular surgery, off-	Delirium %: NR	postop days (17.9% vs. 43.8%,	
	abdominal	IV then 0.4 μg/kg/hour IV	pump cardiac surgery,	Charlson comorbidity	p=0.038). There was no difference	
	Country:	Control (N=33): Placebo;	previously diagnosed or	index score: 3.3 (2.18)	in the severity of POD between	
	Germany	normal saline	suspected to suffer from major	Dementia %: 0 (excluded	groups and no difference in mean	
	Funding:	Duration: During surgery and	neurocognitive disorder (MMSE	MMSE <24)	(SD) duration of delirium between	
	Industry	in ICU	<24), severe audiovisual	Postop %: 100	the dexmedetomidine and placebo	
		Follow-up (days): 14 or until	impairment, TBI, intracranial	-Cardiac: 23	group (2.00 [1.41] vs. 0.89 [0.94]	
		discharge	bleeding <1 year before study,	-Pancreatic: 48	days respectively, p=0.149). No	
			psychiatric illness,	-Other intra-abdominal:	patients in the dexmedetomidine	
			hemodynamic dysfunction,	28	group died while 5 (15.6%) patients	
			second- or third-degree	Cancer %: 67	in the placebo group died (p=0.029).	
			atrioventricular heart block,		Attrition: 7% vs. 3%	
			spinal injury with autonomic			
			dysfunction, preop			
			cerebrovascular accident with			
			residual neurological deficit,			
			Child C liver cirrhosis, intra-			
			operative use of remifentanil or			
			clonidine, additional			
			administration of			
			dexmedetomidine within 3			
			months after inclusion, and			
			planned postop deep sedation			
			below a RASS of 4			
Wu et al.	Design: RCT	Randomized N: 76	Inclusion: ≥65 years who	Mean (SD) age: 75 (5.5)	Main outcomes: The incidences of	Low
(2016)	Setting: Postop,	Analyzed N: 61	underwent noncardiac surgery	Female %: 42.1	delirium and other complications	
	noncardiac	Intervention (N=38):	during general anesthesia and	Race %: NR		

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year);	characteristics	numbers of participants,	main inclusion and exclusion		and attrition rates	Bias
trial name		interventions, duration, and	criteria			
		follow-up				
	Country: China	Dexmedetomidine 0.1	were admitted to the surgical	Delirium %: NR	after surgery were not statistically	
	Funding:	μg/kg/hour	ICU	ASA II %: 51.3	different between the 2 groups.	
	Government	Control (N=38): Normal saline	Exclusion: History of	ASA III %: 48.7	Attrition: 21% vs. 18%	
		50 mL	schizophrenia, epilepsy, or	Dementia %: NR		
		Duration: 15 hours from	parkinsonism; history of sleep	Postop %: 100		
		5:00pm on the day of surgery	disorders (requirement of	Cancer %: NR		
		until 8:00am on the first day	hypnotics/sedatives during the			
		after surgery	last month); history of			
		Follow-up (days): 7,	obstructive sleep apnea			
		discharge, 30	syndrome; preop sick sinus			
			syndrome, severe sinus			
			bradycardia (heart rate less than			
			50 beats/minute), or			
			atrioventricular block of second			
			degree or above without			
			pacemaker; preop coma; brain			
			injury or neurosurgery; serious			
			hepatic dysfunction (Child-Pugh			
			class C); serious renal			
			dysfunction (undergoing dialysis			
			before surgery); or requirement			
			of MV			
Xin et al.	Design: RCT	Randomized N: 60	Inclusion: >65 years, undergoing	Mean age: 68.5	Main outcomes: POD occurred in	Moderate
(2021)	Setting: Intra-	Analyzed N: 60	laparoscopic cholecystectomy,	Female %: 63	10/30 patients (33.3%) in the	
	operative,	Intervention (N=30):	with mild cognitive impairment	Race %: NR	control group, and in 3/30 patients	
	cholecystectom	Dexmedetomidine 0.5 µg/kg	(MoCA 15-24; MMSE <27; CDR	Delirium %: 0 (excluded)	(10%) given dexmedetomidine (OR	
	У	IV bolus then 0.4 μg/kg/hour	of 0.5 points; and ADL score	ASA II %: 90	0.222, 95% Cl 0.054 to 0.914,	
	Country: China	IV	<26)	Dementia %: NR (excluded	p=0.028).	
	Funding:	Control (N=30): Normal saline	Exclusion: Preop delirium, preop	vascular dementia)	Overall attrition: 0%	
	Government	Duration: During surgery	neurological diseases affecting	Postop %: 100		
		Follow-up (days): 7	cognitive function (such as	Cancer %: NR		
			vascular dementia), severe liver			

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year);	characteristics	numbers of participants,	main inclusion and exclusion		and attrition rates	Bias
trial name		interventions, duration, and	criteria			
		follow-up				
			and renal insufficiency,			
			autoimmune diseases, recent			
			use of sedatives,			
			antidepressants or			
			immunosuppressive drugs, TBI,			
			or history of alcoholism			
Xuan et	Design: RCT	Randomized N: 453	Inclusion: >60 years with joint	Mean (SD) age: 66.7 (6.4)	Main outcomes: Incidence of POD	Low
al. (2018)	Setting: Postop,	Analyzed N: 453	replacement surgery and	Female %: 56.5	was significantly lower in the	
	ortho	Intervention (N=227):	admitted to the ICU	Race %: NR	dexmedetomidine group (30/227	
	Country: China	Dexmedetomidine 0.1	Exclusion: High cholesterol	Delirium %: NR	[13.2%]) than the placebo group	
	Funding:	μg/kg/hour	combined with diabetes; brain	Function: NR	(64/226 [28.3%]) (OR 0.385, 95% CI	
	Government	Control (N=226): Placebo;	injury or neurosurgery; severe	Dementia %: NR, history	0.238 to 0.624, p<0.0001).	
		normal saline	sinus bradycardia; sick sinus	of mental illness excluded	Regarding safety, incidence of	
		Duration: Daily for 3 days	syndrome; neurological disease;	Postop %: 100	hypertension was higher with	
		Follow-up (days): 3, 7, 30	abnormal liver enzymes,	-Total hip: 56.7	placebo (32/226 [14.2%]) than with	
			patients with rhabdomyolysis,	-Total knee: 43.3	dexmedetomidine (18/227 [7.9%])	
			and myopathy; history of	Cancer %: NR	(OR 0.522, 95% CI 0.284 to 0.961,	
			mental illness and epilepsy;		p=0.034).	
			severe lung disease and multiple		Attrition: 8% vs. 4%	
			organ dysfunction.			
Yang et al.	Design: RCT	Randomized N: 80	Inclusion: Age 18-80 years	Mean (SD) age: 50.45	Main outcomes: There was no	Moderate
(2015)	Setting: Intra-	Analyzed N: 79	undergoing maxillofacial free	(13.7)	difference in the incidence of	
	and post-	Intervention (N=40):	flap surgery	Female %: 47	delirium with dexmedetomidine	
	operative, free	Dexmedetomidine IV 0.5	Exclusion: Severe dementia	Race %: NR	compared with placebo within 5	
	flap surgery	µg/kg for 1 hour before		Delirium %: NR	days post-operatively (5.1% vs.	
	Country: China	surgery followed by 0.2-		ASA I,II %: 100	12.5%, p=0.432).	
	Funding:	0.7µg/kg/hour postop		Severe Dementia %: 0	Attrition: 3% vs. 0%	
	Unclear	Control (N=40): Placebo;		Postop %: 100		
		normal saline		maxillofacial free flap		
		Duration: Intra-operative,		surgery		
		postop		Cancer %: NR		

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year);	characteristics	numbers of participants,	main inclusion and exclusion		and attrition rates	Bias
trial name		interventions, duration, and	criteria			
		follow-up				
		Follow-up (days): Through				
		POD 5				
Zhang et	Design: RCT	Randomized N: 240	Inclusion: Age 65-90 years, ASA	Mean (SD) age: 78.5 (6.6)	Main outcomes: Dexmedetomidine	Moderate
al. (2020)	Setting: Intra-	Analyzed N: 218	I-III, and scheduled for hip	Female %: 68.7	decreased POD incidence (18.2% vs.	
	operative,	Intervention (N=120):	fracture operation	Race %: NR	30.6%, p=0.033).	
	orthopedic	Dexmedetomidine 0.5	Exclusion: History of psychosis	Delirium %: NR	Attrition: 8% vs. 19%	
	Country: U.S.	µg/kg/hour IV loading dose,	or long-term psychotropic	ASA II %: 64.6		
	Funding:	then 0.3 μg/kg/hour	medication use, history of	Dementia %: 0 (excluded)		
	Government	Control (N=120): Usual care	alcohol abuse, patients with	Postop %: 100		
		Intervention duration:	preop MMSE ≤23,	Cancer %: NR		
		Loading dose 30 minutes	cerebrovascular accidents such			
		prior to induction of	as stroke or TIA within 3			
		anesthesia, then until 30	months, or severe infection			
		minutes until anticipated end				
		of surgery				
		Control duration: During				
		surgery				
		Follow-up (days): 1, 23				
Zhao et al.	Design: RCT	Randomized N: 432	Inclusion: >65 years scheduled	Mean (SD) age: 69.5 (4.2)	Main outcomes: Incidence rates of	Moderate
(2020)	Setting: Intra-	Analyzed N: 416	to undergo non-cardiac major	Female %: 44	POD and early postop cognitive	
	operative,	Intervention 1 (N=111):	surgery with ASA I-III	Race %: NR	dysfunction 7 days after surgery	
	noncardiac	Dexmedetomidine 1 μ /kg	Exclusion: Regular use of	Delirium %: NR	were lower in the	
	Country: China	then dexmedetomidine 100	opioids, sedatives,	ASA II %: 97	dexmedetomidine 200 mg and 400	
	Funding:	μg plus sufentanil 150 μg in	antidepressants, or anxiolytic	Median (IQR) MMSE	mg groups than in the	
	Government	PCA pump	drugs prior to the surgery; drug	score: 27 (24-30)	dexmedetomidine 0 mg and 100 mg	
		Intervention 2 (N=107):	addiction; preop history of	Postop %: 100	groups (p<0.05). Compared with	
		Dexmedetomidine 1 μ /kg	schizophrenia, epilepsy,	-Thoracic: 15.9	dexmedetomidine 200 mg,	
		then dexmedetomidine 200	parkinsonism, or myasthenia	-Abdominal: 83.9	dexmedetomidine 400 mg reduced	
		μg plus sufentanil 150 μg in	gravis; brain injury or a history	-Orthopedic: 0.2	early postop cognitive dysfunction	
		PCA pump	of neurosurgery; serious hepatic	Cancer %: NR	in patients who underwent open	
		Intervention 3 (N=108):	dysfunction (Child-Pugh class C);		surgery (p<0.05). There were no	
		Dexmedetomidine 1 μ/kg	serious renal dysfunction		intergroup differences in the postop	

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year);	characteristics	numbers of participants,	main inclusion and exclusion		and attrition rates	Bias
trial name		interventions, duration, and	criteria			
		follow-up				
		then dexmedetomidine 400	(undergoing dialysis before		sedation level, pain intensity, and	
		μg plus sufentanil 150 μg in	surgery); a preop left ventricular		side effects.	
		PCA pump	ejection fraction <50%; sick		Attrition: 3% vs. 1% vs. 6% vs. 4%	
		Intervention 4 (N=106):	sinus syndrome, severe sinus			
		Sufentanil 150 µg in PCA	bradycardia (<50/minute), or a ≥			
		pump	second-degree atrioventricular			
		Intervention 1, Intervention 2,	block without a pacemaker; and			
		Intervention 3 duration: 10	a preop MMSE scores <17 in			
		minutes before anesthesia	uneducated patients, <20 for			
		induction, then post-	patients with education of ≤6			
		operatively	years, and <24 for patients with			
		Intervention 4 duration:	education of >6 years			
		Postop				
		Follow-up (days): 1, 2, 3, 7				

*This study was identified as part of the systematic review by the Pacific Northwest Evidence-Based Practice Center but was subsequently retracted.

Abbreviations. ADL=activities of daily living; APACHE II=Acute Physiology and Chronic Health Evaluation II; ASA=American Society of Anesthesiologists; BMI=body mass index; BP=blood pressure;

CABG=coronary artery bypass graf; CAM=Confusion Assessment Method; CDR=Clinical Dementia Rating; CI=confidence interval; CNS=central nervous system; CPB=cardiopulmonary bypass;

3253 3254 3255 3256 3257 3258 ICU=intensive care unit; IQR=interquartile range; IV=intravenous; MI=myocardial infarction; MMSE=Mini-Mental State Examination; MoCA=Montreal Cognitive Assessment; MV=medical ventilation;

N=number; NR=not reported; OR=odds ratio; PCA=patient-controlled analgesia; POD=post-operative delirium; postop=post-operative; preop=pre-operative; RASS=Richmond Agitation Sedation Scale;

RCT=randomized controlled trial; RR=relative risk; SD=standard deviation; TBI=traumatic brain injury; TIA=transient ischemic attack.

3259 In Intensive Care Unit Setting

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition rates	Bias
name		interventions, duration, and	criteria			
		follow-up				
Abdelgalel	Design: RCT	Randomized N: 90	Inclusion: Age 26-70 years, ASA	Mean (SD) age: 59 (50)	Main outcomes: The	Low
(2016)	Setting: ICU	Analyzed N: 90	status III and IV, and in Zagazig	Female %: 25	incidence of delirium was	
	Country: Egypt	Intervention 1 (N=30):	university hospital	Race %: NR	significantly lower in	
	Funding: None	Dexmedetomidine continuous	Exclusion: Patient's or relatives'	Delirium %: NR	dexmedetomidine group 3/30	
		IV infusion of 0.2-0.7	refusal, allergy to any of the	APACHE II mean score (0 to	(10%) than haloperidol 10/30	
		µg/kg/hour; loading dose of	studied drugs, psychiatric	71): 17	(33.3%) and placebo 13/30	
		1.0 μg/kg IV over 10 minutes if	disorders or on antipsychotic	Dementia %: "severe"	(43.3%) groups. The ICU LOS	
		needed	medications, severe dementia,	dementia excluded	was significantly shorter in	

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition rates	Bias
name		interventions, duration, and	criteria			
		follow-up				
		Intervention 2 (N=30):	heart rate 650 beats/minute or	Postop %: 17.8	dexmedetomidine group	
		Haloperidol continuous IV	systolic blood pressure 690	Cancer %: NR	(3.1±0.4 days) than	
		infusion of 0.5-2 mg/hour;	mmhg, prolonged QTc-time		haloperidol and placebo	
		loading dose of 2.5 mg IV over	(>500 ms), history of		groups (6.5±1.0 and 6.9±1.2	
		10 minutes if needed	clinically relevant ventricular		days, respectively).	
		Intervention 3 (N=30):	arrhythmia, epilepsy or		Overall attrition: 0%	
		Placebo; normal saline	parkinsonism, and pregnancy			
		Duration: During MV				
		Follow-up (days): NR				
Skrobik et	Design: RCT	Randomized N: 100	Inclusion: ICU patients receiving	Mean (SD) age: 62.25 (13.66)	Main outcomes: Receipt of	Moderate
al. (2018)	Setting: ICU	Analyzed N: 100	intermittent or continuous	Female %: 36	nocturnal dexmedetomidine	
	Country: Canada	Intervention 1 (N=50):	sedatives and expected to need	Race %: NR	in the ICU compared with	
	Funding:	Dexmedetomidine IV 0.2	at least 48 hours of ICU care	Delirium %: 0	placebo was associated with	
	Industry	μg/kg/hour	Exclusion: Patients with delirium	APACHE II (SD): 22.75 (7.85)	less incident delirium (20% vs.	
		Control (N=50): Placebo;	or evidence of severe dementia	Severe Dementia %: 0	46%, p=0.006).	
		dextrose 5% in water		Postop %: 27	Overall attrition: 0%	
		Duration: During ICU stay		Cancer %: NR		
		Follow-up (days): Discharge				
		from ICU				

Abbreviations. APACHE II=Acute Physiology and Chronic Health Evaluation II; ASA=American Society of Anesthesiologists; ICU=intensive care unit; IV=intravenous; LOS=length of stay; MV=medical
 ventilation; N=number; NR=not reported; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

3262 Dexmedetomidine vs. Propofol

3263 In Surgical Setting

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
name		interventions, duration, and				
		follow-up				
Chang et	Design: RCT	Randomized N: 60	Inclusion: Age 20-99 years undergoing	Mean (SD) age: 70.52	Main outcomes: There were	Moderate
al. (2018)	Setting: Postop,	Analyzed N: 60	major abdominal surgery	(11.08)	no instances of delirium	
	major	Intervention 1 (N=31):	Exclusion: Refractory bradycardia less	Female %: 42	within 24 hours after	
		Dexmedetomidine IV 0.1-0.7	than 60 bpm, high degree	Race %: NR	abdominal surgery.	

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
	Country: Taiwan Funding: Unclear	μg/kg/h Intervention 2 (N=29): Propofol IV 0.3-1.6 mg/kg/h Duration: Postop Follow-up (days): 0-24 hours postop	atrioventricular block (second or third degree), refractory shock despite resuscitation (MAP <60 mm Hg), new onset of MI, New York Heart Association Class IV heart failure, acute physiology and chronic health evaluation II score >30, severe liver cirrhosis (ChildePugh class B or C), organ transplantation within 1 year, pregnancy, known allergic history to dexmedetomidine or propofol, enrolled in other clinical trial of dexmedetomidine or propofol within 1 month, signed consent of do not resuscitate, other conditions determined by surgeon or primary intensivist, and non-native speaker	Delirium %: NR APACHE II score > 30 %: 0 Dementia %: NR Postop %: 100 abdominal surgery Cancer %: NR	Overall attrition: 0%	
Djaiani et al. (2016)	Design: RCT Setting: Postop, cardiac Country: Canada Funding: Mixed	Randomized N: 185 Analyzed N: 183 Intervention 1 (analyzed N=91): Dexmedetomidine continuous IV infusion of 0.4 µg/kg bolus followed by 0.2- 0.7 µg/kg/hour; if MV needed beyond 24 hours, patients switched to propofol Intervention 2 (analyzed N=92): Propofol continuous IV infusion 25-50 µg/kg/minute Intervention 1 duration: Postop during MV, maximum 24 hours	Inclusion: ≥60 years undergoing complex cardiac surgery or ≥70 years undergoing coronary revascularization or single-valve repair/replacement with the use of CPB Exclusion: Patients with serious mental illness, delirium, or severe dementia	Mean (SD) age: 72.55 (6.3) Female %: 25 Race %: NR Delirium %: 0 Function: NR Severe Dementia %: 0 Postop %: 100 cardiac surgery Cancer %: 0	Main outcomes: POD was present in 16 of 91 (17.5%) and 29 of 92 (31.5%) patients in dexmedetomidine and propofol groups, respectively (p=0.028). Duration of POD was 2 days vs. 3 days (p=0.04). Overall attrition: 1%	Moderate

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
name		interventions, duration, and				
		follow-up				
		Intervention 2 duration: Intra-				
		operative				
		Follow-up (days): Through day				
Liv V at al	Design: DCT	5 Randomized N: 68		Madian and 54		Madavata
Liu X. et al.	Design: RCT		Inclusion: ≥18 years undergoing	Median age: 54	Main outcomes: The	Moderate
(2016)	Setting: Postop,	Analyzed N: 61	elective cardiac valve surgery	Female %: 59	incidence of delirium was not	
	cardiac	Intervention 1 (N=34):	admitted to ICU	Race %: NR	different in those who	
	Country: China	Dexmedetomidine IV 0.2-1.5	Exclusion: Patients who received 2 or	Delirium %: NR	received dexmedetomidine	
	Funding:	μg/kg/hour	more sedatives after randomization	Median APACHE II: 15 or	vs. propofol (0% vs. 6%,	
	Unclear	Intervention 2 (N=34): Propofol	and had a sedation time <4 hours or ≥24 hours	16 Dementia %: NR	p=0.493). Attrition: 12% vs. 6%	
		IV 5-50 µg/kg/minute	224 hours		Attrition: 12% vs. 6%	
		Duration: Postop		Postop %: 100 cardiac		
		Follow-up (days): Unclear		surgery Cancer %: 0		
		(delirium listed as an adverse event)		Cancer %: 0		
Maldonado	Design: RCT	Randomized N: 118	Inclusion: Age 18-90 years undergoing	Mean (SD) age: 57 (17)	Main outcomes: Postop	Moderate
et al.	Setting: Postop,	Analyzed N: 90	elective cardiac valve operation	Female %: 36	sedation with	wouldate
(2009)	cardiac	Intervention 1 (N=40):	Exclusion: Preexisting dementia	Race %: NR	dexmedetomidine was	
(2009)	Country: U.S.	Dexmedetomidine IV 0.4 µg/kg	Exclusion: Preexisting dementia	Delirium %: NR	associated with significantly	
	Funding:	bolus followed by 0.2-0.7		Mean ASA: 3.4	lower rates of POD than	
	Unclear	μg/kg/hour		MMSE: 29.4	propofol or midazolam (3%	
	Unclear	Intervention 2 (N=38): Propofol		Dementia %: 0	vs. 50% vs. 50%).	
		IV 25-50 μg/kg/minute		Postop %: 100 cardiac	Attrition: 10% vs. 18% vs.	
		Intervention 3 (N=40):		surgery	20%	
		Midazolam IV 0.5-2.0 mg/hour		Cancer %: 0	2070	
		Duration: Postop				
		Follow-up (days): Through POD				
		3				
Mei et al.	Design: RCT	Randomized N: 336	Inclusion: ≥65 years undergoing total	Mean (SD) age: 75 (7)	Main outcomes: Patients	Low
(2018)	Setting: Intra-	Analyzed N: 296	hip arthroplasty with nerve block	Female %: 54	sedated with	
()	operative, hip	Intervention 1 (N=167):	Exclusion: Cognitive impairment	Race %: NR	dexmedetomidine had a	
	Country: China	Dexmedetomidine IV 0.8-1.0	and/or preop delirium	Delirium %: 0	lower incidence of POD than	

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
name		interventions, duration, and				
		follow-up				
	Funding:	µg/kg bolus followed by 0.1-		Mean ASA: 3	patients sedated with	
	Government	0.5 μg/kg/hour until end of		MMSE: 26	propofol (7% vs. 16%,	
		surgery		Dementia %: 0	p=0.030).	
		Intervention 2 (N=169):		Postop %: 100 hip	Attrition: 9% vs. 11%	
		Propofol IV 0.8-1.0 μg/mL		arthroplasty		
		Duration: Intra-operative		Cancer %: 0		
		Follow-up (days): Through POD				
		3				
Mei B. et	Design: RCT	Randomized N: 415*	Inclusion: ≥65 years undergoing total	Mean (SD) age: 72.5	Main outcomes: Patients	Moderate
al. (2020)	Setting: Intra-	*The study noted 207 and 208	hip arthroplasty with nerve block	(10)	sedated with	
	operative, hip	patients were assigned to the	Exclusion: Cognitive impairment	Female %: 60	dexmedetomidine had a	
	Country: China	groups but it is not clear which	and/or preop delirium	Race %: NR	lower incidence of POD than	
	Funding:	group had which number of		Delirium %: 0	patients sedated with	
	Government	patients.		Mean ASA: 2	propofol (14% vs. 23%,	
		Analyzed N: 366		MMSE: 26.9	p=0.032).	
		Intervention 1 (N=unclear):		Dementia %: 0	Attrition: 5% vs. 8%	
		Dexmedetomidine IV 0.8-1.0		Postop %: 100 knee		
		µg/kg bolus followed by 0.1-		arthroplasty		
		0.5 μg/kg/hour until end of		Cancer %: 0		
		surgery				
		Intervention 2 (N=unclear):				
		Propofol IV 0.8 -1.0 μg/mL				
		Duration: Intra-operative				
		Follow-up (days): Through POD				
		7				
Sheikh et	Design: RCT	Randomized N: 60	Inclusion: Age 15-60 years undergoing	Mean (SD) age: 34.58	Main outcomes: The risk of	High
al. (2018)	Setting: Intra-	Analyzed N: 60	elective open-heart surgery	(10.74)	delirium was significantly less	
	operative,	Intervention 1 (N=30):	Exclusion: Patients with	Female %: NR	in the dexmedetomidine	
	cardiac	Dexmedetomidine IV 1.0 μg/kg	neurological/psychological disorders	Race %: NR	group compared with the	
	Country: India	bolus followed by 0.2-0.6		Delirium %: NR	propofol group (3.3% vs.	
	Funding: None	μg/kg/hour		Function: NR	23.3%, p=0.02).	
				Dementia %: NR	Attrition: NR	

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
name		interventions, duration, and				
		follow-up				
		Intervention 2 (N=30): Propofol		Postop %: 100 cardiac		
		IV 0.25-1.0 µg/kg/hour		surgery		
		Duration: Intra-operative		Cancer %: NR		
		Follow-up (days): Discharge				
Susheela et	Design: RCT	Randomized N: 12	Inclusion: ≥60 undergoing CABG and/or	Mean (SD) age: NR	Main outcomes: The	Moderate
al. (2017);	Setting: Postop,	Analyzed N: 12	valve surgery	Female %: NR	incidence of delirium was 2/3	
O'Neal et	cardiac	Intervention 1 (N=3):	Exclusion: Preexisting cognitive	Race %: NR	in the dexmedetomidine and	
al. (2015)	Country: U.S.	Dexmedetomidine IV 0.1-1.0	impairment or medications for	Delirium %: NR	the propofol groups, 1/3 in	
	Funding:	μg/kg/hour	cognitive decline	Function: NR	the dexmedetomidine plus	
	Government	Intervention 2 (N=3): Propofol		Cognitive Impairment %:	acetaminophen group, and	
		IV 25-100 μg/kg/minute		0	0/3 in the group receiving	
		Intervention 3 (N=3):		Postop %: 100	propofol plus	
		Dexmedetomidine IV 0.1-1.0		Cancer %: 0	acetaminophen.	
		µg/kg/hour plus IV			Overall attrition: 0%	
		acetaminophen 1 g/6 hours				
		Intervention 4 (N=3): Propofol				
		IV 25-100 μg/kg/minute plus IV				
		acetaminophen 1 g/6 hours				
		Duration: Postop				
		Follow-up (days): Discharge				

Abbreviations. APACHE II=Acute Physiology and Chronic Health Evaluation II; ASA=American Society of Anesthesiologists; CPB=cardiopulmonary bypass; ICU=intensive care unit; IV=intravenous;

3264 3265 3266 MAP=mean arterial pressure; MI=myocardial infarction; MMSE=Mini-Mental State Examination; MV=medical ventilation; N=number; NR=not reported; POD=post-operative delirium; postop=postoperative; preop=pre-operative; RCT=randomized controlled trial; SD=standard deviation.

3267 In Intensive Care Unit Setting

Author	Study	Study protocol including numbers	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	of participants, interventions,	main inclusion and exclusion		outcomes and attrition	Bias
name		duration, and follow-up	criteria		rates	
Jakob et al.	Design: RCT	Randomized N: 500	Inclusion: ≥18 years requiring	Median age: 65	Main outcomes: There	Low
(2012);	Setting: ICU	Analyzed N: 498	MV with light to moderate	Female %: 35	was no difference in the	
PRODEX	Country: Europe	Intervention 1 (N=251):	sedation for at least 24 hours	Race %: NR	incidence of delirium	
	and Russia	Dexmedetomidine IV 0.2-1.4	Exclusion: Acute severe	Delirium %: NR	between the	
		μg/kg/hour	neurological disorder, MAP	Simplified Acute Physiology	dexmedetomidine group	

	Funding:	Intervention 2 (N=249): Propofol IV	<55 mm Hg, heart rate	Score II: 46.3	and the propofol group at	
	Industry	0.3-4.0 mg/kg/hour	<50/minute, atrioventricular-	Dementia %: NR	48 hours post sedation	
	,	Duration: MV	conduction grade II or III	Postop %: 56.2	(9.6% vs. 13.7%, p=0.231).	
		Follow-up (days): Delirium assessed	(unless pacemaker installed),	Cancer %: NR	Attrition: 28% vs. 24%	
		48 hours after discontinuing	and			
		sedation	use of α_2 agonists or			
			antagonists within 24 hours			
			prior to randomization			
Li et al.	Design: RCT	Randomized N: 126	Inclusion: ≥18 years admitted	Mean (SD) age: 43.98	Main outcomes: The rate	Moderate
(2019)	Setting: ICU	Analyzed N: 126	to general ICU for more than	(14.05)	of delirium was	
. ,	Country: China	Intervention 1 (N=64):	96 hours under continuous	Female %: 44	significantly lower in the	
	Funding: Mixed	Dexmedetomidine IV 0.8	sedation and analgesia for 48	Race %: NR	dexmedetomidine group	
		μg/kg/hour	hours or longer	Delirium %: NR	than in the common	
		Intervention 2 (N=62): Midazolam	Exclusion: GCS <13 at baseline	APACHE II: 20.5	sedation (control) group	
		IV 0.06 mg/kg/hour or propofol IV	in ED	Dementia %: NR	(28% vs. 55%, p=0.0023).	
		0.5-2 mg/kg/hour		Postop %: 0 within 24 hours	Attrition: NR	
		Duration: During ICU stay		of study		
		Follow-up (days): Delirium assessed		Cancer %: 0		
		twice daily until discharged from				
		ICU				
Ruokonen	Design: RCT	Randomized N: 85	Inclusion: ≥18 years, MV, need	Median age: 64 vs. 68	Main outcomes: Delirium	Moderate
et al.	Setting: ICU	Analyzed N: 85	for sedation for ≥24 hours	Female %: 17.6	was more common in the	
(2009)	Country: Finland	Intervention 1 (N=41):	after randomization, and an	Race %: NR	dexmedetomidine group	
	Funding:	Dexmedetomidine 0.8 μg/kg/hour	expected ICU stay ≥48 hours	Delirium %: NR	than in the standard care	
	Industry	for 1 hour, then adjusted stepwise	Exclusion: Acute severe	Function: NR	group (43.9% vs. 25.0%,	
		at 0.25, 0.5, 0.8, 1.1, and 1.4	neurological disorder, MAP	Dementia %: NR	p=0.035) when analyzed	
		μg/kg/hour	<55 mmHg despite volume	Postop %: NR	as the combined endpoint	
		Intervention 2 (N=44): Standard	and vasopressors, heart rate	Cancer %: NR	of CAM-ICU and adverse	
		care: 1) propofol 2.4 mg/kg/hour	<50 beats/minute,		events of delirium and	
		for 1 hour, then adjusted stepwise	atrioventricular conduction		confusion. However, more	
		at 0.8, 1.6, 2.4, 3.2, and 4.0	block II to III (unless		CAM-ICU assessments	
		mg/kg/hour OR 2) midazolam IV	pacemaker installed), hepatic		were performed in the	
		bolus 1-2 mg starting at 3	SOFA score >2, bilirubin >101		dexmedetomidine group	
		boluses/hour for 1 hour, thereafter	Imol/L, muscle relaxation, loss		than in the standard care	
		1-4 boluses/hour; if not sufficient	of hearing or vision, any other		group (106 vs. 84), and the	
		as continuous infusion of 0.2	condition interfering with		proportion of positive	

		mg/kg/hour for 1 hour followed by adjustment at 0.04, 0.08, 0.12, 0.16, and 0.20 mg/kg/hour Duration: During ICU stay Follow-up (days): 45	RASS assessment, or use of α_2 agonists or antagonists at the time of randomization		CAM-ICU results was comparable (17.0% vs. 17.9%, p=NS). During the follow-up to ICU discharge, no significant difference was observed in the occurrence rate of positive RASS scores (26% vs. 32%). Attrition: 24% vs. 16%	
Winings et al. (2021)	Design: RCT Setting: ICU Country: U.S. Funding: None	Randomized N: 57 Analyzed N: 57 Intervention 1 (N=28): Dexmedetomidine mean dose of 0.48 mcg/kg/hour Intervention 2 (N=29): Propofol mean dose of 24.6 mcg/kg/minute Duration: During ICU stay Follow-up (days): 4	Inclusion: ≥ 18 years, MV, placed on the institutional sedation protocol, expected to require sedation lasting 24 hours after randomization, and admitted to the Trauma/Surgical ICU and followed by the Trauma/Surgical ICU Service Exclusion: ≥ 72 hours since sedation protocol initiation, treatment per the institutional TBI protocol, concomitant continuous infusion of a neuromuscular blocking agent, heart rate <50 beats/minute, MAP <55 mmHg despite fluid resuscitation and vasopressors, and/or use of other α_2 agonists within 24 hours of randomization	Mean (SD) age: 50.6 (19.2) Female %: 28.9 Race %: NR Delirium %: NR Mean (SD) APACHE II: 17.5 (7.4) Dementia %: NR Postop %: 29.8 Cancer %: NR	Main outcomes: There was no difference between the groups in ICU mortality, ICU and hospital LOS, or incidence of delirium. Attrition: NR	Moderate

3268 3269 3270 Abbreviations. APACHE II=Acute Physiology and Chronic Health Evaluation II; CAM-ICU=Confusion Assessment Method for the ICU; ED=emergency department; GCS=Glasgow Coma Scale; ICU=intensive care unit; IV=intravenous; LOS=length of stay; MAP=mean arterial pressure; MV=medical ventilation; N=number; NR=not reported; NS=not significant; postop=post-operative;

RASS=Richmond Agitation Sedation Scale; RCT=randomized controlled trial; SD=standard deviation; SOFA=Sequential Organ Failure Assessment; TBI=traumatic brain injury.

3271 Dexmedetomidine vs. Midazolam

3272 In Surgical Setting

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
Hassan et al. (2021)	Design: RCT Setting: Intra- operative, cardiac Country: Pakistan Funding: NR	Randomized N: 70 Analyzed N: 70 Intervention 1 (N=35): Dexmedetomidine 0.7 µg/kg/hour IV in operating room then 0.4 µg/kg/hour IV Intervention 2 (N=35): Midazolam 0.05 µg/(kg.h) IV in operating room then 0.02- 0.08 µg/(kg.h) IV Duration: Perioperative (intra-operative and postop) Follow-up (days): 1, 2, 3	Inclusion: Age 55-75 years for elective cardiac surgery Exclusion: History of psychiatric illness or those already diagnosed with cognitive disorder	Mean age: 59.6 Female %: 44.3 Race %: NR Delirium %: 0 (excluded) ASA: I-II %: 100 Dementia %: NR Postop %: 100 Cardiac surgery %: 100 Cancer NR	Main outcomes: Patients who received dexmedetomidine were less likely to experience POD than patients who received midazolam (8.6% vs. 22.9%, p=0.04). Attrition: NR	Moderate
He et al. (2018)	Design: RCT Setting: Intra- operative, orthopedic Country: Funding: China Government	Randomized N: 90 Analyzed N: 90 Intervention 1 (N=30): Dexmedetomidine 0.5 µg/kg initial bolus, then maintained at 0.4 µg/kg/hour Intervention 2 (N=30): Midazolam IV of 0.03 mg/kg Intervention 3 (N=30): Normal saline Intervention 1 duration: 10 minutes before anesthesia induction, then during surgery Intervention 2, Intervention 3 duration: Before anesthesia	Inclusion: Age 75-90 years with thoracic or lumbar vertebral fractures and receiving selective operation at grade I to III in the ASA classification Exclusion: CNS disease, mental illness, or ≤23 on MMSE	Mean (SD) age: 82.5 (5.6) Female %: 42 Race %: NR Delirium %: NR Function: NR Dementia %: NR Postop %: NR Cancer %: NR	Main outcomes: The incidence rate of POD in the dexmedetomidine group was apparently lower than those in the other 2 groups (p<0.05); the incidence rate of POD at 1-2 days after operation in midazolam group was higher than that in the normal saline group (p<0.05). There was no significant difference in the incidence rate of POD at 3- 5 days after operation between the midazolam	Moderate

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
name		follow-up	Citteria		Tates	
		Follow-up (days): 5			and normal saline groups (p>0.05). Attrition: NR	
Maldonado et al. (2009)	Design: RCT Setting: Postop, cardiac Country: U.S. Funding: Unclear	Randomized N: 118 Analyzed N: 90 Intervention 1 (N=40): Dexmedetomidine IV 0.4 µg/kg bolus followed by 0.2- 0.7 µg/kg/hour Intervention 2 (N=38): Propofol IV 25-50 µg/kg/minute Intervention 3 (N=40): Midazolam IV 0.5-2.0 mg/hour Duration: Postop Follow-up (days): Through POD 3	Inclusion: Age 18-90 years undergoing elective cardiac valve operation Exclusion: Preexisting dementia	Mean (SD) age: 57 (17) Female %: 36 Race %: NR Delirium %: NR Mean ASA: 3.4 MMSE: 29.4 Dementia %: 0 Postop %: 100 cardiac surgery Cancer %: 0	Main outcomes: Postop sedation with dexmedetomidine was associated with significantly lower rates of POD than propofol or midazolam (3% vs. 50% vs. 50%). Attrition: 10% vs. 18% vs. 20%	Moderate
Yu et al. (2017)	Design: RCT Setting: Intra- operative, cardiothoracic Country: China Funding: Unclear	Randomized N: 92 Analyzed N: 92 Intervention 1 (N=46): Dexmedetomidine IV bolus (dose NR) followed by 0.2-0.7 µg/kg/hour Intervention 2 (N=46): Midazolam 0.05 µg/kg bolus followed by 0.02-0.08 µg/kg/hour Duration: Intra-operative Follow-up (days): POD 1-3	Inclusion: >60 years undergoing elective thoracic surgery Exclusion: Senile dementia	Mean (SD) age: 68.91 (4.57) Female %: 45 Race %: NR Delirium %: NR ASA I,II %: 100 Senile Dementia %: 0 Postop %: 100 thoracic surgery Cancer %: NR	Main outcomes: There was less POD in the dexmedetomidine group compared with the midazolam group (6.52% vs. 21.74%, p<0.05). Attrition: NR	Moderate

3273 3274

3 Abbreviations. ASA=American Society of Anesthesiologists; CNS=central nervous system; IV=intravenous; MMSE=Mini-Mental State Examination; N=number; NR=not reported; POD=post-operative

delirium; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

Author (year); trial	Study characteristics	Study protocol including numbers of participants, interventions,	Study population including main inclusion and exclusion	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
name		duration, and follow-up	criteria			
Jakob et al.	Design: RCT	Randomized N: 501	Inclusion: ≥18 years requiring	Median age: 65	Main outcomes: There was	Low
(2012);	Setting: ICU	Analyzed N: 500	MV with light to moderate	Female %: 34	no difference in the	
MIDEX	Country:	Intervention 1 (N=249):	sedation for at least 24 hours	Race %: NR	incidence of delirium	
	Europe	Dexmedetomidine IV 0.2-1.4	Exclusion: Acute severe	Delirium %: NR	between the	
	Funding:	μg/kg/hour	neurological disorder, MAP <55	Simplified Acute	dexmedetomidine group and	
	Industry	Intervention 2 (N=252): Midazolam	mm Hg, heart rate <50/minute,	Physiology Score II: 45.5	the midazolam group at 48	
		IV 0.03-0.2 mg/kg/hour	atrioventricular-conduction	Dementia %: NR	hours post sedation (11.9%	
		Duration: MV	grade II or III (unless pacemaker	Postop %: 70.6	vs. 13.9%, p=0.393).	
		Follow-up (days): Delirium assessed	installed), and use of α_2	Cancer %: NR	Attrition: 13% vs. 20%	
		48 hours after discontinuing sedation	agonists or antagonists within			
			24 hours prior to randomization			
Li et al.	Design: RCT	Randomized N: 126	Inclusion: ≥18 years admitted to	Mean (SD) age: 43.98	Main outcomes: The rate of	Moderate
(2019)	Setting: ICU	Analyzed N: 126	general ICU for more than 96	(14.05)	delirium was significantly	
	Country: China	Intervention 1 (N=64):	hours under continuous	Female %: 44	lower in the	
	Funding: Mixed	Dexmedetomidine IV 0.8 μg/kg/hour	sedation and analgesia for 48	Race %: NR	dexmedetomidine group	
		Intervention 2 (N=62): Midazolam IV	hours or longer	Delirium %: NR	than in the common sedation	
		0.06 mg/kg/hour or propofol IV 0.5-2	Exclusion: GCS <13 at baseline	APACHE II: 20.5	(control) group (28% vs. 55%,	
		mg/kg/hour	in ED	Dementia %: NR	p=0.0023).	
		Duration: During ICU stay		Postop %: 0 within 24	Attrition: NR	
		Follow-up (days): Delirium assessed		hours of study		
		twice daily until discharged from ICU		Cancer %: 0		
MacLaren	Design: RCT	Randomized N: 23	Inclusion: Age 18-85 years,	Mean (SD) age: 58.04	Main outcomes: There was	Moderate
et al. (2015)	Setting: ICU	Analyzed N: 23	critically ill requiring MV, and	(12.53)	no statistically significant	
	Country: U.S.	Intervention 1 (N=11):	receiving a benzodiazepine	Female %: 43	difference between	
	Funding:	Dexmedetomidine IV 0.15-1.5	infusion with an anticipated	Race %: NR	dexmedetomidine and	
	Industry	μg/kg/hour	need of at least 12 additional	Delirium %: NR	midazolam in new onset	
		Intervention 2 (N=12): Midazolam IV	hours of sedation	APACHE III: 72.2	delirium (1 vs. 5, p=0.07).	
		1-10 mg/hour	Exclusion: Baseline dementia	Dementia %: 0	Attrition at follow-up: 9% vs.	
		Duration: MV		Postop %: 13.0	0%	
		Follow-up (days): Delirium assessed		Cancer %: NR		
		twice daily				

DRAFT January 25, 2024 NOT FOR CITATION

Author	Study	Study protocol including numbers of	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	participants, interventions,	main inclusion and exclusion		outcomes and attrition rates	Bias
name		duration, and follow-up	criteria			
Ruokonen	Design: RCT	Randomized N: 85	Inclusion: ≥18 years, MV, need	Median age: 64 vs. 68	Main outcomes: Delirium	Moderate
et al. (2009)	Setting: ICU	Analyzed N: 85	for sedation for ≥24 hours after	Female %: 17.6	was more common in the	
	Country:	Intervention 1 (N=41):	randomization, and an	Race %: NR	dexmedetomidine group	
	Finland	Dexmedetomidine 0.8 µg/kg/hour for	expected ICU stay ≥48 hours	Delirium %: NR	than in the standard care	
	Funding:	1 hour, then adjusted stepwise at	Exclusion: Acute severe	Function: NR	group (43.9% vs. 25.0%,	
	Industry	0.25, 0.5, 0.8, 1.1, and 1.4	neurological disorder, MAP <55	Dementia %: NR	p=0.035) when analyzed as	
		μg/kg/hour	mmHg despite volume and	Postop %: NR	the combined endpoint of	
		Intervention 2 (N=44): Standard care:	vasopressors, heart rate <50	Cancer %: NR	CAM-ICU and adverse events	
		1) propofol 2.4 mg/kg/hour for 1	beats/minute, atrioventricular-		of delirium and confusion.	
		hour, then adjusted stepwise at 0.8,	conduction block II to III (unless		However, more CAM-ICU	
		1.6, 2.4, 3.2, and 4.0 mg/kg/hour	pacemaker installed), hepatic		assessments were performed	
		OR 2) midazolam IV bolus 1-2 mg	SOFA score >2, bilirubin >101		in the dexmedetomidine	
		starting at 3 boluses/hour for 1 hour,	Imol/L, muscle relaxation, loss		group than in the standard	
		thereafter 1-4 boluses/hour; if not	of hearing or vision, any other		care group (106 vs. 84), and	
		sufficient as continuous infusion of	condition interfering with RASS		the proportion of positive	
		0.2 mg/kg/hour for 1 hour followed	assessment, or use of α_2		CAM-ICU results was	
		by adjustment at 0.04, 0.08, 0.12,	agonists or antagonists at the		comparable (17.0% vs.	
		0.16, and 0.20 mg/kg/hour	time of randomization		17.9%, p=NS). During the	
		Duration: During ICU stay			follow-up to ICU discharge,	
		Follow-up (days): 45			no significant difference was	
					observed in the occurrence	
					rate of positive RASS scores	
					(26% vs. 32%).	
					Attrition: 24% vs. 16%	
Shu et al.	Design: RCT	Randomized N: 80	Inclusion: >60 years requiring	Mean age: 73.61 (8.28)	Main outcomes: There was	Moderate
(2019)	Setting: ICU	Analyzed N: 80	MV for more than 24 hours	Female %: 35	no significant difference	
	Country: China	Intervention 1 (N=40):	Exclusion: CNS disease	Race %: NR	between dexmedetomidine	
	Funding:	Dexmedetomidine IV 1.0 µg/kg bolus		Delirium %: NR	and midazolam in the	
	Unclear	followed by 0.2-0.7 μg/kg/hour		APACHE II score: 22.43	incidence of delirium (0% vs.	
		Intervention 2 (N=40): Midazolam		(4.84)	10%, p>0.05).	
		0.05 mg/kg bolus followed by 0.05-		Dementia %: NR	Attrition: NR	
		0.10 mg/kg/hour		Postop %: NR		
				Cancer %: NR		

DRAFT January 25, 2024 NOT FOR CITATION

Author	Study	Study protocol including numbers of	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	participants, interventions,	main inclusion and exclusion		outcomes and attrition rates	Bias
name		duration, and follow-up	criteria			
		Duration: MV				
		Follow-up (days): Day 1				

3276 Abbreviations. APACHE II=Acute Physiology and Chronic Health Evaluation II; CAM-ICU=Confusion Assessment Method for the ICU; CNS=central nervous system; ED=emergency department;

3277 GCS=Glasgow Coma Scale; ICU=intensive care unit; IV=intravenous; MAP=mean arterial pressure; MV=medical ventilation; N=number; NR=not reported; NS=not significant; postop=post-operative;

3278 RASS=Richmond Agitation Sedation Scale; RCT=randomized controlled trial; SD=standard deviation; SOFA=Sequential Organ Failure Assessment.

3279 Dexmedetomidine vs. Haloperidol

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition rates	Bias
name		interventions, duration, and	criteria			
		follow-up				
Abdelgalel	Design: RCT	Randomized N: 90	Inclusion: Age 26-70 years, ASA	Mean (SD) age: 59 (50)	Main outcomes: The	Low
(2016)	Setting: ICU	Analyzed N: 90	status III and IV, and in Zagazig	Female %: 25	incidence of delirium was	
	Country: Egypt	Intervention 1 (N=30):	university hospital	Race %: NR	significantly lower in	
	Funding: None	Dexmedetomidine continuous	Exclusion: Patient's or relatives'	Delirium %: NR	dexmedetomidine group 3/30	
		IV infusion of 0.2-0.7	refusal, allergy to any of the	APACHE II mean score (0 to	(10%) than haloperidol 10/30	
		µg/kg/hour; loading dose of	studied drugs, psychiatric	71): 17	(33.3%) and placebo 13/30	
		1.0 μg/kg IV over 10 minutes if	disorders or on antipsychotic	Dementia %: "severe"	(43.3%) groups. The ICU LOS	
		needed	medications, severe dementia,	dementia excluded	was significantly shorter in	
		Intervention 2 (N=30):	heart rate 650 beats/minute or	Postop %: 17.8	dexmedetomidine group	
		Haloperidol continuous IV	systolic blood pressure 690	Cancer %: NR	(3.1±0.4 days) than	
		infusion of 0.5-2 mg/hour;	mmhg, prolonged QTc-time		haloperidol and placebo	
		loading dose of 2.5 mg IV over	(>500 ms) or history of		groups (6.5±1.0 and 6.9±1.2	
		10 minutes if needed	clinically relevant ventricular		days, respectively).	
		Intervention 3 (N=30): Normal	arrhythmia, epilepsy or		Overall attrition: 0%	
		saline	parkinsonism, and pregnancy			
		Duration: During MV				
		Follow-up (days): NR				

3280 Abbreviations. APACHE II=Acute Physiology and Chronic Health Evaluation II; ASA=American Society of Anesthesiologists; ICU=intensive care unit; IV=intravenous; LOS=length of stay; MV=medical ventilation; N=number; NR=not reported; postop=post-operative; RCT=randomized controlled trial.

3281

3282 Dexmedetomidine vs. Melatonin Plus Dexmedetomidine

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition	Bias
name		interventions, duration, and	criteria		rates	
		follow-up				
Mahrose et	Design: RCT	Randomized N: 110	Inclusion: >60 years having	Mean age: 66.5	Main outcomes: Fewer	Moderat
al. (2021)	Setting: Preop,	Analyzed N: 110	elective CABG surgery	Female %: 24.5	patients who received	
	cardiac	Intervention 1 (N=55):	Exclusion: Patients undergoing	Race %: NR	melatonin in addition to	
	Country: Egypt	Melatonin 5 mg plus	emergency procedures, any	Delirium %: NR	dexmedetomidine	
	Funding: NR	dexmedetomidine 0.4 µg/kg	preop mental illness, preop	Function: NR	experienced delirium, and	
		IV bolus, then 0.2-0.7	renal failure, chronic liver	Dementia %: NR (excluded	duration of delirium was	
		μg/kg/hour IV	disease (Child classification class	any mental illness)	shorter.	
		Intervention 2 (N=55):	B and C), carotid duplex to have	Postop %: 100	Overall attrition: 0%	
		Dexmedetomidine 0.4 μg/kg	carotid disease, or prolonged	CABG surgery %: 100		
		IV bolus, then 0.2-0.7	postop intubation and re-	Cancer %: NR		
		μg/kg/hour IV	exploration			
		Intervention 1 duration:				
		Melatonin - 10 pm night				
		before surgery and every				
		evening before bed for 3 days;				
		dexmedetomidine - upon				
		arrival to the ICU for 24 hours				
		Intervention 2 duration: Upon				
		arrival to the ICU for 24 hours				
		Follow-up (days): 5				

3283 3284

trial.

3285 Dexmedetomidine vs. Opioid

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
Park et al.	Design: RCT	Randomized N: 142	Inclusion: Age 18-90 years	Mean (SD) age: 52.8 (15)	Main outcomes: Delirium	Moderate
(2014)	Setting: Postop,	Analyzed N: 142	undergoing cardiac surgery on	Female %: 44	incidence was significantly	
	cardiac	Intervention 1 (N=67):	СРВ	Race %: NR	less in dexmedetomidine	
		Dexmedetomidine loading	Exclusion: Re-do and emergency	Delirium %: NR	group (6/67 patients,	

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition	Bias
name		interventions, duration, and	criteria		rates	
		follow-up				
	Country: South	dose, 0.5 μg/kg; maintenance	surgery, severe pulmonary, or	ASA III-IV %: 17	8.96%) vs. remifentanil	
	Korea	dose, 0.2-0.8 μg/kg/hour	systemic disease, left ventricular	Dementia %: 0 (excluded)	group (17/75 patients,	
	Funding: None	Intervention 2 (N=75):	ejection fraction <40%, pre-	Postop %: 100	22.67%) (p<0.05).	
		Remifentanil range, 1,000-	existing renal dysfunction,	Cancer %: NR	Attrition: NR	
		2,500 μg/hour	surgery requiring deep	Mean (SD) length of		
		Duration: Daily	hypothermic circulatory arrest	operation, minutes: 344.7		
		Follow-up (days): 3	involving thoracic aorta, and	(107)		
			documented preop dementia,			
			Parkinson disease, or recent			
			stroke			
Shehabi et	Design: RCT	Randomized N: 306	Inclusion: ≥60 years undergoing	Median age: 71.3	Main outcomes: Delirium	Low
al. (2009)	Setting: Postop,	Analyzed N: 299	pump cardiac surgery (e.g.,	Female %: 25	incidence was comparable	
	cardiac	Intervention 1 (N=154):	CABG, valve surgery)	Race %: NR	between dexmedetomidine	
	Country:	Dexmedetomidine IV 0.1-0.7	Exclusion: Documented preop	Delirium %: NR	and morphine (8.6% vs.	
	Australia	μg/kg/hour	dementia and Parkinson disease	Function: NR	15.0%, p=0.088).	
	Funding: Mixed	Intervention 2 (N=152):		Dementia %: 0	Attrition: 1% vs. 3%	
		Morphine IV 10-70 μg/kg/hour		Postop %: 100		
		Duration: Postop		Cancer %: 0		
		Follow-up (days): Discharge				

Abbreviations. ASA=American Society of Anesthesiologists; CABG=coronary artery bypass graf; CPB=cardiopulmonary bypass; IV=intravenous; N=number; NR=not reported; postop=post-operative;
 preop=pre-operative; RCT=randomized controlled trial; SD=standard deviation.

3288 Dexmedetomidine vs. Clonidine

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition	Bias
name		interventions, duration, and	criteria		rates	
		follow-up				
Shokri and	Design: RCT	Randomized N: 294	Inclusion: Age 60-70 years with	Mean (SD) age: 64.1 (4.1)	Main outcomes:	Low
Ali (2020)	Setting: Intra-	Analyzed N: 286	ASA status II and III, scheduled	Female %: 51.4	Dexmedetomidine was	
	and post-	Intervention 1 (N=147):	for elective isolated CABG, and	Race %: NR	associated with lower risk	
	operative,	Dexmedetomidine; initial	absence of any associated	Delirium %: NR, severe	and duration of delirium,	
	cardiac	continuous infusion of 0.7-1.2	comorbidities or history of MI	delirium excluded	shorter MV duration and	
		µg/kg/hour, then adjusted	Exclusion: History of mental	ASA II %: 62.6	ICU stay, lower mortality	

Country	: Egypt	based on sedation and	illness, severe dementia,	ASA III %: 37.4	rate, and lower morphine
Funding	g: None	analgesia adequacy to a	delirium, or undergoing	Dementia %: NR, severe	consumption than the
		maximum dose of 1-1.4	emergency procedures, or	dementia excluded	clonidine group.
		μg/kg/hour	treated with haloperidol	Postop %: 100	Dexmedetomidine
		Intervention 2 (N=147):	impaired renal or hepatic	Cancer %: NR	significantly decreased
		Clonidine IV 0.5 µg/kg slowly	functions		heart rates after ICU
		over 10-15 minutes, followed			admission.
		by a continuous IV infusion of			Attrition at follow-up: 2%
		1-2 μg/kg/hour			vs. 3%
		Intervention 1 duration:			
		During surgery, then weaned			
		off slowly after surgery			
		Intervention 2 duration:			
		During surgery			
		Follow-up (days): 8			

3289 Abbreviations. ASA=American Society of Anesthesiologists; CABG=coronary artery bypass graf; ICU=intensive care unit; IV=intravenous; MI=myocardial infarction; MV=medical ventilation; N=number;

3290 NR=not reported; POD=post-operative delirium; postop=post-operative; preop=pre-operative; RCT=randomized controlled trial; SD=standard deviation.

3291 Dexmedetomidine vs. Dexmedetomidine

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition	Bias
name		interventions, duration, and	criteria		rates	
		follow-up				
Lee et al.	Design: RCT	Randomized N: 354	Inclusion: >65 years undergoing	Mean (SD) age: 73.07 (6.01)	Main outcomes: The	Moderate
(2018)	Setting: Intra-	Analyzed N: 318	laparoscopic major non-cardiac	Female %: 56	incidence of POD was 9.5%	
	operative,	Intervention 1 (N=118):	surgery under general	Race %: NR	and 18.4% in the 2 groups	
	noncardiac	Dexmedetomidine IV 1µg/kg	anesthesia	Delirium %: NR	receiving dexmedetomidine	
	Country: South	bolus followed by 0.2-0.7	Exclusion: Patients with	ASA I, II %: 68.2	compared with usual care	
	Korea	μg/kg/hour	cognitive impairment	Cognitive Impairment %: 0	(24.8%, p=0.017).	
	Funding:	Intervention 2 (N=118):		Postop %: 100 non-cardiac	Attrition at follow-up: 19%	
	University	Dexmedetomidine IV 1µg/kg		surgery	vs. 3% vs. 8%	
		bolus		Cancer %: NR		
		Intervention 3 (N=118): Saline				
		Duration: Intra-operative				
		Follow-up (days): Through day				
		5				

Abbreviations. ASA=American Society of Anesthesiologists; N=number; NR=not reported; POD=post-operative delirium; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

3294 Benzodiazepines

3295 Midazolam vs. Dexmedetomidine

Author	Study	Study protocol including	Study population	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristics	numbers of participants,	including main inclusion		and attrition rates	Bias
name		interventions, duration,	and exclusion criteria			
		and follow-up				
Hassan et al.	Design: RCT	Randomized N: 70	Inclusion: Age 55-75 years	Mean age: 59.6	Main outcomes: Patients who	Moderate
(2021)	Setting: Intra-	Analyzed N: 70	for elective cardiac surgery	Female %: 44.3	received dexmedetomidine were	
	operative, cardiac	Intervention 1 (N=35):	Exclusion: History of	Race %: NR	less likely to experience POD	
	Country: Pakistan	Dexmedetomidine 0.7	psychiatric illness or those	Delirium %: 0 (excluded)	than patients who received	
	Funding: NR	µg/kg/hour IV in OR then	already diagnosed with	ASA: I-II %: 100	midazolam (8.6% vs. 22.9%,	
		0.4 μg/kg/hour IV	cognitive disorder	Dementia %: NR	p=0.04).	
		Intervention 2 (N=35):		Postop %: 100	Attrition: NR	
		Midazolam 0.05 µg/(kg.h)		Cardiac surgery %: 100		
		IV in OR then 0.02-0.08		Cancer NR		
		µg/(kg.h) IV				
		Duration: Perioperative				
		(intra-operative and				
		postop)				
		Follow-up (days): 1, 2, 3				
He et al.	Design: RCT	Randomized N: 90	Inclusion: Age 75-90 years	Mean (SD) age: 82.5 (5.6)	Main outcomes: The incidence	Moderate
(2018)	Setting: Intra-	Analyzed N: 90	with thoracic or lumbar	Female %: 42	rate of POD in the	
	operative,	Intervention 1 (N=30):	vertebral fractures and	Race %: NR	dexmedetomidine group was	
	orthopedic	Dexmedetomidine 0.5	receiving selective	Delirium %: NR	apparently lower than those in	
	Country:	µg/kg initial bolus, then	operation at grade I to III	Function: NR	the other 2 groups (p<0.05); the	
	Funding: China	maintained at 0.4	in the ASA classification	Dementia %: NR	incidence rate of POD at 1-2 days	
	Government	µg/kg/hour	Exclusion: CNS disease,	Postop %: NR	after operation in midazolam	
		Intervention 2 (N=30):	mental illness, or ≤23 on	Cancer %: NR	group was higher than that in the	
		Midazolam IV of 0.03	MMSE		normal saline group (p<0.05).	
		mg/kg			There was no significant	
		Intervention 3 (N=30):			difference in the incidence rate	
		Normal saline			of POD at 3-5 days after	

Author	Study	Study protocol including	Study population	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristics	numbers of participants,	including main inclusion		and attrition rates	Bias
name		interventions, duration,	and exclusion criteria			
		and follow-up				
		Intervention 1 duration:			operation between the	
		10 minutes before			midazolam and normal saline	
		anesthesia induction,			groups (p>0.05).	
		then during surgery			Attrition: NR	
		Intervention 2,				
		Intervention 3 duration:				
		Before anesthesia				
		Follow-up (days): 5				
Maldonado	Design: RCT	Randomized N: 118	Inclusion: Age 18-90 years	Mean (SD) age: 57 (17)	Main outcomes: Postop sedation	Moderate
et al. (2009)	Setting: Postop,	Analyzed N: 90	undergoing elective	Female %: 36	with dexmedetomidine was	
	cardiac	Intervention 1 (N=40):	cardiac valve operation	Race %: NR	associated with significantly	
	Country: U.S.	Dexmedetomidine IV 0.4	Exclusion: Preexisting	Delirium %: NR	lower rates of POD than propofol	
	Funding: Unclear	µg/kg bolus followed by	dementia	Mean ASA: 3.4	or midazolam (3% vs. 50% vs.	
		0.2-0.7 μg/kg/hour		MMSE: 29.4	50%).	
		Intervention 2 (N=38):		Dementia %: 0	Attrition: 10% vs. 18% vs. 20%	
		Propofol IV 25-50		Postop %: 100 cardiac		
		µg/kg/minute		surgery		
		Intervention 3 (N=40):		Cancer %: 0		
		Midazolam IV 0.5-2.0				
		mg/hour				
		Duration: Postop				
		Follow-up (days): Through				
		POD 3				
Yu et al.	Design: RCT	Randomized N: 92	Inclusion: >60 years	Mean (SD) age: 68.91 (4.57)	Main outcomes: There was less	Moderate
(2017)	Setting: Intra-	Analyzed N: 92	undergoing elective	Female %: 45	POD in the dexmedetomidine	
	operative,	Intervention 1 (N=46):	thoracic surgery	Race %: NR	group compared with the	
	cardiothoracic	Dexmedetomidine IV	Exclusion: Senile dementia	Delirium %: NR	midazolam group (6.52% vs.	
	Country: China	bolus (dose NR) followed		ASA I,II %: 100	21.74%, p<0.05).	
	Funding: Unclear	by 0.2-0.7 μg/kg/hour		Senile Dementia %: 0	Attrition: NR	
		Intervention 2 (N=46):		Postop %: 100 thoracic		
		Midazolam 0.05 μg/kg		surgery		
				Cancer %: NR		

Author	Study	Study protocol including	Study population	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristics	numbers of participants,	including main inclusion		and attrition rates	Bias
name		interventions, duration,	and exclusion criteria			
		and follow-up				
		bolus followed by 0.02-				
		0.08 μg/kg/hour				
		Duration: Intra-operative				
		Follow-up (days): POD 1-3				

3297 *Abbreviations.* ASA=American Society of Anesthesiologists; CNS=central nervous system; IV=intravenous; MMSE=Mini-Mental State Examination; N=number; NR=not reported; POD=post-operative delirium; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		and attrition rates	Bias
name		interventions, duration, and	criteria			
		follow-up				
Jakob et al.	Design: RCT	Randomized N: 501	Inclusion: ≥18 years requiring	Median age: 65	Main outcomes: There was no	Low
(2012);	Setting: ICU	Analyzed N: 500	MV with light to moderate	Female %: 34	difference in the incidence of	
MIDEX	Country: Europe	Intervention 1 (N=249):	sedation for at least 24 hours	Race %: NR	delirium between the	
	Funding:	Dexmedetomidine IV 0.2-1.4	Exclusion: Acute severe	Delirium %: NR	dexmedetomidine group and the	
	Industry	μg/kg/hour	neurological disorder, MAP <55	Simplified Acute	midazolam group at 48 hours post	
		Intervention 2 (N=252):	mm Hg, heart rate <50/minute,	Physiology Score II: 45.5	sedation (11.9% vs. 13.9%,	
		Midazolam IV 0.03-0.2	atrioventricular-conduction	Dementia %: NR	p=0.393).	
		mg/kg/hour	grade II or III (unless	Postop %: 70.6	Attrition: 13% vs. 20%	
		Duration: MV	pacemaker installed), and	Cancer %: NR		
		Follow-up (days): Delirium	use of α_2 agonists or			
		assessed 48 hours after	antagonists within 24 hours			
		discontinuing sedation	prior to randomization			
Li et al.	Design: RCT	Randomized N: 126	Inclusion: ≥18 years admitted	Mean (SD) age: 43.98	Main outcomes: The rate of	Moderate
(2019)	Setting: ICU	Analyzed N: 126	to general ICU for more than	(14.05)	delirium was significantly lower in	
	Country: China	Intervention 1 (N=64):	96 hours under continuous	Female %: 44	the dexmedetomidine group than	
	Funding: Mixed	Dexmedetomidine IV 0.8	sedation and analgesia for 48	Race %: NR	in the common sedation (control)	
		μg/kg/hour	hours or longer	Delirium %: NR	group (28% vs. 55%, p=0.0023).	
		Intervention 2 (N=62):	Exclusion: GCS <13 at baseline	APACHE II: 20.5	Attrition: NR	
		Midazolam IV 0.06 mg/kg/hour	in ED	Dementia %: NR		
		or propofol IV 0.5-2		Postop %: 0 within 24		
		mg/kg/hour				

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		and attrition rates	Bias
name		interventions, duration, and	criteria			
		follow-up				
		Duration: During ICU stay		hours of study		
		Follow-up (days): Delirium		Cancer %: 0		
		assessed twice daily until				
		discharged from ICU				
MacLaren	Design: RCT	Randomized N: 23	Inclusion: Age 18-85 years,	Mean (SD) age: 58.04	Main outcomes: There was no	Moderate
et al.	Setting: ICU	Analyzed N: 23	critically ill requiring MV, and	(12.53)	statistically significant difference	
(2015)	Country: U.S.	Intervention 1 (N=11):	receiving a benzodiazepine	Female %: 43	between dexmedetomidine and	
	Funding:	Dexmedetomidine IV 0.15-1.5	infusion with an anticipated	Race %: NR	midazolam in new onset delirium	
	Industry	μg/kg/hour	need of at least 12 additional	Delirium %: NR	(1 vs. 5, p=0.07).	
		Intervention 2 (N=12):	hours of sedation	APACHE III: 72.2	Attrition at follow-up: 9% vs. 0%	
		Midazolam IV 1-10 mg/hour	Exclusion: Baseline dementia	Dementia %: 0		
		Duration: MV		Postop %: 13.0		
		Follow-up (days): Delirium		Cancer %: NR		
		assessed twice daily				
Ruokonen	Design: RCT	Randomized N: 85	Inclusion: ≥18 years, MV, need	Median age: 64 vs. 68	Main outcomes: Delirium was	Moderate
et al.	Setting: ICU	Analyzed N: 85	for sedation for ≥24 hours after	Female %: 17.6	more common in the	
(2009)	Country: Finland	Intervention 1 (N=41):	randomization, and an	Race %: NR	dexmedetomidine group than in	
	Funding:	Dexmedetomidine 0.8	expected ICU stay ≥48 hours	Delirium %: NR	the standard care group (43.9%	
	Industry	μg/kg/hour for 1 hour, then	Exclusion: Acute severe	Function: NR	vs. 25.0%, p=0.035) when	
		adjusted stepwise at 0.25, 0.5,	neurological disorder, MAP <55	Dementia %: NR	analyzed as the combined	
		0.8, 1.1, and 1.4 μg/kg/hour	mmHg despite volume and	Postop %: NR	endpoint of CAM-ICU and adverse	
		Intervention 2 (N=44):	vasopressors, heart rate <50	Cancer %: NR	events of delirium and confusion.	
		Standard care: 1) propofol 2.4	beats/minute, atrioventricular-		However, more CAM-ICU	
		mg/kg/hour for 1 hour, then	conduction block II to III		assessments were performed in	
		adjusted stepwise at 0.8, 1.6,	(unless pacemaker installed),		the dexmedetomidine group than	
		2.4, 3.2, and 4.0 mg/kg/hour	hepatic SOFA score >2,		in the standard care group (106	
		OR 2) midazolam IV bolus 1-2	bilirubin >101 lmol/L, muscle		vs. 84), and the proportion of	
		mg starting at 3 boluses/hour	relaxation, loss of hearing or		positive CAM-ICU results was	
		for 1 hour, thereafter 1-4	vision, any other condition		comparable (17.0% vs. 17.9%,	
		boluses/hour; if not sufficient	interfering with RASS		p=NS). During the follow-up to	
		as continuous infusion of 0.2	assessment, or use of α_2		ICU discharge, no significant	
		mg/kg/hour for 1 hour			difference was observed in the	

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		and attrition rates	Bias
name		interventions, duration, and	criteria			
		follow-up				
		followed by adjustment at	agonists or antagonists at the		occurrence rate of positive RASS	
		0.04, 0.08, 0.12, 0.16, and 0.20	time of randomization		scores (26% vs. 32%).	
		mg/kg/hour			Attrition: 24% vs. 16%	
		Duration: During ICU stay				
		Follow-up (days): 45				
Shu et al.	Design: RCT	Randomized N: 80	Inclusion: >60 years requiring	Mean age: 73.61 (8.28)	Main outcomes: There was no	Moderate
(2019)	Setting: ICU	Analyzed N: 80	MV for more than 24 hours	Female %: 35	significant difference between	
	Country: China	Intervention 1 (N=40):	Exclusion: CNS disease	Race %: NR	dexmedetomidine and midazolam	
	Funding:	Dexmedetomidine IV 1.0 μg/kg		Delirium %: NR	in the incidence of delirium (0%	
	Unclear	bolus followed by 0.2-0.7		APACHE II score: 22.43	vs. 10%, p>0.05).	
		μg/kg/hour		(4.84)	Attrition: NR	
		Intervention 2 (N=40):		Dementia %: NR		
		Midazolam 0.05 mg/kg bolus		Postop %: NR		
		followed by 0.05-0.10		Cancer %: NR		
		mg/kg/hour				
		Duration: MV				
		Follow-up (days): Day 1				

3300 Abbreviations. APACHE II=Acute Physiology and Chronic Health Evaluation II; CAM-ICU=Confusion Assessment Method for the ICU; CNS=central nervous system; ED=emergency department;

3301 GCS=Glasgow Coma Scale; ICU=intensive care unit; IV=intravenous; MAP=mean arterial pressure; MV=medical ventilation; N=number; NS=not significant; NR=not reported; postop=post-operative;
 3302 RASS=Richmond Agitation Sedation Scale; RCT=randomized controlled trial; SD=standard deviation; SOFA=Sequential Organ Failure Assessment.

3303 Midazolam vs. Propofol

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		and attrition rates	Bias
name		interventions, duration, and	criteria			
		follow-up				
Maldonado	Design: RCT	Randomized N: 118	Inclusion: Age 18-90 years	Mean (SD) age: 57 (17)	Main outcomes: Postop sedation	Moderate
et al.	Setting: Postop,	Analyzed N: 90	undergoing elective cardiac	Female %: 36	with dexmedetomidine was	
(2009)	cardiac	Intervention 1 (N=40):	valve operation	Race %: NR	associated with significantly lower	
	Country: U.S.	Dexmedetomidine IV 0.4 μg/kg	Exclusion: Preexisting	Delirium %: NR	rates of POD than propofol or	
	Funding:	bolus followed by 0.2-0.7	dementia	Mean ASA: 3.4	midazolam (3% vs. 50% vs. 50%).	
	Unclear	μg/kg/hour		MMSE: 29.4	Attrition: 10% vs. 18% vs. 20%	

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		and attrition rates	Bias
name		interventions, duration, and	criteria			
		follow-up				
		Intervention 2 (N=38): Propofol		Dementia %: 0		
		IV 25-50 μg/kg/minute		Postop %: 100 cardiac		
		Intervention 3 (N=40):		surgery		
		Midazolam IV 0.5-2.0 mg/hour		Cancer %: 0		
		Duration: Postop				
		Follow-up (days): Through POD				
		3				

Abbreviations. ICU=intensive care unit; IV=intravenous; MMSE=Mini-Mental State Examination; N=number; NR=not reported; POD=post-operative delirium; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		and attrition rates	Bias
name		interventions, duration,				
		and follow-up				
Chen (2020)	Design: RCT	Randomized N: 120	Inclusion: Age 18-60 years with	Mean age: 41 to 60 years;	Main outcomes: The difference in	High
	Setting: ICU	Analyzed N: 120	expected sedation time of ≤72	51%	the incidence of delirium, adverse	
	Country: China	Intervention 1 (N=60):	hours and required continuous	Female %: 30	reactions, ICU LOS, and mortality	
	Funding: None	Midazolam IV 0.05-0.2	sedation with MV	Race %: NR	in 28 days between the groups	
		mg/kg/hour	Exclusion: Cerebral surgery; history	Delirium %: NR	was not statistically significant	
		Intervention 2 (N=60):	of CNS and mental illness	Function: NR	(p>0.05). However, time to	
		Propofol IV 0.5-4	(including Alzheimer's disease);	Dementia %: 0 (excluded)	spontaneous eye opening was	
		mg/kg/hour	long-term use of antidepressants	Postop %: NR	longer in the midazolam group	
		Duration: During MV	or sedatives, and alcoholics;	Cancer %: NR	(p<0.05). The onset effect time of	
		Follow-up (days): 28	serious liver and kidney		sedatives was slightly longer in	
			dysfunction, internal environment		the midazolam group, compared	
			disorder, or hyper-lipidaemia; in a		with the propofol group (p <	
			coma; obvious abnormal blood		0.05). The difference in the time	
			glucose and great fluctuations;		to reach the optimal level of	
			sepsis, unstable circulation, severe		sedation between these 2 groups	
			complicated hypoproteinaemia,		was not statistically significant	
			anemia, and thrombocytopenia;		(p>0.05).	
			allergic to midazolam or propofol		Attrition: NR	

3308 Abbreviations. CNS=central nervous system; ICU=intensive care unit; IV=intravenous; LOS=length of stay; MV=medical ventilation; N=number; NR=not reported; RCT=randomized controlled trial.

3309 Midazolam vs. Melatonin vs. Clonidine vs. No Sedation

3310 In Surgical Setting

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
name		interventions, duration, and			rates	
		follow-up				
Sultan	Design: RCT	Randomized N: 222	Inclusion: >65 years, scheduled for	Mean (SD) age: 71.01 (36.8)	Main outcomes: The	High
(2010)	Setting: Preop,	Analyzed N: 203	hip arthroplasty under spinal	Female %: 51	melatonin group	
	hip	Intervention 1 (N=53 analyzed):	anesthesia, and ASA I-III	Race %: NR	showed a statistically	
	Country: Egypt	Melatonin 5 mg, 2 oral doses	Exclusion: Sensory impairment	Delirium %: 0 (excluded)	significant decrease in	
	Funding: None	Intervention 2 (N=50 analyzed):	(blindness, deafness); dementia;	ASA I-III: inclusion criterion	the percentage of POD	
		Midazolam 7.5 mg, 2 oral doses	severe infections; severe anemia	Dementia %: 0 (excluded)	(9.43% vs. 32.65% in	
		Intervention 3 (N=51 analyzed):	(hematocrit<30%); intracranial	Postop %: 100	the other groups).	
		Clonidine 100 µg, 2 oral doses	events (stroke, bleeding,	Cancer %: NR	Overall attrition: 9%	
		Intervention 4 (N=49 analyzed):	infection); fluid or electrolyte			
		No sedation	disturbances; acute cardiac events;			
		Duration: One dose the night	acute pulmonary events; and			
		before surgery and another 90	medications including			
		minutes before surgery	anticonvulsants, antihistamines,			
		Follow-up (days): POD 3	and benzodiazepines			

Abbreviations. ASA=American Society of Anesthesiologists; N=number; NR=not reported; POD=post-operative delirium; postop=post-operative; preop=pre-operative; RCT=randomized controlled trial;
 SD=standard deviation.

3313 Restricted vs. Liberal Benzodiazepine Use

Author	Study	Study protocol including	Study population including main	Sample	Results including main outcomes	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria	demographics	and attrition rates	Bias
name		interventions, duration, and				
		follow-up				
Spence et al.	Design: RCT	Randomized N: 800	Inclusion: ≥18 years who	Mean age: 67	Main outcomes: The overall	Moderate
(2020)	Setting: Intra-	Analyzed N: 718	underwent cardiac surgery at one	Female %: 23	incidence of delirium is 15.9%	
	operative,	Intervention 1 (N=411):	of the sites during the enrollment	Race %: NR	(17.5% during the restricted	
	cardiac	Restricted benzodiazepine use*	period	Delirium %: NR	benzodiazepine periods vs. 14.1%	
	Country:		Exclusion: NR	Functioning: NR	during the liberal benzodiazepine	

Author	Study	Study protocol including	Study population including main	Sample	Results including main outcomes	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria	demographics	and attrition rates	Bias
name		interventions, duration, and				
		follow-up				
	Canada	Intervention 2 (N=389): Liberal		Dementia %: NR	periods) (p=0.19, RR increase	
	Funding:	benzodiazepine use*		Postop %: 100	24.1% [95% CI -21.1% to 27.1%]).	
	Industry	*Midazolam used in the majority		Cancer %: NR	The median (IQR) ICU LOS was 24	
		of cases			(24-72) hours, and the median	
		Duration: Intra-operative			(IQR) hospital LOS was 7 (5-11)	
		Follow-up (days): Until discharge			days. The overall incidence of in-	
					hospital mortality was 1.1%.	
					Attrition: 12% vs. 9%	

3315 3316 Abbreviations. Cl=confidence interval; ICU=intensive care unit; IQR=interquartile range; LOS=length of stay; N=number; NR=not reported; postop=post-operative; RCT=randomized controlled trial;

RR=relative risk; SD=standard deviation.

3317 Antipsychotics

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
name		interventions, duration, and			rates	
		follow-up				
Fukata et al.	Design: RCT	Randomized N: 121	Inclusion: >75 years undergoing	Mean age: 80	Main outcomes: 42.4% and	Moderate
(2014)	Setting:	Analyzed N: 120	elective abdominal or orthopedic	Female %: 53	33.3% in the intervention	
	Postop,	Intervention (N=59):	surgery with general or spinal	Race %: NR	and control groups,	
	abdominal or	Haloperidol IV 2.5 mg infusion	anesthesia	Delirium %: 0	respectively, had	
	orthopedic	Control (N=62): No treatment	Exclusion: Prior treatment with	ADL (Berthel Index): 85	incidences of POD	
	Country: Japan	Duration: Daily for 3 days	haloperidol for POD	Dementia %: NR	(p=0.309). No adverse	
	Funding:	Follow-up (days): 3		Postop %: 100	events related to	
	Government			Cancer %: 62	haloperidol were reported.	
					Attrition: 0% vs. 3%	
Hollinger et	Design: RCT	Randomized N: 192	Inclusion: ≥65 years scheduled for	Mean (SD) age: 73.7 (6.1)	Main outcomes: None of	Moderate
al. (2021)	Setting: Intra-	Analyzed N: 182	visceral, orthopedic, vascular,	Female %: 43.4	the 3 study arms –	
	operative,	Intervention 1 (N=48):	gynecological, cardiac, or thoracic	Race %: NR	haloperidol, ketamine, or	
	mixed	Haloperidol 5 µg/kg	surgery	Delirium %: 0 (excluded)	both drugs combined - was	
	Country:	Intervention 2 (N=49):	Exclusion: Delirium at admission or	Function: NR	significantly superior to	
	Switzerland	Ketamine 1 mg/kg	prior to surgery, MMSE <24, DOS	Dementia %: 0 (excluded)	placebo for prevention of	

Author (year); trial name	Study characteristics Funding: Non- profit	Study protocol including numbers of participants, interventions, duration, and follow-up Intervention 3 (N=49): Haloperidol 5 μg/kg plus ketamine 1 mg/kg Intervention 4 (N=47): Placebo Duration: Once before	Study population including main inclusion and exclusion criteria ≥3, dementia, high risk for postop treatment in the ICU, QT interval prolongation, or drugs influencing QT interval, Parkinson's disease, intake of dopaminergic drugs,	Sample demographics Postop %: 100 Cancer %: NR	Results including main outcomes and attrition rates postop brain dysfunction and delirium (p=0.39). Attrition: 6% vs. 4% vs. 4% vs. 6%	Risk of Bias
		induction of anesthesia Follow-up (days): 3	epilepsy, delay of surgery for >72 hours after set indication for surgery, or weight >100 kg			
Kalisvaart et al. (2005)	Design: RCT Setting: Postop, hip Country: The Netherlands Funding: Hospital	Randomized N: 430 Analyzed N: 430 Intervention 1 (N=212): Haloperidol 1.5 mg oral (0.5 mg three times daily) Intervention 2 (N=218): Placebo Duration: Three times a day 1- 6 days (3 days postop, 3-day delay allowed) Follow-up (days): 14	Inclusion: ≥70 years, acute or elective hip surgery, and at intermediate-high risk for POD (visual impairment, cognitive impairment, severity of illness) Exclusion: Delirium at admission, no risk factors for POD, history of haloperidol allergy, use of cholinesterase inhibitors, parkinsonism, epilepsy, levodopa treatment, inability to participate in interviews, delay of surgery of more than 72 hours after admission, or a prolonged QTc interval of 460 ms or higher for men and 470 ms or higher for women on their electrocardiogram	Mean age: 79 Female %: 80 Race %: NR Delirium %: 0 Barthel Index: 18.78 Dementia %: NR Postop %: 100 Cancer %: NR	Main outcomes: POD in the haloperidol and placebo treatment conditions was 15.1% and 16.5%, respectively (RR 50.91, 95% CI 50.6 to 1.3). No haloperidol-related side effects were noted. Attrition: 9% vs. 13%	Low
Khan et al. (2018)	Design: RCT Setting: Postop, cardiothoracic Country: U.S. Funding: Government	Randomized N: 135 Analyzed N: 135 Intervention 1 (N=68): Haloperidol 1.5 mg oral (0.5 mg three times daily) Intervention 2 (N=67): Placebo	Inclusion: >18 years undergoing thoracic surgery Exclusion: Severe dementia	Mean age: 61 Female %: 26 Race %: African American: 4 Delirium %: NR APACHE II 16.5 Dementia %: NR	Main outcomes: No significant differences were observed between those receiving haloperidol and those receiving placebo in incident delirium (15 [22.1%] vs. 19 [28.4%],	Low

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
name		interventions, duration, and			rates	
		follow-up				
		Duration: Three times a day x		Postop %: 100	p=0.43), Safety events were	
		11 doses (3.7 days)		Cancer %: NR (history of	comparable between the	
		Follow-up (days): Unclear (post		chemo 54%)	groups.	
		discharge)			Overall attrition: 0%	
Larsen et al.	Design: RCT	Randomized N: 495	Inclusion: >65 years or <65 years	Mean age: 74	Main outcomes:	Moderate
(2010)	Setting:	Analyzed N: 400	with a history of POD and scheduled	Female %: 54	Administration of 10 mg of	
	Postop,	Intervention 1 (N=243):	for elective total knee- or total hip-	Race %: Caucasian: 98	oral olanzapine	
	orthopedic	Olanzapine 5 mg	replacement	DRS-R: 15 (0-39)	perioperatively vs. placebo	
	Country: U.S.	Intervention 2 (N=252):	Exclusion: Dementia	Dementia %: 0 (excluded)	was associated with a	
	Funding:	Placebo		Postop %: 100	significantly lower	
	University	Duration: 1 dose immediately		Cancer %: NR	incidence of delirium.	
		preop and 1 dose postop (in			Attrition: 19% vs. 15%	
		pre-anesthesia care unit)				
		Follow-up (days): 8				
Mokhtari et	Design: RCT	Randomized N: 53	Inclusion: >18 years, stable	Mean age: 47	Main outcomes: Delirium	Moderate
al. (2020)	Setting:	Analyzed N: 40	hemodynamics, breathing	Female %: 28	incidence and the mean	
	Postop,	Intervention 1 (N=28):	spontaneously, and admitted to ICU	Race %: NR	days to its onset were 20%	
	neurological	Aripiprazole 15 mg orally	post neurological surgery	Delirium %: 0	vs. 55% (p=0.022) and 2.17	
	Country: Iran	Intervention 2 (N=25): Placebo	Exclusion: Severe dementia or ICU	APACHE II: 8.5	(0.41) vs. 2.09 (0.30)	
	Funding: NR	Duration: Daily 7 days	stay anticipated <3 days	Dementia %: 0	(p=0.076) in the	
		Follow-up (days): 7		Postop %: 100	aripiprazole and placebo	
				Cancer %: 15	groups, respectively.	
					Serious aripiprazole	
					adverse reactions were not	
					observed.	
					Attrition: 29% vs. 20%	
Prakanratta	Design: RCT	Randomized N: 126	Inclusion: Patients >40 years	Mean age: 61	Main outcomes: A single	Moderate
na and	Setting:	Analyzed N: 126	scheduled for elective cardiac	Female %: 49	dose of risperidone	
Prapaitrakoo	Postop, cardiac	Intervention 1 (N=63):	surgery with CPB	Race %: NR	administered soon after	
l (2007)	Country:	Risperidone 1 mg sublingually	Exclusion: Admitted to ICU,	Delirium %: NR	cardiac surgery with CPB	
	Thailand	Intervention 2 (N=63): Placebo	endotracheal intubation, or preop	Function: NR	reduced the incidence of	
			delirium	Dementia %: NR	POD.	

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
name		interventions, duration, and			rates	
		follow-up				
	Funding:	Duration: Once upon regaining		Postop %: NR	Overall attrition: 0%	
	Hospital	consciousness		Cancer %: NR		
		Follow-up (days): Until ICU				
		discharge				
Wang et al.	Design: RCT	Randomized N: 457	Inclusion: >65 years, admitted to	Mean age: 74	Main outcomes: Delirium	Moderate
(2012)	Setting:	Analyzed N: 457	ICU after noncardiac surgery	Female %: 37	incidence was 15.3%	
	Postop,	Intervention 1 (N=229):	Exclusion: Profound dementia	Race %: NR	(35/229) in the haloperidol	
	noncardiac	Haloperidol 0.5 mg bolus,		Delirium %: NR	group and 3.2% (53/228) in	
	Country: China	followed by IV infusion 0.1		ASA Class III %: 37	the control group	
	Funding: NR	mg/hour		Dementia %: 0 (excluded)	(p=0.031). No drug-related	
		Intervention 2 (N=228):		Postop %: 100	side effects were	
		Placebo		Cancer %: NR	documented.	
		Duration: Continuous 7 days			Attrition: 1% vs. 0%	
		Follow-up (days): 7				

3319 3320 3321 Abbreviations. ADL=activities of daily living; APACHE II=Acute Physiology and Chronic Health Evaluation II; ASA=American Society of Anesthesiologists; CI=confidence interval; CPB=cardiopulmonary bypass; DOS=delirium observation scale; DRS-R-98=Delirium Rating Scale-Revised-1998; ICU=intensive care unit; IV=intravenous; MMSE=Mini-Mental State Examination; N=number; NR=not reported;

POD=post-operative delirium; postop=post-operative; preop=pre-operative; RCT=randomized controlled trial; RR=relative risk; SD=standard deviation.

Author	Study	Study protocol including	Study population including main	Sample	Results including main outcomes and	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria	demographics	attrition rates	Bias
name		interventions, duration, and				
		follow-up				
Abdelgalel	Design: RCT	Randomized N: 90	Inclusion: Age 26-70 years, ASA	Mean (SD) age: 59	Main outcomes: The incidence of	Low
(2016)	Setting: ICU	Analyzed N: 90	status III and IV, and in Zagazig	(50)	delirium was significantly lower in	
	Country: Egypt	Intervention 1 (N=30):	university hospital	Female %: 25	dexmedetomidine group 3/30 (10%)	
	Funding: None	Dexmedetomidine	Exclusion: Patient's or relatives'	Race %: NR	than haloperidol 10/30 (33.3%) and	
		continuous IV infusion of	refusal, allergy to any of the	Delirium %: NR	placebo 13/30 (43.3%) groups. The ICU	
		0.2-0.7 μg/kg/hour; loading	studied drugs, psychiatric	APACHE II mean	LOS was significantly shorter in	
		dose of 1.0 μg/kg IV over 10	disorders or on antipsychotic	score (0 to 71): 17	dexmedetomidine group (3.1±0.4 days)	
		minutes if needed	medications, severe dementia,	Dementia %:	than haloperidol and placebo groups	
		Intervention 2 (N=30):	heart rate 650 beats/minute or	"severe" dementia	(6.5±1.0 and 6.9±1.2 days, respectively).	
		Haloperidol continuous IV	systolic blood pressure 690	excluded	Overall attrition: 0%	

Author	Study	Study protocol including	Study population including main	Sample	Results including main outcomes and	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria	demographics	attrition rates	Bias
name		interventions, duration, and				
		follow-up				
		infusion of 0.5-2 mg/hour;	mmhg, prolonged QTc-time (>500	Postop %: 17.8		
		loading dose of 2.5 mg IV	ms) or history of clinically	Cancer %: NR		
		over 10 minutes if needed	relevant ventricular arrhythmia,			
		Intervention 3 (N=30):	epilepsy or parkinsonism, and			
		Placebo; normal saline	pregnancy			
		Duration: During MV				
		Follow-up (days): NR				
Abraham et	Design: RCT	Randomized N: 82	Inclusion: ≥18 years and admitted	Median age: 55 vs.	Main outcomes: The incidence of	High
al. (2021)	Setting: ICU	Analyzed N: 71	to the surgical trauma ICU	59	delirium during admission to the ICU	
	Country: U.S.	Intervention 1 (N=22):	Exclusion: Sustained RASS score	Female %: 39.4	was 45.5% (10/22) in the quetiapine	
	Funding: None	Quetiapine 12.5 mg twice	of -4 or -5 during ICU admission	Race %: NR	group and 77.6% (38/49) in the no	
		daily, orally or through a	or presence of a condition	Delirium %: 0	treatment group. The mean time to	
		nasogastric/enteral tube	preventing delirium assessment;	(excluded)	onset of delirium was 1.4 days for those	
		Control (N=60): No	anticipated or known ICU LOS	Median APACHE II	who did not receive treatment vs. 2.5	
		treatment	<48 hours; use of antipsychotics	score: 15.0	days for those who did (p=0.06). The	
		Duration: During ICU stay	prior to admission; history of	Dementia %: 19.7	quetiapine group significantly reduced	
		Follow-up (days): Discharge	schizophrenia, epilepsy,	Postop %: 5.6	ventilator duration from 8.2 days to 1.5	
			parkinsonism, or levodopa	Cancer %: NR	days (p=0.002).	
			treatment; admission with a		Attrition: 18% vs. 0%	
			primary neurologic condition or			
			an injury with a GCS score ≤9			
			during the first 48 hours of their			
			ICU stay; current treatment with			
			a continuous infusion			
			neuromuscular blocking agent;			
			screened positive for delirium			
			upon admission to the ICU;			
			and/or enteral medication route			
			was not available			
Al-Qadheeb	Design: RCT	Randomized N: 68	Inclusion: Patients admitted to	Mean age: 60	Main outcomes: A similar number of	Low
et al. (2016)	Setting: ICU	Analyzed N: 68	ICU, expected to stay at least 24	Female %: 44	patients given haloperidol (12/34	
	Country: U.S.	Intervention 1 (N=34):	hours but <4 days, and diagnosed	Race %: NR	[35%]) and placebo (8/34 [23%])	

Author	Study	Study protocol including	Study population including main	Sample	Results including main outcomes and	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria	demographics	attrition rates	Bias
name		interventions, duration, and				
		follow-up				
	Funding:	Haloperidol 1 mg IV	with subsyndromal delirium by	Delirium %: 0	developed delirium (p=0.29). The	
	Government	Intervention 2 (N=34):	SAS and ICDSC	APACHE II: 20	proportion of patients who developed	
		Placebo	Exclusion: Age >85 years or	Dementia %: 0	QTc-interval prolongation (p=0.16),	
		Duration: Every 6 hours	severe dementia	(excluded)	extrapyramidal symptoms (p=0.31),	
		Follow-up (days): 10		Postop %: 6	excessive sedation (p=0.31), or new-	
				Cancer %: NR	onset hypotension (p=1.0) that resulted	
					in study drug discontinuation was	
					comparable between the 2 groups.	
					Overall attrition: 0%	
Kim Y. et al.	Design: RCT	Randomized N: 37	Inclusion: 3 of the following were	Mean age: 70	Main outcomes: The incidence of	Moderate
(2019)	Setting: ICU	Analyzed N: 35	met: age >64 years, APACHE II	Female %: 63	delirium during the 10 days after ICU	
	Country: South	Intervention 1 (N=16):	score >14, suspicion of infection,	Race %: NR	admission was 46.7% (7/15) in the	
	Korea	Quetiapine 12.5-25 mg	MV, continuous renal	Delirium %: 0	quetiapine group and 55.0% (11/20) in	
	Funding:	Intervention 2 (N=21):	replacement therapy, metabolic	APACHE II: 23.65	the placebo group (p=0.442). Delirium	
	Government	Placebo	acidosis, use of morphine or	Dementia %: NR	duration during the study period was	
		Duration: Daily	sedatives, unexpected ICU	Postop %: NR	significantly shorter with quetiapine	
		Follow-up (days): 10	admission, or non-sustained	Cancer %: NR	(0.28 day vs.1.83 days, p=0.018)	
			coma		Attrition: 6% vs. 5%	
			Exclusion: Age <18 years or			
			irreversible neurologic disease			
van den	Design: RCT	Randomized N: 1,796	Inclusion: Adults without delirium	Mean age: 67	Main outcomes: The 1 mg haloperidol	Low
Boogaard et	Setting: ICU	Analyzed N: 1,789	anticipated with ICU stay of at	Female %: 39	group was prematurely stopped	
al. (2018);	Country: The	Intervention 1 (N=353):	least 2 days	Race %: NR	because of futility. There was no	
Rood et al.	Netherlands	Haloperidol 1 mg IV	Exclusion: Dementia	Delirium %: 0	difference in the median days patients	
(2019)	Funding:	Intervention 2 (N=734):		APACHE II: 19.4	survived in 28 days: 28 days in the 2 mg	
	Industry	Haloperidol 2 mg IV		Dementia %: 0	haloperidol group vs. 28 days in the	
		Intervention 3 (N=709):		(Excluded)	placebo group, for a difference of 0	
		Placebo		Postop %: 25	days (95% CI 0 to 0, p=0.93) and a HR of	
		Duration: Every 8 hours for		Cancer %: NR	1.003 (95% CI 0.78 to 1.30, p=0.82). All	
		4-8 days			15 secondary outcomes were not	
		Follow-up (days): 28			statistically different, including delirium	
					incidence (MD 1.5%, 95% CI −3.6% to	

Author	Study	Study protocol including	Study population including main	Sample	Results including main outcomes and	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria	demographics	attrition rates	Bias
name		interventions, duration, and				
		follow-up				
					6.7%) and delirium- and coma-free days	
					(MD 0 days, 95% CI 0 to 0 days). The	
					number of reported adverse effects did	
					not differ between groups (2 [0.3%] for	
					the 2 mg haloperidol group vs. 1 [0.1%]	
					for the placebo group).	
					Attrition: 1% vs. 0% vs. 0%	

Abbreviations. APACHE II=Acute Physiology and Chronic Health Evaluation II; ASA=American Society of Anesthesiologists; CI=confidence interval; GCS=Glasgow Coma Scale; HR=hazard ratio; ICDSC=Intensive Care Delirium Screening Checklist; ICU=intensive care unit; IV=intravenous; LOS=length of stay; MD=mean difference; MV=medical ventilation; N=number; NR=not reported;

3323 3324 3325 postop=post-operative; RASS=Richmond Agitation Sedation Scale; RCT=randomized controlled trial; SAS=Sedation Agitation Scale; SD=standard deviation.

3326 In General Inpatient Setting

Author	Study	Study protocol including	Study population including	Sample	Results including main outcomes and	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion	demographics	attrition rates	Bias
name		interventions, duration, and	criteria			
		follow-up				
Schrijver et	Design: RCT	Randomized N: 245	Inclusion: >70 years, acutely	Mean age: 83	Main outcomes: In the haloperidol and	Moderate
al. (2018)	Setting: Non-	Analyzed N: 242	hospitalized through ED or to	Female %: 55	placebo group, delirium incidence was	
	ICU Inpt	Intervention 1 (N=119):	medical or surgical wards, at risk	Race %: NR	19.5% vs. 14.5% (OR 1.43, 95% CI 0.72	
	Country: The	Haloperidol 1 mg orally	for delirium by Dutch Safety	Delirium %: 0	to 2.78); median (IQR) delirium	
	Netherlands	Intervention 2 (N=126):	Management Program scale (1	Katz ADLs: 3	duration 4 (2-5) vs. 3 (1-6) days	
	Funding: None	Placebo	point of 3), and enrolled within	Dementia %: 0	(p=0.366); maximum DRS-R-98 score 16	
		Duration: Twice daily for 7	24 hours of admission	Postop %: 23	(9.8-19.5) vs. 10 (5.5-22.5) (p=0.549;	
		days	Exclusion: Vascular or Lewy	Cancer %: NR	53.7% missing data); hospital LOS 7 (4-	
		Follow-up (days): 7	body Dementia		10.3) vs. 7 (5-11.8) days (p=0.343); 3-	
					month mortality 9.9% vs. 12.5% (OR	
					0.77, 95% CI 0.34 to 1.75), respectively.	
					No treatment-limiting side effects were	
					noted.	
					Attrition: 6% vs. 7%	
Thanaplueti	Design: RCT	Randomized N: 122	Inclusion: >65 years acutely	Mean (SD) age: 75.3	Main outcomes: The incidence of	Low
wong et al.	Setting: Non-	Analyzed N: 114	hospitalized in a medical	(7.1)	delirium in the quetiapine group was	
(2021)	ICU Inpatient	Intervention 1 (N=61):	specialty	Female %: 45.6		

Author	Study	Study protocol including	Study population including	Sample	Results including main outcomes and	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion	demographics	attrition rates	Bias
name		interventions, duration, and	criteria			
		follow-up				
	Country:	Quetiapine 12.5 mg/day	Exclusion: Dementia and severe	Race %: NR	14% vs. 8.8% in the placebo group (OR	
	Thailand	Intervention 2 (N=61):	Parkinson's epilepsy	Delirium %: 0	1.698, 95% CI 0.520 to 5.545, p=0.381).	
	Funding:	Placebo		(excluded)	Attrition: 7% vs. 7%	
	Hospital	Duration: Daily 7 days		ASA II: NR (65%		
		Follow-up (days): 7		independent)		
				Dementia %: 0		
				(excluded)		
				Postop %: NR		
				Cancer %: NR		

3327 *Abbreviations.* ASA=American Society of Anesthesiologists; CI=confidence interval; DRS-R-98=Delirium Rating Scale-Revised-1998; ED=emergency department; ICU=intensive care unit;

3328 IQR=interquartile range; LOS=length of stay; N=number; NR=not reported; OR=odds ratio; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

3329 Melatonin

3330 Melatonin vs. Placebo

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
name		interventions, duration, and			rates	
		follow-up				
de Jonghe et	Design: RCT	Randomized N: 452*	Inclusion: ≥65 years admitted for	Mean (SD) age: 83.7 (7.8)	Main outcomes: No effect	Moderate
al. (2014);	Setting:	*8 patients were excluded	emergency surgery for hip fracture,	Female %: 70	of melatonin on the	
MAPLE	Postop, hip	after randomization due to	enrolled within 24 hours of	Race %: NR	incidence of delirium was	
(de Jonghe	Country: The	logistics failure.	admission	Delirium %: 0 (excluded)	observed (adjusted OR	
et al. 2011	Netherlands	Analyzed N: 378	Exclusion: Delirium at baseline,	Katz Index of Activities of	1.14, 95% Cl 0.71 to 1.83).	
for study	Funding:	Intervention 1 (N=219	transferred from another hospital, or	Daily Living: NR overall	Attrition from assigned	
protocol)	Government	assigned): Melatonin 3 mg	anticipation of postop admission to	Dementia %: NR	numbers: 16% vs. 15%	
	and nonprofit	tablet	the ICU or coronary care unit	Postop %: 100		
		Intervention 2 (N=225		Cancer %: NR		
		assigned): Placebo tablet		Cognitive impairment		
		Duration: In the evening for 5		(based on MMSE,		
		consecutive days		Informant Questionnaire		
		Follow-up (days): 90		on Cognitive Decline, or		

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
name		interventions, duration, and			rates	
		follow-up				
				dementia on Charlson		
				comorbidity index) %: 55.6		
Ford et al.	Design: RCT	Randomized N: 210	Inclusion: ≥50 years and undergoing	Mean (SD) age: 68.3 (8.2)	Main outcomes:	Low
(2020)	Setting: Preop	Analyzed N: 202 at discharge;	elective cardiac surgery	Female %: 22	Melatonin did not	
	and postop,	166 at 3 months (cognitive	Exclusion: Dementia or score ≤19 on	Race %: NR	decrease the incidence of	
	cardiac	only, ITT reported)	TICS-M	Delirium %: NR	delirium compared to	
	Country:	Intervention 1 (N=105):		Baseline scale of function:	placebo (ITT analysis,	
	Australia	Melatonin 3 mg		NR	adjusted OR 0.79, 95% Cl	
	Funding:	Intervention 2 (N=105):		Dementia %: 0 (excluded)	0.36 to 1.76).	
	Government	Placebo		Postop %: 100	Attrition: 7% vs. 1%	
		Duration: Once daily, 7		Cancer %: NR		
		consecutive nights, starting 2		Cognitive status (TICS-M):		
		nights before surgery		34.8 (3.9)		
		Follow-up (days): 7 (delirium),				
		90 (cognitive only)				
Javaherforo	Design: RCT	Randomized N: 60	Inclusion: ≥30 years, candidate for	Mean (SD) age: 61.58	Main outcomes: On the 1 st	Moderate
osh Zadeh et	Setting: Preop	Analyzed N: 60	elective on-pump CABG, ASA II-III,	(8.82)	postop day, 4 (13.3%)	
al. (2021)	and postop,	Intervention 1 (N=30):	minimum ejection fraction of 30%,	Female %: 30	patients in the melatonin	
	cardiac	Melatonin 3 mg	and admitted to the hospital	Race %: NR	group vs. 11 (36.6%)	
	Country: Iran	Intervention 2 (N=30):	Exclusion: Melatonin	Delirium %: NR	patients in the placebo	
	Funding: None	Placebo	contraindications, chronic or recent	Function: NR	group developed delirium	
	C C	Duration: Evening before	use of melatonin or hypnotic drugs,	Dementia %: NR	(p=0.037). On 2 nd postop	
		surgery, morning of surgery,	receiving barbiturates or	Postop %: 100 cardiac	day, 3 (10%) patients in	
		and daily until 2 nd postop day	antipsychotics, history of liver or	surgery	the melatonin group vs. 14	
		Follow-up (days): POD 2, until	kidney disease or chronic pulmonary	Cancer %: NR	(46.6%) patients in the	
		discharge	disease, history of neurological or		control group developed	
			psychological diseases, alcohol		delirium (p=0.029). The	
			consumption, inability to		severity of delirium	
			communicate verbally, and the		between the groups was	
			occurrence of serious and life-		significant on the 1 st and	
			threatening events during or after		2^{nd} postop days (p=0.003).	
					Overall attrition: 0%	
			l			I

Author (year); trial	Study characteristics	Study protocol including numbers of participants,	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition	Risk of Bias
name		interventions, duration, and			rates	
		follow-up				
Sharaf et al.	Design: RCT	Randomized N: 50	Inclusion: ≥60 years, ASA status III to	Mean (SD) age: 62.7 (4.5)	Main outcomes: The	Low
(2018)	Setting: Preop	Analyzed N: 50	IV, and undergoing elective CABG	Female %: 48	incidence of delirium was	
	and postop,	Intervention 1 (N=25):	with 2 or 3 vessel grafts	Race %: NR	8% in the melatonin group	
	cardiac	Melatonin 3 mg	Exclusion: Emergent CABG, ASA	Delirium %: NR	vs. 28% in the control	
	Country: Egypt	Intervention 2 (N=25):	status ≥V, ejection fraction <40%,	ASA III %: 54	group (p=0.046).	
	Funding: NR	Placebo	MMSE ≤24, history of	ASA IV %: 46	Attrition: NR	
		Duration: Night before	neuropsychiatric disorders, history of	Dementia %: 0 (excluded)		
		surgery, 30 minutes before	liver cirrhosis or renal failure, history	Postop %: 100		
		surgery, and night after	of chronic pulmonary diseases,	Cancer %: NR		
		surgery	uncontrolled systemic disease,			
		Follow-up (days): 3	prolonged postop ventilation >8			
			hours, or history of chronic sedative			
			hypnotics use ≥3 times/week			

3332 3333 3334

Abbreviations. ASA=American Society of Anesthesiologists; CABG=coronary artery bypass graf; CI=confidence interval; ICU=intensive care unit; ITT=intention-to-treat; MMSE=Mini-Mental State Examination; N=number; NR=not reported; OR=odds ratio; POD=post-operative delirium; postop=post-operative; preop=pre-operative; RCT=randomized controlled trial; SD=standard deviation; TICS-M=Modified Telephone Interview for Cognitive Status.

Author (year); trial	Study characteristics	Study protocol including numbers of participants,	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition	Risk of Bias
name		interventions, duration, and			rates	
		follow-up				
Abbasi et al.	Design: RCT	Randomized N: 172	Inclusion: >18 years, ICU	Mean (SD) age: 51.2 (18.7)	Main outcomes: No	Moderate
(2018)	Setting: ICU	Analyzed N: 137	admission within last 24 hours,	Female %: 43	significant effect of	
	Country: Iran	Intervention 1 (N=87):	RASS >-4, GCS >8, and no	Race %: NR	melatonin was found on	
	Funding:	Melatonin 3 mg tablet	delirium before ICU admission	Delirium %: NR	incidence of delirium,	
	University	Intervention 2 (N=85):	Exclusion: <5 days of ICU stay and	APACHE II: mean 7.7 (4.5)	adjusted for baseline	
		Placebo tablet	severe heart failure	Dementia %: NR	characteristics (OR 0.71, 95%	
		Duration: Once daily, at 9:00		Postop %: 58 surgical	CI 0.06 to 9.15, p=0.80).	
		pm for 5 continuous days		admission	Attrition: 23% vs. 18%	
		Follow-up (days): NR		Cancer %: NR		
Bellapart et	Design: RCT	Randomized N: 63	Inclusion: Patients expected to	Median age: 55	Main outcomes: Baseline	High
al. (2020)		Analyzed N: 33	have a minimal length of 5 days	Female %: NR	delirium scores showed no	

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
name		interventions, duration, and			rates	
		follow-up				
	Setting: ICU	Intervention 1 (N=30):	of respiratory weaning, with a	Race %: NR	difference between the	
	Country:	Melatonin 6 mg enteral, via	preserved enteral absorption or	Delirium %: NR	groups when compared to	
	Australia	NG tube, each night	the absence of ileus, and without	Median APACHE II: 22	post-intervention scores.	
	Funding: None	Intervention 2 (N=33):	known history of sleep disorders	Median APACHE III: 74	RASS scores were 1 in both	
		Placebo	Exclusion: Taking beta-blockers,	Dementia %: NR	groups at baseline vs. 0	
		Duration: Nightly during ICU	vasopressors, corticosteroids,	Postop %: NR	(intervention group) and 0.5	
		stay	non-steroidal drugs, naloxone, or	Cancer %: NR	(placebo group) post	
		Follow-up (days): 1, 3	pre-intensive care prescription of		treatment. CAM scores were	
			antipsychotics; advanced liver		0 (intervention group) and 1	
			disease; burns prior to		(placebo group) at baseline	
			debridement and grafts; ongoing		vs. 0 (in both groups)	
			sepsis; neurocritical patients		postintervention.	
					Attrition: 37% vs. 63%	
Gandolfi et	Design: RCT	Randomized N: 206	Inclusion: ≥18 years with ≥1 night	Mean (SD) age: 58.5 (15.1)	Main outcomes: No	Moderate
al. (2020)	Setting: ICU	Analyzed N: 203	in the ICU	Female %: 40	significant difference	
	Country: Brazil	Intervention 1 (N=103):	Exclusion: History of seizures,	Race %: NR	between groups was found	
	Funding: None	Melatonin 10 mg tablet at	neurologic or psychiatric illness,	Delirium %: NR	in the occurrence of	
		8pm (2 hours after dinner)	sleep apnea, renal or hepatic	Mean (SD) Simplified Acute	delirium, pain, and anxiety.	
		Intervention 2 (N=103):	impairment, intestinal	Physiology Score III: 42 (12.6)	Attrition: 1% vs. 1%	
		Placebo	obstruction or other condition	Dementia %: NR		
		Duration: 7 days	that affected intestinal	Postop %: 46.3		
		Follow-up (days): 7, Until	absorption, autoimmune	Cancer %: 11.9		
		discharge	diseases, deaf or mute, pregnant,	Median days on MV: 2 vs. 3.5		
			and lactating	(1-7)		

Abbreviations. APACHE II=Acute Physiology and Chronic Health Evaluation II; CAM=Confusion Assessment Method; CI=confidence interval; GCS=Glasgow Coma Scale; ICU=intensive care unit;

3336 3337 3338 MV=medical ventilation; N=number; NG=nasogastric; NR=not reported; OR=odds ratio; postop=post-operative; RASS=Richmond Agitation Sedation Scale; RCT=randomized controlled trial; SD=standard deviation.

Risk of

Bias

Results including main

outcomes and attrition

rates

name		interventions, duration, and			Tates	
		follow-up				
Jaiswal et al.	Design: RCT	Randomized N: 87	Inclusion: ≥65 years, admitted to	Mean (SD) age: 80.6 (7.8)	Main outcomes: Delirium	Moderate
(2018)	Setting: Non-	Analyzed N: 87	internal medicine wards (non-	Female %: 62	occurred in 22.2% (8/36)	
	ICU inpatient	Intervention 1 (N=43):	ICU), and expected stay ≥48	Race %: Caucasian: 92	of subjects who received	
	Country: U.S.	Melatonin 3 mg nightly	hours	Delirium %: 0 (excluded)	melatonin vs. in 9.1%	
	Funding:	Intervention 2 (N=44):	Exclusion: Those admitted with	Baseline scale of function: NR	(3/33) who received	
	Government	Placebo	stroke or with conditions	Dementia %: NR (advanced	placebo (p=0.19).	
	and nonprofit	Duration: Maximum of 14	associated with encephalopathy	dementia excluded)	Melatonin did not prevent	
		consecutive nights	(e.g., cirrhosis, hypernatremia,	Postop %: 23	delirium in non-ICU	
		Follow-up (days): NR	hypercalcemia, alcohol	Cancer %: 3 (primary admission	hospitalized patients (RR	
			withdrawal)	diagnosis)	2.3, 95% CI 0.8 to 6.9).	
					Attrition: 16% vs. 25%	
Lawlor et al.	Design: RCT	Randomized N: 60	Inclusion: ≥18 years, documented	Median age: 67 (range 60-75)	Main outcomes: Melatonin	Low
2020)	Setting:	Analyzed N: 60	diagnosis of advanced cancer,	Female %: 45	vs. placebo outcomes were	
	Palliative care	Intervention 1 (N=30):	admitted to the inpatient PCU,	Race %: NR	as follows: incident	
	Country:	Melatonin 3 mg	rating ≥30% on the PPS, and	Delirium %: 0% (excluded)	delirium in 11/30 (36.7%,	
	Canada	Intervention 2 (N=30):	cognitive capacity to give	Median (IQR) Charlson	95% CI 19.9 to 56.1) vs.	
	Funding:	Placebo	informed consent	Comorbidity Index: 10 (9-12)	10/30 (33%, 95% CI 17.3 to	
	University	Duration: Daily for 28 days	Exclusion: Delirium present on	Dementia %: 6.7	52.8); early discharge (6 vs.	
		or until discharge or death	admission, known psychotic	Cancer %: 100	5); withdrawal (6 vs. 3);	
		Follow-up (days): 28	disorder other than dementia,	Postop %: NR	death (0 vs. 1); 7 (23%) vs.	
			use of melatonin within the 2		11 (37%) reached the 28-	
			weeks preceding admission, on		day end point.	
			warfarin or other oral		Attrition: 40% vs. 27%	
			anticoagulants, or on			
			immunosuppressant medication			

Study population including main

inclusion and exclusion criteria

Sample demographics

3339 In General Inpatient/Palliative Care Setting Study

characteristics

Study protocol including

numbers of participants,

interventions, duration, and

Author

name

(year); trial

3340 3341 nce Scale; RCT=randomized controlled trial; RR=relative risk; SD=standard deviation.

3342 Melatonin Plus Dexmedetomidine vs. Dexmedetomidine

3343 In Surgical Setting

Author	Study	Study protocol including numbers of	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	participants, interventions, duration,	main inclusion and exclusion		outcomes and attrition	Bias
name		and follow-up	criteria		rates	
Mahrose et	Design: RCT	Randomized N: 110	Inclusion: >60 years having	Mean age: 66.5	Main outcomes: Fewer	Moderat
al. (2021)	Setting: Preop,	Analyzed N: 110	elective CABG surgery	Female %: 24.5	patients who received	
	cardiac	Intervention 1 (N=55): Melatonin 5 mg	Exclusion: Patients	Race %: NR	melatonin in addition to	
	Country: Egypt	plus dexmedetomidine 0.4 µg/kg IV	undergoing emergency	Delirium %: NR	dexmedetomidine	
	Funding: NR	bolus, then 0.2-0.7 μg/kg/hour IV	procedures, any preop mental	Function: NR	experienced delirium, and	
		Intervention 2 (N=55):	illness, preop renal failure,	Dementia %: NR	duration of delirium was	
		Dexmedetomidine 0.4 μg/kg IV bolus,	chronic liver disease (Child	(excluded any mental	shorter.	
		then 0.2-0.7 μg/kg/hour IV	classification class B and C),	illness)	Overall attrition: 0%	
		Intervention 1 duration: Melatonin - 10	carotid duplex to have carotid	Postop %: 100		
		pm night before surgery and every	disease, or prolonged postop	CABG surgery %: 100		
		evening before bed for 3 days;	intubation and re-exploration	Cancer %: NR		
		dexmedetomidine - upon arrival to the				
		ICU for 24 hours				
		Intervention 2 duration: Upon arrival to				
		the ICU for 24 hours				
		Follow-up (days): 5				

Abbreviations. CABG=coronary artery bypass graf; ICU=intensive care unit; IV=intravenous; N=number; NR=not reported; postop=post-operative; preop=pre-operative; RCT=randomized controlled trial.

3346 Melatonin vs. Midazolam vs. Clonidine vs. No Sedation

Author	Study	Study protocol including numbers	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	of participants, interventions,	main inclusion and exclusion		outcomes and attrition	Bias
name		duration, and follow-up	criteria		rates	
Sultan	Design: RCT	Randomized N: 222	Inclusion: >65 years, scheduled	Mean (SD) age: 71.01 (36.8)	Main outcomes: The	High
(2010)	Setting: Preop,	Analyzed N: 203	for hip arthroplasty under spinal	Female %: 51	melatonin group	
	hip	Intervention 1 (N=53 analyzed):	anesthesia, and ASA I-III	Race %: NR	showed a statistically	
	Country: Egypt	Melatonin 5 mg, 2 oral doses	Exclusion: Sensory impairment	Delirium %: 0 (excluded)	significant decrease in	
	Funding: None	Intervention 2 (N=50 analyzed):	(blindness, deafness); dementia;	ASA I-III: inclusion criterion	the percentage of POD	
		Midazolam 7.5 mg, 2 oral doses	severe infections; severe	Dementia %: 0 (excluded)	(9.43% vs. 32.65% in	
			anemia (hematocrit <30%);		the other groups).	

Author	Study	Study protocol including numbers	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	of participants, interventions,	main inclusion and exclusion		outcomes and attrition	Bias
name		duration, and follow-up	criteria		rates	
		Intervention 3 (N=51 analyzed):	intracranial events (stroke,	Postop %: 100	Overall attrition: 9%	
		Clonidine 100 µg, 2 oral doses	bleeding, infection); fluid or	Cancer %: NR		
		Intervention 4 (N=49 analyzed): No	electrolyte disturbances; acute			
		sedation	cardiac events; acute pulmonary			
		Duration: One dose the night	events; and medications			
		before surgery and another 90	including anticonvulsants,			
		minutes before surgery	antihistamines, and			
		Follow-up (days): POD 3	benzodiazepines			

3348
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 3349
 <li

3350 Ramelteon

3351 Ramelteon vs. placebo

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
name		interventions, duration, and			rates	
		follow-up				
Gupta et al.	Design: RCT	Randomized N: 100	Inclusion: >65 years, admitted for	Mean (SD) age: 69.97 (3.91)	Main outcomes: Incidence	Moderate
(2019)	Setting:	Analyzed N: 100	surgery requiring neuraxial	Female %: 32	of delirium was lower with	
	Preop, mixed	Intervention 1 (N=50):	anesthesia with duration longer	Race %: NR	ramelteon compared with	
	Country: India	Ramelteon 8 mg tablets, 2	than 1 hour, and ASA physical	Delirium %: NR (0% on POD 1)	placebo (4% vs. 12%), but	
	Funding: NR	doses	status 1 and 2	ASA physical status ≥3 %: 0	the difference was not	
		Intervention 2 (N=50):	Exclusion: History of dementia,	Dementia %: 0 (excluded)	statistically significant.	
		Placebo	severe infections, intracranial	Postop %: 100	Overall attrition: 0%	
		Duration: 1 tablet 12 hours	bleed, or acute cardiac event	Cancer %: NR		
		before surgery and 1 tablet 1				
		hour before surgery				
		Follow-up (days): POD 3				
Jaiswal et al.	Design: RCT	Randomized N: 120	Inclusion: ≥18 years undergoing	Mean (SD) age: 57.1 (15.0)	Main outcomes:	Low
(2019)	Setting: Preop	Analyzed N: 117	elective pulmonary	Female %: 50	Ramelteon 8 mg did not	
	and postop,	Intervention 1 (N=59):	thromboendarterectomy	Race %: NR	prevent POD in patients	
		Ramelteon 8 mg		Delirium %: NR	admitted for elective	

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
name		interventions, duration, and			rates	
		follow-up				
	cardiothoracic	Intervention 2 (N=61):	Exclusion: Cirrhosis or use of	Baseline scale of function: NR	cardiac surgery (RR 0.9,	
	Country: U.S.	Placebo	fluvoxamine	Dementia %: NR	95% CI 0.5 to 1.4).	
	Funding:	Duration: Nightly from the		Postop %: 100	Attrition: 0% vs. 5%	
	Government	night before surgery for a		Cancer %: NR		
		maximum of 7 nights, or until				
		ICU discharge if sooner				
		Follow-up (days): ≤9				
Oh E.S. et al.	Design: RCT	Randomized N: 80	Inclusion: ≥65 years with planned	Mean (SD) age: 74.8 (5.3)	Main outcomes: Delirium	Low
(2021)	Setting: Preop	Analyzed N: 80	orthopedic surgery and inpatient	Female %: 54	incidence during the 2 days	
	and postop,	Intervention 1 (N=41):	stay following surgery and MMSE	Race %:	following surgery was 7%	
	orthopedic	Ramelteon 8 mg	>15 before surgery	Caucasian: 73.7	(5/71) with no difference	
	Country: U.S.	Intervention 2 (N=39):	Exclusion: Delirium prior to	Black/African American: 15	between the ramelteon vs.	
	Funding: Non-	Placebo	surgery, current moderate to	Asian: NR	placebo: 9% (3/33) and 5%	
	profit	Duration: Prior to surgery,	severe liver failure, or evidence	Other: NR	(2/38), respectively	
		the night of surgery, and	of systemic inflammatory	Delirium %: 0 (excluded)	(adjusted OR 1.28, 95% CI	
		following postop day 1	response syndrome	Mean (SD) Charlson	0.21 to 7.93, z-value 0.27,	
		Follow-up (days): 1, 2		Comorbidity Index: 1.2 (1.3)	p=0.79).	
				Dementia %: NR	Attrition: 20% vs. 3%	
				Mean (SD) MMSE: 28.4 (1.7)		
				Postop %: 100		
				Cancer %: NR		

3353 3354

Abbreviations. ASA=American Society of Anesthesiologists; CI=confidence interval; ICU=intensive care unit; MMSE=Mini-Mental State Examination; N=number; NR=not reported; OR=odds ratio;

54 POD=post-operative delirium; postop=post-operative; preop=pre-operative; RCT=randomized controlled trial; RR=relative risk; SD=standard deviation.

3355 In Intensive Care Unit/Inpatient Setting

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
Nishikimi et al. (2018)	Design: RCT Setting: ICU	Randomized N: 92 Analyzed N: 88	Inclusion: ≥20 years admitted to an emergency and medical ICU	Median age: 68 Female %: 35	Main outcomes: A statistically significant	Moderate
	Country: Japan	Intervention 1 (N=47): Ramelteon 8 mg/day	who could receive medications orally or through a nasogastric	Race %: NR Delirium %: NR	decrease in the occurrence rate of delirium (24.4% vs.	

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
name		interventions, duration,			rates	
		and follow-up				
	Funding:	Intervention 2 (N=45):	tube during the first 48 hours of	APACHE II score, mean (SD):	46.5%, p=0.044) was	
	University	Placebo (lactose powder 1	ICU admission	23.97 (7.97)	observed in the ramelteon	
		g/day)	Exclusion: Receiving ramelteon	Dementia %: 8	group.	
		Duration: Every night until	or fluvoxamine maleate, known	Postop %: 0 (surgical ICU	Attrition: 4% vs. 4%	
		ICU discharge	allergy to ramelteon, or refused	patients not included)		
		Follow-up (days): ICU	to provide consent	Cancer %: NR		
		discharge (median 5-6				
		days)				

3356

Abbreviations. APACHE II=Acute Physiology and Chronic Health Evaluation II; Intervention 1=group 1; Intervention 2=group 2; ICU=intensive care unit; N=number; NR=not reported; postop=post-

3357 operative; RCT=randomized controlled trial; SD=standard deviation.

3358 In General Inpatient Setting

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
name		interventions, duration,			rates	
		and follow-up				
Hatta et al.	Design: RCT	Randomized N: 67	Inclusion: Age 65-89 years, newly	Mean (SD) age: 78.3 (6.7)	Main outcomes: After	Moderate
(2014b)	Setting: Mixed	Analyzed N:67	admitted to ICUs or "regular acute	Female %: 60	risk factors were	
	inpatient	Intervention 1 (N=33):	wards" due to serious medical	Race %: NR	controlled for,	
	Country: Japan	Ramelteon 8 mg/day	problems, and able to take medicine	Delirium %: 0 (excluded)	ramelteon was	
	Funding:	Intervention 2 (N=34):	orally	APACHE II: 14.1 (2.9)	associated with a lower	
	Government	Placebo	Exclusion: Expected stay or life	ECOG performance status: 3.3	incidence of delirium	
		Duration: Nightly for 7	expectancy <48 hours, severe liver	(0.8)	compared with placebo	
		days	dysfunction, Lewy body disease,	Dementia %: 19	(adjusted OR 0.07, 95%	
		Follow-up (days): 7	taking fluvoxamine, or delirious at	Postop %: NR	CI 0.008 to 0.54).	
			admission	Cancer %: NR	Overall attrition: 0%	

3359

Abbreviations. APACHE II=Acute Physiology and Chronic Health Evaluation II; CI=confidence interval; ECOG=Eastern Cooperative Oncology Group; ICU=intensive care unit; N=number; NR=not

3360 reported; OR=odds ratio; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

3361 Suvorexant

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
name		interventions, duration, and			rates	
		follow-up				
Azuma et al.	Design: RCT	Randomized N: 70	Inclusion: ≥20 years admitted within	Mean (SD) age: 61.7 (20.7)	Main outcomes:	Moderate
(2018)	Setting: ICU	Analyzed N: 70	24 hours to mixed medical ICU	Female %: 23	Incidence of delirium	
	Country:	Intervention 1 (N=34) *:	Exclusion: Life expectancy <48 hours,	Race %: NR	was 14.7% in suvorexant	
	Japan	Suvorexant 20 mg (<65 years)	baseline dementia or treated delirium,	Delirium %: NR	group compared to	
	Funding: NR	or 15 mg (≥65 years) once daily	or severe liver dysfunction	APACHE II: 11.1 (7.5)	33.3% in usual care	
		Control (N=36) *: Usual care		Dementia %: 0 (excluded)	group (p=0.069).	
		*Both groups received ABCDEF		Postop %: 0 (medical ICU)	Overall attrition: 0%	
		multi-component intervention.		Cancer %: NR		
		Duration: At 9:00 pm for 7 days				
		or until patient developed				
		delirium				
		Follow-up (days): NR				
Hatta et al.	Design: RCT	Randomized N: 72	Inclusion: Age 65-89 years, newly	Mean (SD) age: 78.4 (6.4)	Main outcomes:	Moderate
(2017)	Setting: Mixed	Analyzed N: 72	admitted to ICUs or "regular acute	Female %: 42	Delirium occurred	
	inpatient	Intervention 1 (N=36):	wards" due to emergency, and able to	Race %: Asian: 100	significantly less often in	
	Country:	Suvorexant 15 mg/day	take medicine orally	Delirium %: 0 (excluded)	patients taking	
	Japan	Intervention 2 (N=36): Placebo	Exclusion: Expected stay or life	APACHE II, Acute	suvorexant than those	
	Funding:	Duration: Nightly for 3 days	expectancy <48 hours, taking strong	Physiology Score: 3.1 (2.2)	taking placebo (0% vs	
	Government	Follow-up (days): 7	CYP3A inhibitor drugs, narcolepsy,	ECOG performance status:	17%, p=0.025).	
			cataplexy, severe liver dysfunction,	3.2 (0.9)	Attrition: 6% vs. 8%	
			severe respiratory dysfunction, or	Dementia %:25		
			delirious at admission	Postop %: NR		
				Cancer %: NR		

Abbreviations. APACHE II=Acute Physiology and Chronic Health Evaluation II; ECOG=Eastern Cooperative Oncology Group; ICU=intensive care unit; N=number; NR=not reported; postop=post-3362 3363

operative; RCT=randomized controlled trial; SD=standard deviation.

3364 Pharmacological Interventions for Treatment of Delirium

3365 *Dexmedetomidine*

Author	Study	Study protocol including	Study population	Sample demographics	Results including main outcomes and	Risk of
(year); trial	characteristics	numbers of participants,	including main inclusion		attrition rates	Bias
name		interventions, duration, and	and exclusion criteria			
		follow-up				
Bakri et al.	Design: RCT	Randomized N: 96	Inclusion: Patients who	Mean (SD) age: 31 (5.5)	Main outcomes: At the end of the	Moderate
(2015)	Setting:	Analyzed N: 96	screened positive for	Female %: 9	study, the number of remaining	
	Postop, mixed	Intervention 1 (N=32):	delirium within the first	Race %: NR	delirious patients was 3, 6, and 2 in	
	Country: Saudi	Dexmedetomidine continuous	3 days of ICU admission	Delirium %: 100 (required)	dexmedetomidine, ondansetron, and	
	Arabia	IV infusion of 1 µg/kg	Exclusion: Severely	Functioning scale: NR	haloperidol groups, respectively,	
	Funding: None	Intervention 2 (N=32):	injured, deeply	Dementia %: NR	without statistical significance. During	
		Ondansetron continuous IV	comatose, moribund	Postop %: 100	the study period, no significant	
		infusion 4 mg	patients, underlying	Cancer %: NR	difference was found in the number of	
		Intervention 3 (N=32):	neurological diseases,	Mean (SD) duration of	patients who needed "rescue	
		Haloperidol continuous IV	significant hearing loss,	surgery, minutes: 211 (34)	haloperidol" between	
		infusion 5 mg	intracranial injury, or	Mean (SEM) Injury	dexmedetomidine and haloperidol	
		Duration: Twice a day for 3	ischemic/hemorrhagic	Severity Score: 25.4 (2.9)	groups (5 vs. 3, p=0.7), but the	
		consecutive days	stroke	Patients on MV on ICU	difference was significantly higher in	
		Follow-up (days): POD 3		admission %: 27	ondansetron and haloperidol groups	
					(11 vs. 3, p=0.03). The mean total	
					"rescue haloperidol" dose was	
					significantly higher in ondansetron	
					group than haloperidol group	
					(p<0.001), but there was no difference	
					between dexmedetomidine and	
					haloperidol groups (p=0.07).	
					Attrition: NR	
Liu et al.	Design: RCT	Randomized N: 100	Inclusion: Age 20-40	Mean (SD) age: 30.95	Main outcomes: Dexmedetomidine	Low
(2018)	Setting:	Analyzed N: 100	years scheduled for	(4.87)	and sufentanil decreased the duration	
	Postop, mixed	Intervention 1 (N=25):	general anesthesia	Female %: 46	of POD through 8 hours postop, but	
	Country: China	Dexmedetomidine IV 0.2 μg/kg	Exclusion: Delirium	Race %: NR	more individuals had delirium in the	
	Funding:	bolus followed by 0.6	preop	Delirium %: 100	dexmedetomidine group at 8 hours	
	Nonprofit	μg/kg/hour		ASA I, II %: 100		

Author	Study	Study protocol including	Study population	Sample demographics	Results including main outcomes and	Risk of
(year); trial	characteristics	numbers of participants,	including main inclusion		attrition rates	Bias
name		interventions, duration, and	and exclusion criteria			
		follow-up				
		Intervention 2 (N=25):		Dementia %: NR	than the other 3 groups (36% vs. 8% to	
		Sufentanil IV 0.2 μg/kg bolus		Postop %: 100	16%, p<0.05).	
		followed by 0.2 μg/kg/hour		Cancer %: NR	Overall attrition: 0%	
		Intervention 3 (N=25):				
		Sufentanil IV 0.2 μg/kg bolus				
		followed by combined				
		dexmedetomidine 0.6				
		μg/kg/hour and sufentanil 0.2				
		μg/kg/hour				
		Intervention 4 (N=25):				
		Sufentanil IV 0.2 μg/kg bolus				
		followed by combined				
		dexmedetomidine 0.3				
		μg/kg/hour and sufentanil 0.1				
		μg/kg/hour				
		Duration: Postop				
		Follow-up (days): Through 8				
		hours				
Yapici et al.	Design: RCT	Randomized N: 72	Inclusion: Patients	Mean (SD) age: 59.97	Main outcomes: At postop hour 60,	Moderate
(2011)	Setting:	Analyzed N: 72	undergoing elective	(9.88)	fewer patients given	
	Postop, cardiac	Intervention 1 (N=38):	CABG, valve replacement,	Female %: 63	dexmedetomidine to assist with	
	Country:	Dexmedetomidine IV 0.3-0.7	or both who had failed at	Race %: NR	weaning off of MV had delirium	
	Turkey	μg/kg/hour	least 1 extubation	Delirium %: 100	compared with patients given	
	Funding:	Intervention 2 (N=34):	attempt	Dementia %: NR	midazolam (2.7% vs. 21%, p<0.05).	
	Unclear	Midazolam 0.05-0.2 mg/kg/hour	Exclusion: Patients who	Failed extubation: 100	Attrition: NR	
		Duration: MV	experienced postop	Postop %: 100 cardiac		
		Follow-up (days): Delirium	coma or death	surgery		
		assessed daily		Cancer %: 0		

3367 3368

Abbreviations. CABG=coronary artery bypass graf; ICU=intensive care unit; IV=intravenous; MV=medical ventilation; N=number; NR=not reported; POD=post-operative delirium; postop=post-operative; preop=pre-operative; RCT=randomized controlled trial; SD=standard deviation; SEM=standard error of the mean.

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
Liu et al. (2021)	Design: Retrospective cohort Setting: ICU Country: China Funding: Government	Analyzed N: 263 Intervention 1 (N=118): Dexmedetomidine 0.1- 0.7 mcg/kg/hour Intervention 2 (N=145): Olanzapine 2.5-10 mg/day Duration: NR Follow-up (days): NR	Inclusion: ≥75 years diagnosed with delirium based on DSM-5 in the ICU and given either dexmedetomidine or olanzapine Exclusion: Patients with endotracheal ventilation, underwent surgery during the hospital stay, advanced-stage tumors, brain tumors or recent brain trauma, underwent blood purification therapy during the use of olanzapine or dexmedetomidine, or with curative effects and adverse effects that could not be evaluated	Mean age: 80.05 vs. 78.99 Female %: 18.64 vs. 26.90 Race %: NR Delirium %: 100 Mean APACHE II score: 18.91 vs. 18.59 Dementia %: 10.17 vs. 11.03 Postop %: NR Cancer %: 9.32 vs. 8.97	Main outcomes: RASS scores were significantly higher in the olanzapine group than in the dexmedetomidine group (mean [SD] -0.57 [0.88] vs. 0.88 [0.73], p<0.001). No significant differences were found between the groups in mortality, long-term cognitive function, or recurrence of delirium (mortality 24.5% [29/118] vs. 21.4% [31/145], p=0.336; decrease in long-term cognitive function 23.7% [28/118] vs. 30.3% [44/145]; occurrence of delirium 27.12% [32/118] vs. 36.55% [53/145]). The hospital LOS was longer in the dexmedetomidine group than in the olanzapine group (mean [SD] 9.30 [4.90] vs. 8.83 [3.34], p<0.001). Attrition: NR	Moderate
Reade et al. (2016)	Design: RCT Setting: ICU Country: Australia Funding: Mixed	Randomized N: 74 Analyzed N: 71 Intervention 1 (N=41): Dexmedetomidine IV optional 1.0 µg/kg bolus followed by 0-1.5 µg/kg/hour Intervention 2 (N=33): Standard care; saline Duration: MV Follow-up (days): 7	Inclusion: ≥18 years with CAM- ICU scores that indicated delirium and who required MV only because their degree of agitation was so severe that lessening sedation and extubation was unsafe Exclusion: Patients with dementia that required professional nursing care	Median age: 57.3 Female %: 25 Race %: NR Delirium %: 100 APACHE II: 14 Dementia requiring professional care %: 0 Postop %: 59% Cancer %: NR	Main outcomes: Among patients with agitated delirium, the addition of dexmedetomidine to standard care compared with standard care alone resulted in more ventilator- free hours at 7 days (144.8 hours vs. 127.5 hours, p=0.01). Attrition: 5% vs. 3%	Low

- 3370 3371 Abbreviations. APACHE II=Acute Physiology and Chronic Health Evaluation II; CAM-ICU=Confusion Assessment Method for the ICU; DSM-5=Diagnostic and Statistical Manual of Mental Disorders, Fifth
- Edition; ICU=intensive care unit; IV=intravenous; LOS=length of stay; MV=medical ventilation; N=number; NR=not reported; postop=post-operative; RASS=Richmond Agitation Sedation Scale; 3372
 - RCT=randomized controlled trial; SD=standard deviation.

3373 Benzodiazepines

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
Breitbart et al. (1996)	Design: RCT Setting: Inpatient Country: U.S. Funding: Government	Randomized N: 30 Analyzed N: 30 Intervention 1 (N=11): Haloperidol loading dose oral 0.25-5 mg, followed by maintenance dose of 1.2 the initial dose every 12 hours (IM dosing also allowed) Intervention 2 (N=13): Chlorpromazine loading dose oral 10-200 mg followed by maintenance dose of 1/2 loading dose every 12 hours (IM dosing allowed) Intervention 3 (N=6): Lorazepam loading dose oral 0.5-24 mg followed by maintenance dose of 1/2 loading dose every 12 hours (IM dosing allowed) Duration: Every 12 hours for 6 days Follow-up (days): 6	Inclusion: Inpatients with AIDS with delirium Exclusion: Patients with dementia or near end of life (within 24 hours)	Mean age: 39 Female %: 23 Race %: Caucasian: 13 Black/African American: 57 Asian: 3 Delirium %: 100 Karnovsky: 52.3 Dementia %: 0 (excluded) Postop %: 0 Cancer %: NR	Main outcomes: Treatment with either haloperidol or chlorpromazine resulted in significant improvements in symptoms of delirium as measured by DRS. No improvement was seen with lorazepam. Treatment with haloperidol and chlorpromazine resulted in very low prevalence of extrapyramidal side effects. All 6 patients receiving lorazepam developed treatment-limiting adverse effects. Attrition: NR vs. NR vs. 100%	Moderate
Hui et al. (2017)	Design: RCT Setting: Palliative care Country: U.S.	Randomized N: 90 Analyzed N: 58 Intervention 1 (N=47): Lorazepam 3 mg plus haloperidol 2 mg every 4 hours	Inclusion: Adults with advanced cancer in palliative care with diagnosis of delirium	Mean age: 65 Female %: 47 Race %: Caucasian: 76 Black/African American:	Main outcomes: Lorazepam plus haloperidol resulted in a significantly greater reduction of RASS score at 8 hours (-4.1 points) than placebo plus haloperidol (-2.3 points) (MD -1.9	High

Author	Study	Study protocol including	Study population	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristics	numbers of participants,	including main inclusion		and attrition rates	Bias
name		interventions, duration, and	and exclusion criteria			
		follow-up				
	Funding:	IV; additional 2 mg as needed	Exclusion: Patients with	24	points, 95% CI -2.8 to -0.9, p<0.001).	
	Government	for agitation	dementia	Asian: NR	The lorazepam plus haloperidol	
		Intervention 2 (N=43): Placebo		Delirium %: 100	group required less median rescue	
		plus haloperidol 2 mg every 4		Karnovsky:	neuroleptics (2.0 mg) than the	
		hours IV; additional 2 mg as		10%=21%, 20%=47%,	placebo plus haloperidol group (4.0	
		needed for agitation		30%=24%, 40%=9%	mg) (MD –1.0 mg, 95% CI –2.0 to 0,	
		Duration: Lorazepam or placebo		Dementia %: 0 (Excluded)	p=0.009). No significant between-	
		infused intravenously over 1.5		Postop %: 0	group differences were found in	
		minutes		Cancer %: 100	delirium-related distress and survival.	
		Follow-up: 8 hours			The most common adverse effect	
					was hypokinesia (3 patients in the	
					lorazepam plus haloperidol group	
					[19%] and 4 patients in the placebo	
					plus haloperidol group [27%]).	
					Attrition: 45% vs. 40%	
Yapici et al.	Design: RCT	Randomized N: 72	Inclusion: Patients	Mean (SD) age: 59.97	Main outcomes: At postop hour 60,	Moderate
(2011)	Setting: Postop,	Analyzed N: 72	undergoing elective CABG	(9.88)	fewer patients given	
	cardiac	Intervention 1 (N=38):	valve replacement, or	Female %: 63	dexmedetomidine to assist with	
	Country:	Dexmedetomidine IV 0.3-0.7	both who had failed at	Race %: NR	weaning off of MV had delirium	
	Turkey	μg/kg/hour	least 1 extubating	Delirium %: 100	compared with patients given	
	Funding:	Intervention 2 (N=34):	attempt	Dementia %: NR	midazolam (2.7% vs. 21%, p<0.05).	
	Unclear	Midazolam 0.05-0.2 mg/kg/hour	Exclusion: Patients who	Failed extubation: 100	Attrition: NR	
		Duration: MV	experienced postop coma	Postop %: 100 cardiac		
		Follow-up (days): Delirium	or death	surgery		
		assessed daily		Cancer %: 0		

3374 3375 Abbreviations. CABG=coronary artery bypass graf; DRS=Delirium Rating Scale; IM=intramuscular injection; IV=intravenous; MD=mean difference; MV=medical ventilation; N=number; NR=not reported; postop=post-operative; RASS=Richmond Agitation Sedation Scale; RCT=randomized controlled trial; SD=standard deviation.

3376 Antipsychotics

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
Atalan et al. (2013)	Design: RCT Setting: Postop, cardiac Country: Turkey Funding: Unclear	Randomized N: 53 Analyzed N: 53 Intervention 1 (N=27): Morphine; 5mg morphine sulfate intramuscularly* Intervention 2 (N=26): Haloperidol 5mg intramuscularly* *Patients still agitated after administration of 20 mg/day of morphine/haloperidol also received 2.5 mg of lorazepam perorally, twice a day. Duration: Postop, up to 10 days Follow-up: 10, every 12 hours until discharge or 10 days	Inclusion: Cardiac surgery patients with hyperactive- type delirium Exclusion: Patients with dementia, abnormal level of consciousness, Parkinson's disease, recent seizures, or hypoactive- type delirium patients	Mean (SD) age: 65.87 (9.03) Female %: 26 Race %: NR Delirium %: 3.0 vs. 2.9 (RASS score) APACHE II score: 6.33 vs. 5.69 Dementia %: 0 Postop %: 100 cardiac surgeries Cancer %: NR Hepatic or renal impairment: NR Alcohol use %: 19 vs. 4 Drug use %: 4 vs. 12 Medications taken at baseline %: psychotropic drugs 4 vs. 12	Main outcomes: Target Richmond Agitation and Sedation Scale scores' percentages of the morphine group were statistically higher than those of the haloperidol group (p=0.042 and p=0.028, respectively). The number of patients requiring additive sedatives was significantly more in the haloperidol group when compared with the morphine group (p=0.011). Attrition: NR	High
Bakri et al. (2015)	Design: RCT Setting: Postop, mixed Country: Saudi Arabia Funding: None	Randomized N: 96 Analyzed N: 96 Intervention 1 (N=32): Dexmedetomidine continuous IV infusion of 1 µg/kg Intervention 2 (N=32): Ondansetron continuous IV infusion 4 mg Intervention 3 (N=32): Haloperidol continuous IV infusion 5 mg	Inclusion: Patients who screened positive for delirium within the first 3 days of ICU admission Exclusion: Severely injured, deeply comatose, moribund patients, underlying neurological diseases, significant hearing loss, intracranial injury, or	Mean (SD) age: 31 (5.5) Female %: 9 Race %: NR Delirium %: 100 (required) Functioning scale: NR Dementia %: NR Postop %: 100 Cancer %: NR Mean (SD) duration of surgery, minutes: 211 (34) Mean (SEM) Injury Severity Score: 25.4 (2.9)	Main outcomes: At the end of the study, the number of remaining delirious patients was 3, 6, and 2 in dexmedetomidine, ondansetron, and haloperidol groups, respectively, without statistical significance. During the study period, no significant difference was found in the number of patients who needed "rescue haloperidol" between dexmedetomidine and haloperidol groups (5 vs. 3, p=0.7),	Moderate

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and		and attrition rates	Bias
name		interventions, duration, and	exclusion criteria			
		follow-up				
		Duration: Twice a day for 3	ischemic/hemorrhagic	Patients on MV on ICU	but the difference was significantly	
		consecutive days	stroke	admission %: 27	higher in ondansetron and	
		Follow-up (days): POD 3			haloperidol groups (11 vs. 3,	
					p=0.03). The mean total "rescue	
					haloperidol" dose was significantly	
					higher in ondansetron group than	
					haloperidol group (p<0.001), but	
					there was no difference between	
					dexmedetomidine and haloperidol	
					groups (p=0.07).	
					Attrition: NR	
Fukata et	Design: RCT	Randomized N: 201	Inclusion: >75 years	Mean age: 81	Main outcomes: The incidence of	Moderate
al. (2017)	Setting: Postop,	Analyzed N: 199	undergoing elective	Female %: 50	severe POD in the intervention	
	orthopedic and	Intervention (N=101):	abdominal or orthopedic	Race %: NR	group (18.2%) was significantly	
	abdominal	Haloperidol IV 5 mg infusion	surgery with general or	Delirium %: 0	lower than that in the control group	
	Country: Japan	Control (N=100): No	spinal anesthesia; only	ADL (Berthel Index): 84	(32.0%) (p=0.02). No adverse events	
	Funding:	treatment	patients with Neecham	Dementia %: NR	were noted in the haloperidol	
	Government	Intervention duration: Once	score 20 to 24 were	Postop %: 100	group.	
		daily for 5 days	treated.	Cancer %: 62	Attrition: 2% vs. 0%	
		Control duration: 5 days	Exclusion: Prior treatment			
		Follow-up (days): 10	with haloperidol for post-			
			op delirium			
Tagarakis	Design: RCT	Randomized N: 80	Inclusion: Developed	Mean age: 71	Main outcomes: A statistically	High
et al.	Setting: Postop,	Analyzed N: 80	delirium post on-pump	Female %: 34	significant improvement was shown	
(2012)	cardiac	Intervention 1 (N=40):	heart surgery, using a 4-	Race %: NR	after the administration of both	
	Country: Greece	Ondansetron 8 mg IV	point scale (threshold for	Delirium %: NR	ondansetron (percentage	
	Funding: NR	Intervention 2 (N=40):	delirium NR)	Baseline scale of function:	improvement 61.29%, p<0.01) and	
		Haloperidol 5 mg IV	Exclusion: History of severe	NR	haloperidol (percentage	
		Duration: Once for 10	psychiatric disease	Dementia %: NR	improvement 58.06%, p<0.01), but	
		minutes		Postop %: 100	no between group differences were	
		Follow-up (days): 1		Cancer %: NR	found.	
					Attrition: NR	

- 3378 3379 Abbreviations. ADL=activities of daily living; APACHE II=Acute Physiology and Chronic Health Evaluation II; ICU=intensive care unit; MV=medical ventilation; N=number; NR=not reported; POD=post
 - operative delirium; postop=post-operative; RASS=Richmond Agitation Sedation Scale; RCT=randomized controlled trial; SD=standard deviation; SEM=standard error of the mean.

3380 In Intensive Care Unit Setting

Author (year); trial	Study characteristics	Study protocol including numbers of participants,	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
name	characteristics	interventions, duration, and follow-up		ucinographics		Dias
Boncyk et al. (2021)	Design: Retrospective cohort Setting: ICU Country: U.S. Funding: Non- profit	Analyzed N: 7,879 Intervention 1 (N=3,770): Antipsychotics recipients (97.6% of all antipsychotics were haloperidol, olanzapine, and quetiapine) Intervention 2 (N=4,109): Non-recipients Duration: NR Follow-up (days): NR	Inclusion: ≥18 years admitted to medical, surgical, trauma, or cardiovascular ICUs; with delirium based on CAM-ICU Exclusion: Patients with home antipsychotic prescriptions	Median age: 62 vs. 61 Female %: 37 vs. 44.4 Race %: NR Delirium %: NR Baseline scale of function: NR Dementia %: NR Postop %: 17.9 vs. 19.0 Cancer %: NR	Main outcomes: Haloperidol and olanzapine were both independently associated with an increased odds of delirium the following day after adjusting for pre-specified covariates (OR 1.48, 95% Cl 1.30 to 1.65, p<0.001 and OR 1.37, 95% Cl 1.20 to 1.56, p=0.003, respectively). Haloperidol and olanzapine use were independently associated with an increased hazard of mortality (HR 1.46, 95% Cl 1.10 to 1.93, p=0.01 and HR 1.67, 95% Cl 1.14 to 2.45, p=0.01, respectively), while quetiapine use was associated with a decreased hazard of mortality (HR 0.58, 95% Cl 0.40 to 0.84, p=0.01). Attrition: NR	Moderate
Devlin et al. (2010)	Design: RCT Setting: ICU Country: U.S. Funding: Mixed	Randomized N: 36 Analyzed N: 36 Intervention 1 (N=18): Quetiapine 50-200 mg, titrated by 50 mg; if needed, haloperidol was received within last 24 hours Intervention 2 (N=18): Placebo	Inclusion: Adult ICU patients with delirium (ICDSC score>4), tolerating enteral nutrition, and without a complicating neurologic condition Exclusion: Prior antipsychotic use within 30 days, not receiving enteral nutrition, primary neurological condition, advanced liver disease, alcohol withdrawal, inability to conduct ICDSC, no delirium, inability to obtain	Mean age: 63 Female %: 64 Race %: NR Delirium %: 100 APACHE II: 16.8 Dementia %: NR Postop %: 23 Cancer %: NR	Main outcomes: Quetiapine was associated with a shorter time to first resolution of delirium (1.0 days [IQR 0.5 to 3.0] vs.4.5 days [IQR 2.0 to 7.0], p=0.001) and a reduced duration of delirium (36 hours [IQR, 12 to 87] vs. 120 hours [IQR, 60 to 195], p=0.006). Incidence of QTc prolongation and extrapyramidal symptoms was similar between groups. More somnolence was observed with quetiapine (22% vs. 11%, p=0.66).	Low

Author	Study	Study protocol including	Study population including main	Sample	Results including main outcomes and	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria	demographics	attrition rates	Bias
name		interventions, duration,				
		and follow-up				
		Duration: Every 12 hours,	informed consent, moribund,		Attrition: NR	
		maximum of 10 days	irreversible brain disease, current			
		Follow-up (days): 10	drug therapy w/agents affecting			
			quetiapine concentrations,			
			current drug therapy with Class			
			la, Ic or III antiarrhythmics, or			
			baseline QTc interval ≥500 msec			
Fox et al.	Design: Cohort,	Analyzed 40: Unclear	Inclusion: CAM-ICU positive	Mean age: 66 vs. 67	Main outcomes: No statistical	High
(2020)	reported as	Intervention 1 (N=20):	Exclusion: <72 hours in the ICU,	Female %: 45 vs. 50	difference was found between the	
	prospective	Quetiapine	<72 hours of study medication,	Race %:	groups regarding time to delirium	
	but unclear	Intervention 2 (N=20):	received any other SGA during	White: 70 vs. 60	resolution: 3.2 days (2.4) in the	
	from methods	Lurasidone	the study period, antipsychotic	Black: 25 vs. 25	quetiapine group vs. 3.4 days (1.1) in	
	Setting: ICU	Duration:	use prior to admission, alcohol	Delirium %: 100	the lurasidone group. 65% (13/20) in	
	Country: U.S.	Follow-up (days):	withdrawal, pregnancy, or	APACHE II: 32 vs.	the quetiapine group vs. 40% (8/20) in	
	Funding: None		incarceration	23.5	the lurasidone group had resolution of	
				Dementia %: NR	delirium (CAM-ICU) (p=0.204). Mean	
				Postop %: NR	(SD) days of ICU LOS were 14.2 (5.6) in	
				Cancer %: NR	the quetiapine group vs. 12.1 (6.0) in	
					the lurasidone group (p=0.273)	
					Attrition: NR	
Girard et al.	Design: RCT	Randomized N: 566	Inclusion: Adults in a medical or	Mean age: 61	Main outcomes: The median number of	Low
(2018)	Setting: ICU	Analyzed N: 566	surgical ICU, who were	Female %: 43	days alive without delirium or coma	
	Country: U.S.	Intervention 1 (N=190):	ventilated, on vasopressor drugs,	Race %:	was 8.5 (95% CI 5.6 to 9.9) in the	
	Funding:	Ziprasidone IV: 5 mg if <70	or an intraaortic balloon pump	White: 83	placebo group, 7.9 (95% Cl 4.4 to 9.6) in	
	Government	years, 2.5 mg if >70 years	diagnosed with delirium	Black/African	the haloperidol group, and 8.7 (95% CI	
		every 12 hours; titrated to	Exclusion: Severe cognitive	American: 13	5.9 to 10.0) in the ziprasidone group	
		maximum of 40 mg/day	impairment or severe dementia	Asian: NR	(p=0.26 for overall effect across trial	
		Intervention 2 (N=192):		Delirium %: 100	groups). The use of haloperidol or	
		Haloperidol IV: 2.5 mg if		APACHE II: 29	ziprasidone, as compared with placebo,	
		<70 years, 1.25 mg if >70		Dementia %: 0	had no significant effect on the primary	
		years every 12 hours;		(Excluded)	end point (ORs 0.88 [95% CI 0.64 to	
		titrated to maximum of 20			1.21] and 1.04 [95% CI 0.73 to 1.48],	

Author	Study	Study protocol including	Study population including main	Sample	Results including main outcomes and	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria	demographics	attrition rates	Bias
name		interventions, duration,				
		and follow-up				
		mg/day		Postop %: 28	respectively). There were no significant	
		Intervention 3 (N=184):		Cancer %: NR	between-group differences with	
		Placebo			respect to the secondary end points or	
		Duration: Every 12 hours			the frequency of extrapyramidal	
		for 14 days			symptoms.	
		Follow-up (days): 14			Attrition: 4% vs. 2% vs. 3%	
Liu et al.	Design:	Analyzed N: 263	Inclusion: ≥75 years diagnosed	Mean age: 80.05 vs.	Main outcomes: RASS scores were	Moderate
(2021)	Retrospective	Intervention 1 (N=118):	with delirium based on DSM-5 in	78.99	significantly higher in the olanzapine	
	cohort	Dexmedetomidine 0.1-0.7	the ICU and given either	Female %: 18.64 vs.	group than in the dexmedetomidine	
	Setting: ICU	mcg/kg/hour	dexmedetomidine or olanzapine	26.90	group (mean [SD] -0.57 [0.88] vs. 0.88	
	Country: China	Intervention 2 (N=145):	Exclusion: Patients with	Race %: NR	[0.73], p<0.001).	
	Funding:	Olanzapine 2.5-10 mg/day	endotracheal ventilation,	Delirium %: 100	No significant differences were found	
	Government	Duration: NR	underwent surgery during the	Mean APACHE II	between the groups in mortality, long-	
		Follow-up (days): NR	hospital stay, advanced-stage	score: 18.91 vs. 18.59	term cognitive function, or recurrence	
			tumors, brain tumors or recent	Dementia %: 10.17	of delirium (mortality 24.5% [29/118]	
			brain trauma, underwent blood	vs. 11.03	vs. 21.4% [31/145], p=0.336; decrease	
			purification therapy during the	Postop %: NR	in long-term cognitive function 23.7%	
			use of olanzapine or	Cancer %: 9.32 vs.	[28/118] vs. 30.3% [44/145];	
			dexmedetomidine, or with	8.97	occurrence of delirium 27.12% [32/118]	
			curative effects and adverse		vs. 36.55% [53/145]). The hospital LOS	
			effects that could not be		was longer in the dexmedetomidine	
			evaluated		group than in the olanzapine group	
					(mean [SD] 9.30 [4.90] vs. 8.83 [3.34],	
					p<0.001).	
					Attrition: NR	
Skrobik et al.	Design: RCT	Randomized N: 80	Inclusion: Age 18-75 years,	Mean age: 65	Main outcomes: Delirium Index	Moderate
(2004)	Setting: ICU	Analyzed N: 73	admitted to ICU, and diagnosed	Female %: 27	decreased over time in both groups, as	
	Country:	Intervention 1 (N=28	with delirium by ICU-DSC score	Race %: NR	did the administered dose of	
	Canada	analyzed): Olanzapine	≥4	Delirium %: 100	benzodiazepines. Clinical improvement	
	Funding:	starting dose 2.5-5 mg	Exclusion: Pregnancy,	APACHE II: 12.7	was similar in both treatment arms. No	
	Industry	daily; mean 4.54 mg	antipsychotic medication use	Dementia %: NR	side effects were noted in the	
		(range 2.5-13.5 mg)			olanzapine group, whereas the use of	

Author	Study	Study protocol including	Study population including main	Sample	Results including main outcomes and	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria	demographics	attrition rates	Bias
name		interventions, duration,				
		and follow-up				
		Intervention 2 (N=45	within 10 days prior to hospital or	Postop %: NR	haloperidol was associated with	
		analyzed): Haloperidol	ICU admission, or	Cancer %: NR	extrapyramidal side effects.	
		starting dose 0.5-5 mg	contraindications to either		Overall attrition: 9%	
		every 8 hours; mean 6.5	haloperidol or olanzapine			
		mg (range 1-28 mg) daily				
		Intervention 1 duration:				
		Daily for 5 days				
		Intervention 2 duration:				
		Three times daily for 5				
		days				
		Follow-up (days): 5				
Smit et al.	Design:	Analyzed N: 1,165	Inclusion: Admitted to ICU and	Median age: 64	Main outcomes: The probability of	Moderate
(2021)	Retrospective	Intervention 1 (N=NR):	experienced an episode of	Female %: 34.5	delirium resolution was lower in	
	cohort	Haloperidol only	delirium	Race %: NR	delirious patients who received	
	Setting: ICU	Intervention 2 (N=NR):	Exclusion: ICU admission <24	Delirium %: 100	haloperidol (OR 0.47, 95% Cl 0.39 to	
	Country:	Clonidine only	hours, readmissions, transfers	Median APACHE IV	0.57), clonidine (OR 0.78, 95% Cl 0.63	
	Netherlands	Intervention 3 (N=NR):	from another ICU, or admission	score: 69	to 0.97), or both (OR 0.45, 95% Cl 0.36	
	Funding: None	Haloperidol plus clonidine	with a primary acute neurological	Dementia %: NR	to 0.56) compared to untreated	
		Duration: NR	or neurosurgical disorder	(excluded primary	delirious patients. Delirious patients	
		Follow-up (days): 24,906	confounding the delirium	acute neurological or	who received haloperidol, clonidine, or	
		observation days	diagnosis; or another condition	neurosurgical	both had generally longer delirium	
			that could hamper the	disorder)	duration, more delirium and ventilation	
			assessment of delirium, such as	Postop %: 58.2	days, and spent more time in the ICU	
			intellectual disability and anoxic	Cancer %: NR	and in hospital than untreated delirious	
			brain injury after		patients.	
			cardiopulmonary resuscitation		Attrition: NR	
Thom et al.	Design:	Analyzed N: 322	Inclusion: At least 1 positive	Mean age: 63 vs. 58	Main outcomes: Adjusted HRs for	Moderate
(2018)	Retrospective	Intervention 1 (N=90):	CAM-ICU score during ICU stay	vs. 62	delirium-coma resolution were 1.24	
	cohort	Early treatment*; <48	Exclusion: Prior antipsychotic use,	Female %: 43 vs. 39	(95% CI 0.77 to 1.99) for the early	
	Setting: ICU	hours after diagnosis	alcohol or substance withdrawal,	vs. 52	treatment group and 1.91 (95% CI 0.98	
	Country: U.S.	Intervention 2 N=57): Late	missing CAM-ICU data, or	Race %:	to 3.73) for the late treatment group	
		treatment*; >48 hours	developmental delay		compared to the no treatment group.	

Author	Study	Study protocol including	Study population including main	Sample	Results including main outcomes and	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria	demographics	attrition rates	Bias
name		interventions, duration,				
		and follow-up				
	Funding:	Intervention 3 (N=175):		White: 81 vs. 79 vs.	Mean (SD) hours alive without coma or	
	Nonprofit	No treatment		63	delirium were 63.0 (86.7) for the early	
		*Antipsychotics used		Black: 8 vs. 2 vs. 18	treatment group vs. 66.3 (91.8) for the	
		were haloperidol,		Delirium %: 100	late treatment group vs. 89.3 (106.8)	
		risperidone, quetiapine,		APACHE II mean	for the no treatment group (adjusted	
		olanzapine, aripiprazole,		score: 24 vs. 25 vs.	p=0.705). Adjusted HR for mortality at	
		or ziprasidone.		24	10 days among those with early	
		Duration: NR		Dementia: NR	treatment was 0.68 (95% CI 0.37 to	
		Follow-up (days): 10		Postop: NR	1.22) and 0.30 (95% CI 0.10 to 0.88) for	
				Cancer %: 10 vs. 11	those with late treatment compared to	
				vs. 7	those with no treatment. Posthoc	
					subgroup analysis excluding comatose	
					patients found no differences in	
					mortality.	
					Attrition: NR	
Weaver et	Design:	Analyzed N: 255	Inclusion: Positive delirium	Mean age: 57 vs. 61	Main outcomes: Time to resolution of	Moderate
al. (2017)	Retrospective	Intervention 1 (N=69):	screen by ICDSC at least once	Female %: 42 vs. 47	delirium was longer in the	
	cohort	Treated with	during ICU stay	Race: NR	antipsychotics group (median 36.0 vs.	
	Setting: ICU	antipsychotics*	Exclusion: ICDSC not performed	Delirium %: 100	13.6, p<0.001) and ICU LOS was also	
	Country: U.S.	*Antipsychotics used	every 24 hours, history of	SAPS III: mean 46 vs.	longer (median 5.7 days vs. 3.8 days,	
	Funding: None	were quetiapine,	dementia or Parkinson's disease,	47	p=0.005). There was no difference in	
	from industry	olanzapine, risperidone,	antipsychotic given for a reason	Dementia: NR	mortality (17.4% [12/69] vs. 18.3%	
		and haloperidol.	other than delirium, "insufficient	Postop: NR	[34/185], p=0.870).	
		Intervention 2 (N=186):	medical records," or	Cancer: NR	Attrition: NR	
		Not treated with	benzodiazepines for alcohol			
		antipsychotics	withdrawal			
		Duration: NR				
		Follow-up (days): NR				

3381 3382 3383 3384 Abbreviations. APACHE II=Acute Physiology and Chronic Health Evaluation II; APACHE IV=Acute Physiology and Chronic Health Evaluation IV; CAM-ICU=Confusion Assessment Method for the ICU; CI=confidence interval; DSM-5=Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition; HR=hazard ratio; ICDSC=Intensive Care Delirium Screening Checklist; ICU=intensive care unit; ICU-DSC=ICU Delirium Screening Checklist; IQR=interquartile range; IV=intravenous; LOS=length of stay; N=number; NR=not reported; OR=odds ratio; postop=post-operative; RASS=Richmond Agitation

Sedation Scale; RCT=randomized controlled trial; SAPS III=Simplified Acute Physiology Score III; SD=standard deviation.

3385 In General Inpatient Setting

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
Breitbart et al. (1996)	Design: RCT Setting: Inpatient Country: U.S. Funding: Government	Randomized N: 30 Analyzed N: 30 Intervention 1 (N=11): Haloperidol loading dose oral 0.25-5 mg, followed by maintenance dose of 1.2 the initial dose every 12 hours (IM dosing also allowed) Intervention 2 (N=13): Chlorpromazine loading dose oral 10-200 mg followed by maintenance dose of 1/2 loading dose every 12 hours. (IM dosing allowed) Intervention 3 (N=6): Lorazepam loading dose oral 0.5-24 mg followed by maintenance dose of 1/2 loading dose every 12 hours. (IM dosing allowed) Duration: Every 12 hours for 6 days	Inclusion: Inpatients with AIDS with delirium Exclusion: Patients with dementia or near end of life (within 24 hours)	Mean age: 39 Female %: 23 Race %: Caucasian: 13 Black/African American: 57 Asian: 3 Delirium %: 100 Karnovsky: 52.3 Dementia %: 0 (excluded) Postop %: 0 Cancer %: NR	Main outcomes: Treatment with either haloperidol or chlorpromazine resulted in significant improvements in symptoms of delirium as measured by DRS. No improvement was seen with lorazepam. Treatment with haloperidol and chlorpromazine resulted in very low prevalence of extrapyramidal side effects. All 6 patients receiving lorazepam developed treatment-limiting adverse effects. Attrition: NR vs. NR vs. 100%	Moderate
Boettger et al. (2011)	Design: Prospective cohort	Follow-up (days): 6 Analyzed N: 64 Intervention 1 (N=32): Haloperidol Intervention 2 (N=32): Risperidone	Inclusion: Patients meeting DSM-IV-TR criteria for delirium	Mean age: 62 vs. 67.5 Female %: 37.5 vs. 37.5 Race %: NR Delirium %: 100 KPS: 22 vs. 24	Main outcomes: Delirium resolution (MDAS <10) at 4-7 days was 68.8% (22/32) in the haloperidol group vs. 84.4% (27/32) in the risperidone group (p=NS). Delirium severity	High

Author (year); trial name	Study characteristics Setting:	Study protocol including numbers of participants, interventions, duration, and follow-up Duration: NR	Study population including main inclusion and exclusion criteria Exclusion: Severe agitation,	Sample demographics Dementia %: NR	Results including main outcomes and attrition rates (MDAS) at 4-7 days was: mean 7.8	Risk of Bias
	Inpatient Country: U.S. Funding: Not industry sponsored	Follow-up (days): 7	critical medical condition, and imminent death	Postop %: NR Cancer %: 100	(SD 5.6) vs. 7.5 (SD 4.5). Parkinsonism was found in 21.9% (7/32) vs. 3.1% (1/32) and dystonia in 9.4% (3/32) vs. 3.1% (1/32). Attrition: NR	
Boettger et al. (2015)	Design: Retrospective cohort Setting: Inpatient Country: U.S. Funding: Government	Analyzed N: 84 Intervention 1 (N=21): Haloperidol Intervention 2 (N=21): Risperidone Intervention 3 (N=21): Aripiprazole Intervention 4 (N=21): Olanzapine Duration: NR Follow-up (days): 7	Inclusion: Patients meeting DSM-IV-TR criteria for delirium Exclusion: Severe agitation	Mean age: 64 vs. 67 vs. 70 vs. 66 Female %: 62 vs. 52 vs. 52 vs. 62 Race: NR Delirium %: 100 Baseline scale of function: NR Dementia %: 24 vs. 24 vs. 29 vs. 29 Postop %: NR Cancer %: 100	Main outcomes: Delirium resolution after 4-7 days (MDAS \leq 10) was 76.2% (16/21) vs. 85.7% (18/21) vs. 76.2% (16/21) vs. 61.9% (13/21) (p=0.418). Main outcomes: Mean (SD) delirium severity after 4-7 days (MDAS) was 6.8 (4.8) vs. 7.1 (5.1) vs. 8.3 (8.3) vs. 11.7 (8.8) (p=0.249). Olanzapine most frequently caused side effects, followed by haloperidol, aripiprazole, and risperidone. Dystonia occurred in 9.5% (2/21) in the haloperidol group vs. 0% in the other groups (p=0.1). Parkinsonism occurred in 19% (4/21) vs. 4.8% (1/21) vs. 0% (0/21) vs. 0% (0/21) (p=0.012). Attrition: NR	Moderate
Grover et al. (2011)	Design: RCT Setting: Inpatient Country: India Funding: Unclear	Randomized N: 74 Analyzed N: 64 Intervention 1 (N=26): Olanzapine IV 1.25-20 mg daily Intervention 2 (N=22): Risperidone IV 0.25-4 mg daily	Inclusion: Adult inpatients (medical or surgical) diagnosed with delirium Exclusion: Dementia, alcohol or benzodiazepine withdrawal, terminal illness, or psychotic or mood disorders	Mean age: 45 Female %: 30 Race %: NR Delirium %: 100 Function: NR Dementia %: 0 (excluded) Postop %: NR Cancer %: NR	Main outcomes: All groups had a significant reduction in DRS-R98 severity scores and a significant improvement in MMSE scores over the period of 6 days, with no significant differences between groups. 4 patients in the haloperidol group, 6 subjects in the risperidone	High

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and		and attrition rates	Bias
name		interventions, duration,	exclusion criteria			
		and follow-up				
		Intervention 3 (N=26):			group, and 2 subjects in the	
		Haloperidol IV 0.25- 10			olanzapine group experienced some	
		mg daily			side effects.	
		Duration: Once a day (>			Attrition: 12% vs. 5% vs. 23%	
		once per day if agitated);				
		duration as per clinical				
		judgement				
		Follow-up (days): 6				
Grover et al.	Design: RCT	Randomized N: 70	Inclusion: >18 years, DSM-	Mean age: 46	Main outcomes: At the end of the	High
(2016)	Setting:	Analyzed N: 63	IV criteria for delirium, and	Female %: 78	trial, 68.75% and 67.74% of subjects	
	Inpatient	Intervention 1 (N=35):	referred to consultation	Race %: NR	in the haloperidol and quetiapine	
	Country: India	Quetiapine 12.5-75 mg	liaison psychiatry service	Delirium %: 100	group respectively had mean DRS-R-	
	Funding: NR	per day	Exclusion: Dementia	Baseline scale of function: NR	98 scores below 10. By 6 th day, 12	
		Intervention 2 (N=35):		Dementia %: 0	(37.5%) patients in haloperidol group	
		Haloperidol 0.25-1.0 mg		Postop %: NR	and 9 (29.03%) patients in the	
		per day, 2-3 times		Cancer %: NR	quetiapine group had a score of "o"	
		Duration: Daily for 6 days			with no significant difference	
		Follow-up (days): 6			between the groups (p=0.47).	
					Attrition: 11% vs. 9%	
Han and Kim	Design: RCT	Randomized N: 28	Inclusion: Patients referred	Mean age: 66	Main outcomes: No significant	Moderate
(2004)	Setting:	Analyzed N: 24	to consulting psychiatry	Female %: 46	differences were found between the	
	Inpatient	Intervention 1 (N=14):	division, with score of at	Race %: NR	groups in MDAS score over 7 days. 1	
	Country:	Risperidone 0.5-2.0 mg	least 13 on DRS	Delirium %: 100	patient in the haloperidol group	
	South Korea	orally	Exclusion: Dementia	Baseline scale of function: NR	experienced mild akathisia, but no	
	Funding: NR	Intervention 2 (N=14):		Dementia %: 0 (excluded)	other patients reported clinically	
		Haloperidol 1.0-3.0 mg		Postop %: NR	significant side effects.	
		orally		Cancer %: 8	Attrition: 6% vs. 6%	
		Duration: Daily for 7 days				
		Follow-up (days): 7				
Hatta et al.	Design:	Analyzed N: 2,453	Inclusion: Patients who	Mean age, years: 73.5 vs. 74	Main outcomes: With respect to the	High
(2014a)	Prospective	Intervention 1 (N=835):	developed delirium during	vs. 67 vs. 70 vs. 72	duration of delirium, 54% of patients	
	cohort	Risperidone	their admission due to		were within 1 week, whereas 25% of	

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and		and attrition rates	Bias
name		interventions, duration,	exclusion criteria			
		and follow-up				
	Setting:	Intervention 2 (N=779):	acute medical illness or	Female %: 35 vs. 39 vs. 39 vs.	patients were more than 2 weeks.	
	Inpatient	Quetiapine	surgery, and who received	52 vs. 33	The rate of delirium within 1 week	
	Country:	Intervention 3 (N=87):	antipsychotics for delirium	Race %: 100 Asian	was significantly higher in patients	
	Japan	Olanzapine	Exclusion: NR	Delirium %: 100	with olanzapine than in other	
	Funding:	Intervention 4 (N=61):		Baseline scale of function: NR	patients (67% vs. 54%, p=0.025).	
	Government	Aripiprazole		Dementia %: 31 vs. 34 vs. 20	16% of patients died. The rate was	
		Intervention 5 (N=480):		vs. 25 vs. 20	significantly higher in patients with	
		Haloperidol		Postop %: NR	haloperidol than in other patients	
		Intervention 6: (N=88):		Cancer %: NR	(29% vs. 13%, p<0.0001). A total of	
		Perospirone			22 serious adverse events (0.9%)	
		Intervention 7: (N=123):			were reported, and there was no	
		Others			significant difference between the	
		Duration: NR			groups (p=0.40).	
		Follow-up (days): NR			Attrition: NR	
Jain et al.	Design: RCT	Randomized N: 132	Inclusion: ≥18 years old	Mean age: NR	Main outcomes: Mean duration of	High
(2017)	Setting:	Analyzed N: 100	admitted to ED with	Female %: NR	treatment in olanzapine group and	
	Inpatient	Intervention 1 (N=66):	delirium diagnosed per	Race %: NR	haloperidol group was 3.57 days and	
	Country: India	Olanzapine 2.5-10 mg	DSM-IV criteria	Delirium %: 100	3.37 days (p=NS). Mean MDAS scores	
	Funding: None	daily orally	Exclusion: Dementia	Baseline scale of function: NR	at endpoint were 8.43 and 8.00 with	
		Intervention 2 (N=66):		Dementia %: 0 (excluded)	olanzapine and haloperidol	
		Haloperidol 1-4 mg daily		Postop %: NR	(p=0.765). 5 patients experienced	
		orally		Cancer %: NR	drug-related mild side effects.	
		Duration: Until resolution			Attrition: 29% vs. 29%	
		Follow-up (days): Until				
		resolution				
Kim et al.	Design: RCT	Randomized N: 32	Inclusion: Patients with	Mean age: 67	Main outcomes: Risperidone and	Moderate
(2010)	Setting:	Analyzed N: 32	delirium (DSM-IV criteria)	Female %: 44	olanzapine were equally effective in	
	Inpatient	Intervention 1 (N=15):	Exclusion: Dementia	Race %: NR	reducing delirium symptoms.	
	Country:	Olanzapine 21.25-7.5 mg		Delirium %: 100	Response also did not differ	
	South Korea	daily orally		Baseline scale of function: NR	significantly (risperidone group:	
	Funding: NR	Intervention 2 (N=17):		Dementia %: NR	64.7% vs. olanzapine group: 73.3%).	
					There was no significant difference in	

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and		and attrition rates	Bias
name		interventions, duration,	exclusion criteria			
		and follow-up				
		Risperidone 0.25-2 mg		Postop %: NR	the safety profiles, including	
		daily orally		Cancer %: 72	extrapyramidal side effects.	
		Duration: Daily for 7 days			Attrition: 47% vs. 29%	
		Follow-up (days): 7				
Lee et al.	Design: RCT	Randomized N: 40	Inclusion: Patients with	Mean (SD) age: 62 (16)	Main outcomes: There was no	High
(2005)	Setting:	Analyzed N: 31	delirium (met DSM-IV	Female %: 35	significant difference in the baseline	
	Inpatient	Intervention 1 (N=20):	criteria for delirium)	Race %: NR	DRS-R-98 and CGI scores. After	
	Country:	Amisulpride; mean initial	Exclusion: Patients with	Delirium %: 100	treatment, DRS-R-98 scores were	
	South Korea	dose 96.9 (SD 12.5)	psychiatric disorder or	DRS-R-98: 10.5 (4.1) vs. 10.1	significantly decreased from the	
	Funding:	mg/day and mean daily	taking antipsychotics likely	(4.1)	baseline in both treatment groups	
	Unclear	dose of 156.4 (SD 97.5)	to resolve spontaneously	CGI-S: Score NR, "no	(p<0.001) without group difference.	
		(range 50-800) mg/day	(e.g., those who	significant group differences"	Attrition: 20% vs. 25%	
		Intervention 2 (N=20):	immediately recovered	Dementia %: 0 (those with a		
		Quetiapine; mean initial	after a major operation)	previous history of psychiatric		
		dose of 63.3 (SD 22.9)		disorder, who had been		
		mg/day and mean daily		taking antipsychotics, and		
		dose of 113 (SD 85.5)		who were likely to resolve		
		(range 50-300) mg/day		spontaneously [e.g. those		
		Duration: During		who immediately recovered		
		hospitalization; treatment		after a major operation] were		
		was terminated when the		excluded from this study)		
		CGI had reached 2 or less.		Postop %: NR		
		Patients were monitored		Cancer %: NR		
		daily by the psychiatrist		Hepatic or renal impairment:		
		until the patient went into		NR		
		remission or was		Alcohol use: NR		
		discharged.		Drug use: NR		
		Follow-up (days): Until		Mean number of medications		
		remission or discharge		taken at baseline: NR		
Liu et al.	Design:	Analyzed N: 77	Inclusion: DSM-IV criteria	Mean age: 68 vs. 50	Main outcomes: 95% (39/41) of the	High
(2004)	Retrospective	Intervention 1 (N=41):	for diagnosis	Female %: NR	risperidone group recovered from	
	cohort	Risperidone	Exclusion: NR	Race %: NR	delirium vs. 100% of the haloperidol	

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and		and attrition rates	Bias
name		interventions, duration,	exclusion criteria			
		and follow-up				
	Setting:	Intervention 2 (N=36):		Delirium %: 100	group. Mean delirium severity after	
	Inpatient	Haloperidol		Baseline scale of function: NR	treatment (hyperactive) was 0.20 (SD	
	Country:	Intervention 1 duration:		Dementia %: NR	1.26) in the risperidone group vs. all	
	Northern	3-18 days (average 7.2 ±		Postop %: ≥8 (delirium with	recovered in the haloperidol group	
	Taiwan	3.7 day)		Postop etiology)	(p=NS). Mean delirium severity after	
	Funding:	Intervention 2 duration:		Cancer %: NR	treatment (hypoactive) was 0.40 (SD	
	Industry and	2-19 days (average 7.9 ±			0.96) in the risperidone group vs.	
	government	4.7 days)			0.06 (SD 0.33) in the haloperidol	
		Follow-up (days): NR			group (p=NS).	
					Attrition: NR	
Maneeton et	Design: RCT	Randomized N: 52	Inclusion: Age 18-75 years	Mean age: 57	Main outcomes: Means of the DRS-	Moderate
al. (2013)	Setting:	Analyzed N: 52	meeting DSM-IV criteria for	Female %: 33	R-98 severity scores were not	
	Inpatient	Intervention 1 (N=24):	delirium (confirmed by	Race %: NR	significantly different between the	
	Country:	Quetiapine 25-100 mg	CAM) and who had been	DRS-R-98: 29.4	quetiapine and haloperidol groups	
	Thailand	Intervention 2 (N=28):	referred to a consultation-	Function: NR	(–22.9 [SD 6.9] vs. –21.7 [SD 6.7],	
	Funding:	Haloperidol 0.5-2.0 mg,	liaison service evaluation	Dementia %: NR	p=0.59).	
	University	evaluated for continued	Exclusion: Substance-	Postop %: NR	Attrition: 46% vs. 21%	
		use after 24 hours	induced delirium, known	Cancer %: 39		
		Duration: Daily	allergy or intolerance to			
		Follow-up (days): 7	quetiapine or haloperidol,			
			pregnancy or breast			
			feeding, being on an			
			antipsychotic medication,			
			and renal or hepatic failure			
Tahir et al.	Design: RCT	Randomized N: 42	Inclusion: Patients with	Mean age: 84	Main outcomes: The quetiapine	Moderate
(2010)	Setting:	Analyzed N: 29	delirium per DSM-IV criteria	Female %: 71	group recovered 82.7% faster (SE	
	Inpatient	Intervention 1 (N=21):	and DSR-R-98 score of ≥15	Race %: NR	37.1%, p=0.026) than the placebo	
	Country: U.K.	Quetiapine 25-175 mg	Exclusion: Major pre-	Delirium %: 100	group in terms of DRS-R-98 severity	
	Funding:	orally	existing cognitive deficits,	Baseline scale of function: NR	score.	
	Industry	Intervention 2 (N=21):	alcohol withdrawal, pre-	Dementia %: NR	Attrition: 24% vs. 38%	
		Placebo	existing psychosis,	Postop %: 45		
			substance dependence,	Cancer %: NR		

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up Duration: Daily for 10	Study population including main inclusion and exclusion criteria inability to comply with the	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
		days Follow-up (days): 30	constraints of the trial, or use of medication that interacted with quetiapine			
van der Vorst et al. (2020)	Design: RCT Setting: Inpatient Country: The Netherlands Funding: Government	Randomized N: 100 Analyzed N: 98 Intervention 1 (N=50): Olanzapine 2.5-20 mg orally or intramuscularly Intervention 2 (N=50): Haloperidol 0.5-20 mg orally or subcutaneously Duration: Daily for 7 days Follow-up (days): 7	Inclusion: >18 years with advanced cancer and with delirium diagnosed by DOS score 13 or > and confirmed with DRS-R-98 score of 17.75 or > Exclusion: Dementia	Mean age: 69 Female %: 31 Race %: NR Delirium %: 100 Baseline scale of function: NR Dementia %: 0 (excluded) Postop %: NR Cancer %: 100	Main outcomes: Delirium response rate was 45% (95% Cl 31 to 59) for olanzapine and 57% (95% Cl 43 to 71) for haloperidol (delirium response change rate −12%, OR 0.61, 95% Cl 0.2 to 1.4, p=0.23). Grade ≥3 treatment-related adverse events occurred in 5 patients (10.2%) and 10 patients (20.4%) in the olanzapine and haloperidol arms, respectively. Attrition: 20% vs. 18%	Moderate
Yoon et al. (2013)	Design: Prospective cohort Setting: Inpatient Country: South Korea Funding: NR	Analyzed N: 80 Intervention 1 (N=23): Haloperidol 0.5-10 mg Intervention 2 (N=21): Risperidone 0.25-4 mg Intervention 3 (N=18): Olanzapine 1-20 mg Intervention 4 (N=18): Quetiapine 25-200 mg Duration: Average 4.9 ± 1.5 days Follow-up (days): 6	Inclusion: Age >50 years meeting DSM-IV-TR criteria for delirium Exclusion: Dementia or comorbid psychiatric disorder, terminal illness, prolonged QTc, hearing loss, neuroleptic malignant syndrome, or prior use of antipsychotics	Mean age: 74 vs. 70 vs. 69.5 vs. 73 Female %: 48 vs. 62 vs. 56 vs. 56 Race %: NR Delirium %: 100 Baseline scale of function: NR Dementia %: 0 (excluded) Postop %: NR Cancer %: 26 vs. 4.7 vs. 17 vs. 11	Main outcomes: A significant serial decrease in the mean DRS-K severity score was observed in all groups: on day 6, mean (SD): 7.7 (5.4) vs. 8.3 (7.1) vs. 8.1 (5.5) vs. 6.5 (4.0) (p=0.779). There was no significant difference in the treatment response rate (\geq 50% decrease in DRS-K severity score) among the 4 groups: 65.2% (15/23) vs. 66.6% (14/21) vs. 66.6% (12/18) vs. 72.2% (13/18) (p=0.969). Attrition: 39% vs. 33% vs. 28% vs. 33%	High

Abbreviations. CAM=Confusion Assessment Method; CGI=Clinical global impression; CGI-S=Clinical global impression-Severity; CI=confidence interval; DOS=Delirium Observation Scale; DRS=Delirium
 Rating Scale; DRS-K=Delirium Rating Scale-Korean Version; DRS-R-98=Delirium Rating Scale-Revised-1998; DSM-IV= Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition; DSM-IV-TR=
 Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision; ED=emergency department; IM=intramuscular injection; IV=intravenous; KPS=Karnofsky Performance Status;

- 3389 3390 MDAS Memorial Delirium Assessment Scale; MMSE=Mini-Mental State Examination; N=number; NS=not significant; NR=not reported; OR=odds ratio; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation; SE=standard error.
- **3391** In Palliative Care Setting

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
name		interventions, duration,				
		and follow-up				
Agar et al.	Design: RCT	Randomized N: 249	Inclusion: Adults in hospice or	Mean age: 75	Main outcomes: At 3 days, both	Moderate
(2017)	Setting:	Analyzed N: 247	palliative care with advanced,	Female %: 34	risperidone and haloperidol	
	Palliative care	Intervention 1 (N=82):	progressive disease, diagnosed	Race %: NR	patients had significantly higher	
	Country:	Risperidone oral	with delirium, MDAS of 7 or more,	Delirium %: 100	delirium symptom scores than	
	Australia	solution; for ≤65 years, 1	and target symptoms of distress	Function: Australian	placebo patients (risperidone	
	Funding:	mg loading dose, 0.5 mg	Exclusion: Delirium due to	Karnovsky: 43	mean 0.48 units higher, 95% CI	
	Government	every 12 hours, and	substance withdrawal, history of	Dementia %: NR	0.09 to 0.86, p=0.02; and	
		titrated to max of 4	neuroleptic malignant syndrome,	Postop %: 0	haloperidol 0.24, 95% CI 0.06 to	
		mg/day; for >65 years,	regular use of antipsychotic drugs	Cancer %: 88	0.42, p=0.009). Both active arms	
		0.5 mg loading dose,	within 48 hours, previous adverse		had more extrapyramidal effects	
		0.25 mg every 12 hours,	reaction to antipsychotic drugs,		(risperidone 0.73, 95% CI 0.09 to	
		and titrated to max 2	extrapyramidal disorders,		1.37, p=0.03; and haloperidol	
		mg/day	prolonged QT interval, clinician-		0.79, 95% CI 0.17 to 1.41,	
		Intervention 2 (N=81):	predicted survival of 7 days or		p=0.01). Participants in the	
		Haloperidol oral	fewer, cerebrovascular accident or		placebo group had better	
		solution; for ≤65 years 1	seizure in the prior 30 days,		overall survival than those	
		mg loading dose, 0.5 mg	and pregnancy or breastfeeding		receiving haloperidol (HR 1.73,	
		every 12 hours, and			95% CI 1.20 to 2.50, p=0.003),	
		titrated to max of 4			but this was not significant for	
		mg/day; for >65 years,			placebo vs. risperidone (HR	
		0.5 mg loading dose,			1.29, 95% CI 0.91 to 1.84,	
		0.25 mg every 12 hours,			p=0.14).	
		and titrated to max 2			Attrition: 43% vs. 25% vs. 26%	
		mg/day				
		Intervention 3 (N=86):				
		Placebo solution every				
		12 hours				

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
name		interventions, duration,				
		and follow-up				
		Duration: Every 12 hours				
		for 72 hours				
		Follow-up (days): 3				
Breitbart et	Design: RCT	Randomized N: 30	Inclusion: Inpatients with AIDS	Mean age: 39	Main outcomes: Treatment with	Moderate
al. (1996)	Setting:	Analyzed N: 30	with delirium	Female %: 23	either haloperidol or	
	Inpatient	Intervention 1 (N=11):	Exclusion: Patients with dementia	Race %:	chlorpromazine resulted in	
	Country: U.S.	Haloperidol loading dose	or near end of life (within 24	Caucasian: 13	significant improvements in	
	Funding:	oral 0.25-5 mg, followed	hours)	Black/African American:	symptoms of delirium as	
	Government	by maintenance dose of		57	measured by DRS. No	
		1.2 the initial dose every		Asian: 3	improvement was seen with	
		12 hours (IM dosing also		Delirium %: 100	lorazepam. Treatment with	
		allowed)		Karnovsky: 52.3	haloperidol and chlorpromazine	
		Intervention 2 (N=13):		Dementia %: 0	resulted in very low prevalence	
		Chlorpromazine loading		(excluded)	of extrapyramidal side effects.	
		dose oral 10-200 mg		Postop %: 0	All 6 patients receiving	
		followed by		Cancer %: NR	lorazepam developed	
		maintenance dose of 1/2			treatment-limiting adverse	
		loading dose every 12			effects.	
		hours. (IM dosing			Attrition: NR vs. NR vs. 100%	
		allowed)				
		Intervention 3 (N=6):				
		Lorazepam loading dose				
		oral 0.5-24 mg followed				
		by maintenance dose of				
		1/2 loading dose every				
		12 hours. (IM dosing				
		allowed)				
		Duration: Every 12 hours				
		for 6 days				
		Follow-up (days): 6				

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
name		interventions, duration,				
		and follow-up				
Hui et al.	Design: RCT	Randomized N: 90	Inclusion: Adults with advanced	Mean age: 65	Main outcomes: Lorazepam plus	High
2017)	Setting:	Analyzed N: 58	cancer in palliative care with	Female %: 47	haloperidol resulted in a	
	Palliative care	Intervention 1 (N=47):	diagnosis of delirium	Race %:	significantly greater reduction of	
	Country: U.S.	Lorazepam 3 mg plus	Exclusion: Patients with dementia	Caucasian: 76	RASS score at 8 hours (-4.1	
	Funding:	haloperidol 2 mg every 4		Black/African American:	points) than placebo plus	
	Government	hours IV; additional 2 mg		24	haloperidol (-2.3 points) (MD	
		as needed for agitation		Asian: NR	–1.9 points, 95% CI –2.8 to –0.9,	
		Intervention 2 (N=43):		Delirium %: 100	p<0.001). The lorazepam plus	
		Placebo plus haloperidol		Karnovsky:	haloperidol group required less	
		2 mg every 4 hours IV;		10%=21%, 20%=47%,	median rescue neuroleptics (2.0	
		additional 2 mg as		30%=24%, 40%=9%	mg) than the placebo plus	
		needed for agitation		Dementia %: 0	haloperidol group (4.0 mg) (MD	
		Duration: Lorazepam or		(Excluded)	–1.0 mg, 95% CI –2.0 to 0,	
		placebo infused		Postop %: 0	p=0.009). No significant	
		intravenously over 1.5		Cancer %: 100	between-group differences	
		minutes			were found in delirium-related	
		Follow-up (days): 8 hours			distress and survival. The most	
					common adverse effect was	
					hypokinesia (3 patients in the	
					lorazepam plus haloperidol	
					group [19%] and 4 patients in	
					the placebo plus haloperidol	
					group [27%]).	
					Attrition: 45% vs. 40%	
in et al.	Design: RCT	Randomized N: 30	Inclusion: Patients with advanced	Mean age: 64	Main outcomes: The results	High
2008)	Setting:	Analyzed N: 12	cancer who were being treating in	Female %: 57	showed that delirium improved	
	Palliative care	Intervention 1 (N=16):	a hospice and palliative care	Race %: NR	in both groups but no statistic	
	Country:	Olanzapine 5 mg to max	center and had been referred to a	DRS-C: 17. 07	difference comparing both	
	Taiwan	15 mg	consultation-liaison psychiatry	Function: NR	groups.	
	Funding: NR	Intervention 2 (N=14):	service for evaluation of mental	Dementia %: NR	Attrition: NR	
	_	Haloperidol 5 mg to max	status change and met DSM-IV	Postop %: NR		
		15 mg per day, evaluated	criteria for delirium			

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
name		interventions, duration,				
		and follow-up				
		for continued use after	Exclusion: Past histories of	Advanced Cancer %:		
		24 hours	psychiatric disorders, in a coma,	100		
		Duration: Daily	unable to swallow oral medication,			
		Follow-up (days): 7	and treated with neuroleptic			
			agents within 4 weeks prior to the			
			enrollment			

3392 3393 3394 Abbreviations. CI=confidence interval; DRS=Delirium Rating Scale; DRS-C=Delirium Rating Scale-Chinese Version; DSM-IV= Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition;

HR=hazard ratio; IM=intramuscular injection; IV=intravenous; MD=mean difference; MDAS Memorial Delirium Assessment Scale; N=number; NR=not reported; postop=post-operative;

RASS=Richmond Agitation Sedation Scale; RCT=randomized controlled trial.

3395 Melatonin/Ramelteon

Author	Study	Study protocol	Study population including	Sample demographics	Results including main outcomes and	Risk of
(year); trial	characteristics	including numbers of	main inclusion and		attrition rates	Bias
name		participants,	exclusion criteria			
		interventions,				
		duration, and follow-				
		up				
Lange et al.	Design: RCT	Randomized N: 29	Inclusion: ≥70 years	Mean (SD) age: 85.6 (5.5)	Main outcomes: No adverse effects	Low
(2021)	Setting:	Analyzed N: 28	inpatients with CAM positive	Female %: 53.6	occurred due to melatonin. In the	
	Inpatient	Intervention 1	hyperactive or mixed	Race %: NR	treatment group, the mean change in	
	Country: The	(N=14): Melatonin 5	delirium	Delirium %: 100	MDAS from baseline during treatment	
	Netherlands	mg orally	Exclusion: Had exclusively	Mean (SD) Charlson	period was 2.5±5.0 points vs. 2.1±4.1	
	Funding:	Intervention 2	hypoactive delirium or	Comorbidity Scale: 6.1 (1.6)	points in the placebo group, a non-	
	Government	(N=15): Placebo	expected prognosis or	History of Dementia %: 50	significant difference. A power	
		Duration: Nightly for	planned further admission to	IQCODE ≥3.45 %: 57.1	calculation accounting for drop-out	
		5 nights	hospital <7 days	IQCODE ≥3 and/or history %: 75	(31.0%), suggests 120 participants	
		Follow-up (days): 7		Mean (SD) MMSE: 10.6 (7.4)	would be required to demonstrate with	
				Postop %: NR	90% power that melatonin 5mg	
				Cancer %: NR	reduces the severity of delirium by 3	
				Use of anticholinergics %: 7.1	points or more on MDAS.	
				Use of opioids %: 21.4	Attrition at follow-up: 29% vs. 33%	
				Use of antipsychotics %: 10.7		

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow- up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
Thom et al. (2019)	Design: Retrospective cohort Setting: ICU Country: U.S. Funding:	Analyzed N: 322 Intervention 1 (N=77): Ramelteon, ≥1 dose Intervention 2 (N=245): Placebo Duration: NR Follow-up (days): 10	Inclusion: ≥1 positive CAM- ICU score during ICU admission Exclusion: Antipsychotic treatment before admission, CAM-ICU scores not recorded every 8 hours, alcohol or substance withdrawal, or developmental delay	Mean age: 64 vs. 61 Female %: 49 vs. 47 Race %: White: 81 vs. 68 Black, 5 vs. 15 Other, 14 vs. 17 Delirium %: 100 APACHE II, mean: 24.5 vs. 24 Dementia: NR Postop: NR Cancer %: 10 vs. 8	Main outcomes: Adjusted HR delirium- coma resolution for ramelteon was 1.05 (95% Cl 0.54 to 2.01). Median hours alive without delirium or coma did not differ between ramelteon and placebo groups: 0 (IQR 0 to 196) vs. 46 (IQR 0 to 168) (adjusted p-value 0.105). Attrition: NR	Moderate

3396 3397 3398

6 Abbreviations. APACHE II=Acute Physiology and Chronic Health Evaluation II; CAM=Confusion Assessment Method; CAM-ICU=Confusion Assessment Method for the ICU; CI=confidence interval;

HR=hazard ratio; ICU=intensive care unit; IQCODE=Informant Questionnaire on Cognitive Decline in the Elderly; IQR=interquartile range; MDAS Memorial Delirium Assessment Scale; MMSE=Mini-

398 Mental State Examination; N=number; NR=not reported; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

3399 Appendix E. Risk of Bias Ratings for Individual Studies Supporting Guideline Statements

Citation	Randomization/alloc	Groups similar	Patients/provider/outcome	ITT	Acceptable levels	Risk of bias
	ation concealment	at baseline?	assessors masked?	analysis?	of	
	adequate?				overall/differenti	
					al attrition?	
Abbasi et al. 2018	Yes; Yes	No	Yes; Yes; Unclear	No	No; Yes	Moderate
Abbasinia et al. 2021	Yes; No	Yes	No; No; Unclear	Yes	Yes; Yes	Moderate
Abdelgalel 2016	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Abraham et al. 2021	Unclear; NR	Yes	No; No; No	No	Yes; Yes	High
Agar et al. 2017	Yes; Yes	Unclear	Yes; Yes; Yes	Yes	No; No	Moderate
Al Tmimi et al. 2020	Yes; Unclear	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Al-Qadheeb et al. 2016	Yes; Yes	Yes	Yes; Yes; Unclear	Yes	Yes; Yes	Low
Alvarez et al. 2017	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Arttawejkul et al. 2020	Yes; NR	Yes	No; No; Yes	Yes	Yes; Yes	Moderate
Atalan et al. 2013	Unclear; Unclear	No	NR; Yes; NR	Unclear	Yes; No	High
Avendano-Cespedes et	Yes; Yes	Yes	No; No; Yes	Yes	Yes; Yes	Moderate
al. 2016						
Avidan et al. 2017	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Azuma et al. 2018	Yes; Unclear	Unclear	NR; NR; NR	Yes	Yes; Yes	Moderate
Bakri et al. 2015	Yes; Unclear	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Moderate
Beaussier et al. 2006	Yes; Yes	Yes	Yes; Yes; Yes	Unclear	Yes; Yes	Low
Bellapart et al. 2020	Unclear; Unclear	Yes	Yes; Yes; Yes	No	No; No	High
Bielza et al. 2020	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Boockvar et al. 2020	Unclear/no; Unclear	No	No; No; Yes	Yes	Yes; Yes	High
Boustani et al. 2012	Yes; Unclear	No	NR; NR; NR	Yes	Yes; Yes	Moderate
Breitbart et al. 1996	Unclear; Yes	Unclear	Unclear; Unclear; Unclear	Yes	Yes; Yes	Moderate
Brown et al. 2019	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Browning et al. 2021	Unclear; Unclear	No	No; No; No	Yes	Yes; Yes	High
Bruera et al. 2013	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low

Citation	Randomization/alloc	Groups similar	Patients/provider/outcome	ITT	Acceptable levels	Risk of bias
	ation concealment	at baseline?	assessors masked?	analysis?	of	
	adequate?				overall/differenti	
					al attrition?	
Brummel et al. 2014	Yes; Unclear	Yes	No; No; Yes	Yes	Yes; Yes	Moderate
Campbell et al. 2019	Yes; Yes	Yes	No; No; Yes	Yes	Yes; Yes	Moderate
Caplan et al. 2006	Yes; Yes	Yes	No; No; No	Yes	No; Yes	Moderate
Chan et al. 2013	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Chang et al. 2018	Yes; Yes	Yes	Yes; No; No	Yes	Yes; Yes	Moderate
Chen 2020	Yes; Unclear	Yes	Unclear; Unclear; Unclear	Unclear	Yes; Yes	High
Chen et al. 2011	No; Unclear	No	No; No; Yes	Yes	Yes; Yes	Moderate
Chen et al. 2017	Yes; Yes	Yes	No; No; Yes	Yes	Yes; Yes	Moderate
Chen et al. 2021	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Chevillon et al. 2015	Unclear; NR	Yes	No; No; No	Yes	Yes; Yes	Moderate
Clarke et al. 2014	Yes; Yes	Yes	Yes; Yes; Yes	Unclear	Yes; Yes	Moderate
Clarke et al. 2015	Yes; Yes	Yes	Yes; Yes; Yes	Yes	No; Yes	Moderate
Clemmesen et al. 2018	Yes; Unclear	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Coburn et al. 2018	Yes; No	Yes	Unclear; Unclear; Yes	Yes	Yes; Yes	Moderate
Cole et al. 1994	Unclear; Unclear	Yes	No; No; Yes	Unclear	Yes; Yes	Moderate
Cole et al. 2002	Yes; Yes	Unclear	No; No; Yes	Yes	Yes; Yes	Moderate
Cotae et al. 2021	Unclear; Unclear	No	Unclear; Unclear; Unclear	No	No; Yes	Moderate
Dai et al. 2021	Unclear; Unclear	Yes	No; No; Unclear	Yes	Yes; Yes	High
de Jonghe et al. 2014	Yes; Yes	Yes	Yes; Yes; Unclear	No	Yes; Yes	Moderate
Deng et al. 2020	Yes; Yes	Yes	No; No; No	Yes	Yes; Yes	Moderate
Devlin et al. 2010	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Dieleman et al. 2012	Yes; Yes	Unclear	Yes; Yes; Unclear	Yes	Yes; Yes	Low
Djaiani et al. 2016	Yes; No	Yes	Yes; No; No	Yes	Yes; Yes	Moderate
Dong et al. 2020	Yes; No	Yes	NR; NR; NR	Yes	Yes; Yes	Moderate

Citation	Randomization/alloc	Groups similar	Patients/provider/outcome	ITT	Acceptable levels	Risk of bias
	ation concealment	at baseline?	assessors masked?	analysis?	of	
	adequate?				overall/differenti	
					al attrition?	
Eghbali-Babadi et al.	Yes; Unclear	Yes	No; No; Yes	Yes	Yes; Yes	Moderate
2017						
Fahimi et al. 2020	Yes; Yes	Yes	No; Yes; Yes	Yes	Yes; Yes	Moderate
Fazlollah et al. 2021	Yes; Yes	Yes	No; No; Unclear	Yes	Yes; Yes	Moderate
Ford et al. 2020	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Fu et al. 2020	Unclear; Unclear	Yes	Yes; No; No	No	Yes; Yes	High
Fukata et al. 2014	Yes; Yes	Yes	No; No; No	Yes	Yes; Yes	Moderate
Fukata et al. 2017	Yes; Yes	Yes	No; No; No	Unclear	Yes; Yes	Moderate
Gamberini et al. 2009	Yes; Yes	Unclear	Yes; Yes; Unclear	No	No; Yes	Moderate
Gandolfi et al. 2020	Yes; Yes	Yes	Yes; Yes; No	No	Yes; Yes	Moderate
Gao et al. 2018	Yes; Unclear	Yes	Unclear; NR; Yes	Yes	Yes; Yes	Moderate
Girard et al. 2008	Yes; Yes	Yes	NR; No; No	Yes	Yes; Yes	Moderate
Girard et al. 2018	Yes; Unclear	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Giraud et al. 2016	No; No	Yes	No; No; No	Yes	Yes; Yes	Moderate
Gregersen et al. 2015	Yes; Yes	Yes	Yes; No; Unclear	Yes	Yes; Yes	Moderate
Grover et al. 2011	Unclear; Unclear	Yes	No; No; Yes	No	Yes; No	High
Grover et al. 2016	Yes; Unclear	Yes	No; No; Yes	No	Yes; Yes	High
Gruber-Baldini et al. 2013	Yes; Yes	No	NR; No; No	Yes	Yes; Yes	Moderate
Guo et al. 2016	Yes; Yes	Yes	No; No; Yes	Unclear	Yes; Yes	Moderate
Gupta et al. 2019	Yes; Unclear	Yes	Yes; Unclear; Yes	Yes	Yes; Yes	Moderate
Hamzehpour et al. 2018	Unclear; Unclear	Unclear	Yes; Yes; Yes	Yes	Yes; Yes	Moderate
Han et al. 2004	Unclear; Unclear	Yes	No; No; Yes	No	Yes; Yes	Moderate
Hassan et al. 2021	Unclear; Unclear	Yes	Yes; Yes; Unclear	Yes	Yes; Yes	Moderate
Hatta et al. 2014b	Yes; Unclear	No	No; Unclear; Yes	Yes	No; Yes	Moderate
Hatta et al. 2017	Yes; Unclear	Unclear	Yes; Unclear; Yes	Yes	Yes; Yes	Moderate

Citation	Randomization/alloc	Groups similar	Patients/provider/outcome	ITT	Acceptable levels	Risk of bias
	ation concealment	at baseline?	assessors masked?	analysis?	of	
	adequate?				overall/differenti	
					al attrition?	
He et al. 2018	Yes; Unclear	Yes	Unclear; Unclear; Unclear	Unclear	Unclear; Unclear	Moderate
Hempenius et al. 2013	Yes; Yes	Yes	No; No; Yes	Unclear	Yes; Yes	Moderate
Hollinger et al. 2021	Yes; Yes	Yes	Yes; Yes; NR	No	Yes; Yes	Moderate
Hosie et al. 2020	Yes; Unclear	Yes	No; No; No	Yes	Yes; Yes	Moderate
Hov et al. 2019	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Hu et al. 2020	Yes; Unclear	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Hu et al. 2021	Yes; Unclear	Yes	Yes; No; Yes	No	Yes; Yes	Moderate
Hudetz et al. 2009	Unclear; No	Yes	Unclear; Unclear; Yes	Unclear	Yes; Yes	Moderate
Hui et al. 2017	Unclear; Yes	No	Yes; Yes; Yes	No	No; Yes	High
Humeidan et al. 2021	Yes; Yes	Yes	No; No; Yes	No (6%)	Yes; Yes	Moderate
Huyan et al. 2019	Unclear; Unclear	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Moderate
Ishii et al. 2016	Unclear; Unclear	Yes	NR; Yes; Unclear	Yes	Yes; Yes	Moderate
Jain et al. 2017	Yes; Unclear	Unclear	No; No; Unclear	No	No; Yes	High
Jaiswal et al. 2018	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; No	Moderate
Jaiswal et al. 2019	Yes; Yes	Unclear	Yes; Yes; Unclear	Yes	Yes; Yes	Low
Jakob et al. 2012	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Javaherforoosh Zadeh et	Yes; Yes	Yes	Yes; Unclear; Unclear	Yes	Yes; Yes	Moderate
al. 2021						
Jeffs et al. 2013	Unclear; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Moderate
Jia et al. 2014	Yes; Yes	Yes	NR; NR; NR	Yes	Yes; Yes	Moderate
Jin L. et al. 2020	Yes; NR	Yes	No; No; NR	Unclear	Yes; Yes	Moderate
Johnson et al. 2018	Unclear; Unclear	Yes	No; No; Unclear	No	Unclear; Yes	High
Kalisvaart et al. 2005	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Karadas and Ozdemir 2016	Yes; Unclear	Unclear	NR; NR; NR	Yes	Yes; Yes	Moderate

Citation	Randomization/alloc	Groups similar	Patients/provider/outcome	ITT	Acceptable levels	Risk of bias
	ation concealment	at baseline?	assessors masked?	analysis?	of	
	adequate?				overall/differenti	
					al attrition?	
Kawazoe et al. 2017	Yes; Yes	Yes	No; No; No	Yes	Yes; Yes	Moderate
Khalifezadeh et al. 2011	Unclear; Unclear	Yes	No; No; Unclear	Unclear	No; Unclear	High
Khan et al. 2013	Yes; Unclear	Yes	NR; NR; NR	Yes	Yes; Yes	Moderate
Khan et al. 2018	Yes; Yes	Unclear	Yes; Yes; Yes	Yes	Yes; Yes	Low
Khan et al. 2019	Yes; Unclear	Yes	NR; No; NR	Yes	Yes; Yes	Moderate
Khan et al. 2020	Yes; Unclear	Yes	No; NR; Yes	Yes	Yes; Yes	High
Khera et al. 2021	Yes; Unclear	Mostly	Yes; Yes; Yes	Yes	Yes; Yes	Moderate
Kim et al. 1996	Unclear; Yes	Unclear	NR; NR; Yes	No	Yes; Unclear	Moderate
Kim et al. 2010	Unclear; Unclear	Yes	No; No; Yes	Yes	No; No	Moderate
Y. Kim et al. 2019	Yes; Yes	Unclear	Yes; Yes; Yes	Yes	Yes; Yes	Moderate
J.A. Kim et al. 2019	Yes; Yes	Yes	Yes; Yes; Yes	No	Yes; Yes	Low
Kluger et al. 2021	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Kolanowski et al. 2011	Unclear; Unclear	Yes	No; No; Unclear	Yes	Unclear; Unclear	Moderate
Kolanowski et al. 2016	Yes; Yes	Yes	No; No; Yes	Yes	Yes; Yes	Moderate
Kunst et al. 2020	Yes; Yes	Yes	Yes; Yes; Yes	No	Yes; Yes	Moderate
Lange et al. 2021	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Lapane et al. 2011	Unclear; Unclear	Yes	No; No; Unclear	Unclear	Unclear; Unclear	High
Larsen et al. 2010	Unclear; Yes	Unclear	Yes; Yes; Yes	No	Yes; Yes	Moderate
Lawlor et al. 2020	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Unclear; Yes	Low
Lee et al. 2005	Unclear; Unclear	No	NR; NR; NR	No	No; No	High
Lee et al. 2018	Yes; Yes	Yes	Yes; No; Yes	Yes	Yes; No	Moderate
Lee et al. 2019	Yes; Yes	Yes	Yes; Yes; Yes	No	Yes; Yes	Low
Lei et al. 2017	Unclear; Unclear	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Moderate
Leong et al. 2021	Yes; Yes	Yes	No; No; Yes	Yes	Yes; Yes	Moderate
Leung et al. 2006	Yes; Yes	Yes	NR; NR; Yes	Unclear	Unclear; Unclear	Moderate

Citation	Randomization/alloc	Groups similar	Patients/provider/outcome	ITT	Acceptable levels	Risk of bias
	ation concealment	at baseline?	assessors masked?	analysis?	of	
	adequate?				overall/differenti	
					al attrition?	
Leung et al. 2017	Yes; Yes	Yes	Unclear; Unclear; Yes	No	Yes; Yes	Moderate
Levy et al. 2022	No; No	No	No; No; No	Yes	Yes; Yes	High
Y.N. Li et al. 2017	Unclear; Unclear	Yes	NR; NR; NR	Yes	Yes; Yes	Moderate
X. Li et al. 2017	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Li et al. 2019	Yes; Unclear	Yes	NR; NR; NR	Unclear	Yes; Unclear	High
Li et al. 2020	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Li et al. 2021	Yes; Yes	Yes	No; No; Yes	Yes	Yes; Yes	Moderate
Likhvantsev et al. 2021	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Lin et al. 2008	Unclear; Unclear	Yes	No; No; Yes	Unclear	Unclear; Unclear	High
Liptzin et al. 2005	Unclear; Yes	No	Yes; Yes; Yes	No	No; Unclear	Moderate
Y. Liu et al. 2016	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
X. Liu et al. 2016	Yes; Unclear	Yes	Yes; Unclear; Yes	No	Yes; Yes	Moderate
Liu et al. 2017	Unclear; Unclear	Yes	Yes; Unclear; Yes	Yes	Yes; Yes	Moderate
Liu et al. 2018	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Lundström et al. 2005	Unclear; NR	No	No; No; No	Yes	Yes; Yes	Moderate
Lundström et al. 2007	Unclear; Yes	No	No; No; Yes	Yes	Yes; Yes	Moderate
Luo et al. 2015	Yes; Yes	Yes	Unclear; Unclear; Yes	Yes	Yes; Yes	Moderate
Lurati Buse et al. 2012	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
MacLaren et al. 2015	Yes; Unclear	Yes	Yes; Unclear; Yes	Yes	Yes; Yes	Moderate
Mahrose et al. 2021	Unclear; Unclear	Yes	Unclear; Unclear; Unclear	Yes	Yes; Yes	Moderate
Mailhot et al. 2017	Yes; Yes	No	No; No; Unclear	Yes	Yes; Yes	Moderate
Makinian et al. 2015	No; No	Unclear	No; No; NR	Unclear	Unclear; Unclear	High
Maldonado et al. 2009	Unclear; Unclear	Yes	Yes; Unclear; Yes	Yes	Yes; Yes	Moderate
Maneeton et al. 2013	Yes; Yes	Yes	Yes; Yes; Yes	Yes	No; No	Moderate
Mann et al. 2000	Yes; Unclear	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Moderate

Citation	Randomization/alloc	Groups similar	Patients/provider/outcome	ITT	Acceptable levels	Risk of bias
	ation concealment	at baseline?	assessors masked?	analysis?	of	
	adequate?				overall/differenti	
					al attrition?	
Marcantonio et al. 2001	Yes; No	Yes	No; No; Yes	Yes	Yes; Yes	Moderate
Marcantonio et al. 2010	Unclear; Unclear	Yes	No; No; Yes	Unclear	No; Yes	High
Mardani and Bigdelian	Unclear; Unclear	Unclear	NR; NR; NR	No	Yes; Unclear	High
2012						
Martinez et al. 2012	Yes; Yes	Yes	No; No; Yes	Yes	Yes; Yes	Moderate
Martinez-Velilla et al.	Yes; Yes	Yes	Unclear; No; Yes	Yes	Yes; Yes	Moderate
2019						
Massoumi et al. 2019	Yes; Unclear	Unclear	NR; Yes; Yes	No	Yes; Yes	Moderate
Mehta et al. 2012	Yes; Yes	Yes	No; No; No	Yes	Yes; Yes	Moderate
Mei et al. 2018	Yes; Yes	Yes	Yes; Unclear; Yes	Yes	Yes; Yes	Low
B. Mei et al. 2020	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Moderate
X. Mei et al. 2020	Yes; Unclear	Yes	Unclear; Yes; Yes	No	No; Yes	Moderate
Mitchell et al. 2017	Yes; Yes	Yes	Unclear; No; Yes	Yes	Yes; Yes	Moderate
Mohammadi et al. 2016	Unclear; Yes	Unclear	Yes; Yes; Unclear	No	Yes; Yes	Moderate
Mokhtari et al. 2020	Yes; Unclear	Unclear	Yes; Yes; Unclear	No	No; Yes	Moderate
Momeni et al. 2021	Yes; Yes	Yes	Yes; Yes; Yes	Unclear	Yes; Yes	Moderate
Moon and Lee 2015	Unclear; No	Yes	Yes; No; No	Unclear	Yes; Yes	Moderate
Morris et al. 2016	Yes; Unclear	Yes	No; No; Yes	Yes	No; Yes	Moderate
Moslemi et al. 2020	Yes; Unclear	Yes	Yes; Yes; Yes	No	No; Yes	Moderate
Mouzopoulos et al. 2009	Yes; Unclear	Yes	Yes; NR; NR	No	Yes; Yes	Moderate
Munro et al. 2017	Yes; Yes	Yes	NR; NR; NR	Yes	Yes; Yes	Moderate
Nadler et al. 2017	Yes; Yes	Yes	No; No; Yes	Yes	Yes; Yes	Moderate
Nakamura et al. 2021	Yes; Yes	Yesg	Yes; Unclear; Unclear	Yes	Yes; Yes	Moderate
Nassar Junior and Park	Unclear; Unclear	Yes	No; No; No	Yes	Yes; Yes	Moderate
2014						

Citation	Randomization/alloc	Groups similar	Patients/provider/outcome	ITT	Acceptable levels	Risk of bias
	ation concealment	at baseline?	assessors masked?	analysis?	of	
	adequate?				overall/differenti	
					al attrition?	
Nishikawa et al. 2004	Unclear; Unclear	Yes	NR; Yes; Yes	Yes	Yes; Yes	Moderate
Nishikimi et al. 2018	Yes; Unclear	No	Yes; Yes; Yes	Yes	Unclear; Unclear	Moderate
Nydahl et al. 2020	Yes; Unclear	Yes	No; No; Yes	Yes	Yes; Yes	Moderate
Nydahl et al. 2022	Yes; Unclear	Yes	No; No; No	Yes	Yes; Yes	Moderate
Obanor et al. 2021	Unclear; Unclear	Unclear	No; No; Unclear	Yes	Yes; Yes	Moderate
O'Gara et al. 2020	Yes; Yes	Yes	No; Yes; Yes	No	Yes; Yes	Moderate
E.S. Oh et al. 2021	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Unclear; No	Low
C.S. Oh et al. 2021	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Olsen et al. 2020	Yes; Yes	Yes	NR; NR; NR	Yes	Yes; Yes	Moderate
Ono et al. 2011	Yes; Yes	Yes	NR; NR; NR	Yes	Yes; Yes	Moderate
Overshott et al. 2010	Unclear; Yes	No	Yes; Yes; Yes	Unclear	No; No	Moderate
Papadopoulos et al. 2014	Unclear; Unclear	Yes	Unclear; Unclear; Unclear	Yes	Yes; Yes	Moderate
Papaioannou et al. 2005	Unclear; Unclear	Yes	NR; NR; NR	Yes	Yes; Yes	High
Park et al. 2014	Unclear; Unclear	Yes	NR; NR; NR	Unclear	Unclear; Unclear	Moderate
Pitkälä et al. 2006	Yes; Yes	Yes	NR; NR; NR	Yes	Yes; Yes	Moderate
Potharajaroen et al. 2018	Unclear; Unclear	Yes	No; No; Yes	Yes	Yes; Yes	Moderate
Prakanrattana and	Yes; Yes	Yes	Yes; Yes; Yes	Unclear	Unclear; Unclear	Moderate
Prapaitrakool 2007						
Radtke et al. 2013	Unclear; Unclear	Yes	Unclear; No; Yes	Yes	Yes; Yes	Moderate
Reade et al. 2016	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Rice et al. 2017	Yes; Yes	Yes	NR; NR; NR	Unclear	Yes; Yes	Moderate
Robinson et al. 2014	Yes; Yes	Yes	Yes; Yes; Unclear	Yes	Yes; Yes	Low
Rood et al. 2021	Unclear; Unclear	Yes	No; No; No	Yes	Yes; Yes	Moderate
Rosa et al. 2019	Yes; Yes	Yes	No; No; Unclear	Yes	Yes; Yes	Moderate
Royse et al. 2017	Yes; Yes	Unclear	Yes; Yes; Yes	No	Yes; Yes	Moderate

Citation	Randomization/alloc	Groups similar	Patients/provider/outcome	ITT	Acceptable levels	Risk of bias
	ation concealment	at baseline?	assessors masked?	analysis?	of	
	adequate?				overall/differenti	
					al attrition?	
Rubino et al. 2010	Unclear; Unclear	Yes	Yes; Yes; Yes	Unclear	Unclear; Unclear	Moderate
Ruokonen et al. 2009	Unclear; Unclear	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Moderate
Saager et al. 2015	Yes; Yes	Yes	Unclear; Unclear; Yes	Yes	Yes; Yes	Moderate
Sampson et al. 2007	Unclear; Yes	No	Yes; Yes; Yes	No	No; Unclear	Moderate
Schomer et al. 2020	Yes; NR	Unclear	Unclear; Yes; Unclear	Yes	Yes; Yes	Moderate
Schrijver et al. 2018	Unclear; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Moderate
Schweickert et al. 2009	Yes; Yes	Yes	No; No; Yes	Yes	Yes; Yes	Moderate
Sharaf et al. 2018	Yes; Unclear	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Shehabi et al. 2009	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Sheikh et al. 2018	Yes; Yes	Yes	Yes; Unclear; Unclear	Unclear	Unclear; Unclear	High
Shi et al. 2019*	Yes; Yes	Yes	Yes; Unclear; Yes	Yes	Yes; Yes	Low
Shi et al. 2020	Yes; Yes	Yes	Yes; NR; Yes	Yes	Yes; Yes	Low
Shirvani et al. 2020	No; No	Yes	Unclear; Unclear; Unclear	Yes	Yes; Yes	High
Shokri and Ali 2020	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Shu et al. 2017	Yes; Unclear	Yes	NR; NR; NR	Yes	Yes; Yes	Moderate
Shu et al. 2019	Unclear; Unclear	No	NR; NR; NR	Yes	Yes; Yes	Moderate
Siddiqi et al. 2016	Yes; Yes	Yes	No; No; Unclear	Unclear	No; Yes	High
Sieber et al. 2010	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Sieber et al. 2018	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Siepe et al. 2011	Yes; Unclear	Yes	NR; NR; Yes	No	Yes; Yes	Moderate
Simons et al. 2016	Yes; No	No	No; No; NR	Yes	Yes; Yes	High
Skrobik et al. 2004	No; No	Unclear	No; No; Yes	No	Yes; Unclear	High
Skrobik et al. 2018	Yes; Yes	No	Yes; Yes; Yes	Yes	Yes; Yes	Moderate
Soh et al. 2020	Yes; Unclear	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Spence et al. 2020	Yes; NR	Yes	NR; No; No	Yes	Yes; Yes	Moderate

Citation	Randomization/alloc	Groups similar	Patients/provider/outcome	ITT	Acceptable levels	Risk of bias
	ation concealment	at baseline?	assessors masked?	analysis?	of	
	adequate?				overall/differenti	
					al attrition?	
Spies et al. 2021	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Stoppe et al. 2013	Unclear; Unclear	Yes	Unclear; Unclear; Yes	Yes	Yes; Yes	Moderate
Strike et al. 2019	Yes; Yes	Yes	NR; NR; NR	Yes	Yes; Yes	Moderate
Strøm et al. 2010	Unclear; Unclear	No	No; No; No	No	Yes; Yes	Moderate
Su et al. 2016	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Sultan 2010	Unclear; Yes	Unclear	Unclear; Yes; Unclear	No	Yes; Unclear	High
Sun et al. 2019*	Yes; Yes	No	Yes; Yes; Yes	Yes	Yes; Yes	Low
Susheela et al. 2017	Unclear; Unclear	Yes	Unclear; Unclear; Unclear	Yes	Yes; Yes	Moderate
Szwed et al. 2021	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Tagarakis et al. 2012	No; No	Yes	No; No; No	Unclear	Unclear; Unclear	High
Taguchi et al. 2007	Yes; Unclear	No	NR; NR; NR	No	No; Yes	High
Tahir et al. 2010	Yes; Yes	Yes	Yes; Yes; Unclear	No	No; Yes	Moderate
Tanaka et al. 2017	Yes; Unclear	No	Yes; Yes; Yes	Yes	Yes; Yes	Moderate
Tang et al. 2018	Unclear; Unclear	Yes	Unclear; Unclear; Yes	Yes	Yes; Yes	Moderate
C.J. Tang et al. 2020	Yes; Unclear	Yes	NR; Yes; Yes	No	Yes; Yes	Moderate
C. Tang et al. 2020	Yes; NR	Yes	Unclear; Yes; Unclear	Yes	Yes; Yes	Moderate
Tang et al. 2021	Yes; Yes	Yes	Yes; Unclear; Yes	Unclear	Yes; Yes	Moderate
Thanapluetiwong et al.	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
2021						
Turan et al. 2020.	Yes; Yes	Yes	NR; Yes; Yes	Yes	Yes; Yes	Moderate
Unneby et al. 2020	No; Unclear	Yes	NR; NR; NR	No	No; Yes	High
Uysal et al. 2020	Unclear; Unclear	Yes	Unclear; Unclear; Unclear	No	Yes; Yes	Moderate
van den Boogaard et al.	Unclear; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
2018						
van der Vorst et al. 2020	Unclear; Yes	Yes	No; No; Yes	Yes	Yes; Yes	Moderate

Citation	Randomization/alloc	Groups similar	Patients/provider/outcome	ITT	Acceptable levels	Risk of bias
	ation concealment	at baseline?	assessors masked?	analysis?	of	
	adequate?				overall/differenti	
					al attrition?	
van Eijk et al. 2010	Yes; Yes	No	Yes; Yes; Unclear	Yes	Yes; Yes	Moderate
van Norden et al. 2021	Unclear; Yes	Yes	Yes; Yes; Yes	Yes	No ; Yes	Moderate
Van Rompaey et al. 2012	Yes; Yes	No	No; No; Yes	Unclear	Unclear; Unclear	Moderate
Verloo et al. 2015	Unclear; Yes	Yes	No; No; Yes	Unclear	Yes; Yes	Moderate
Vlisides et al. 2019	Unclear; Unclear	Yes	No; No; Yes	Unclear	Yes; No	High
Wang et al. 2012	Yes; Unclear	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Moderate
Wang et al. 2015	Unclear; Unclear	Yes	NR; NR; Yes	Yes	Yes; Yes	Moderate
Wang et al. 2019	Yes; Unclear	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Moderate
J. Wang et al. 2020	Yes; NR	Yes	Unclear; Yes; Yes	No	Yes; Yes	Moderate
Y.Y. Wang et al. 2020	Yes; Yes	Yes	No; No; Yes	Yes	Yes; Yes	Moderate
Watne et al. 2014	Yes; Yes	Yes	Unclear; No; Yes	Yes	Yes; Yes	Moderate
Wildes et al. 2019	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Williams-Russo et al.	Yes; Unclear	Yes	Unclear; Unclear; Unclear	Yes	Unclear; Unclear	Moderate
1995						
Winings et al. 2021	No; No	Yes	NR; NR; NR	Yes	Yes; Yes	Moderate
Wu et al. 2016	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Xin et al. 2017	Yes; Unclear	Yes	Unclear; Unclear; Unclear	Yes	Yes; Yes	Moderate
Xin et al. 2021	Yes; Unclear	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Moderate
Xu et al. 2020	Yes; NR	Yes	NR; No; Yes	No	Yes; Yes	Moderate
Xuan et al. 2018	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Xue et al. 2020	Unclear; Unclear	Yes	No; No; NR	Yes	Yes; Yes	Moderate
Yang et al. 2012	Yes; Yes	No	No; No; NR	Yes	Yes; Yes	Moderate
Yang et al. 2015	Yes; Unclear	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Moderate
Yapici et al. 2011	Unclear; Unclear	No	NR; NR; NR	Yes	Yes; Yes	Moderate
Youn et al. 2017	Yes; Yes	No	No; Yes; Yes	No	Unclear; Unclear	Moderate

Citation	Randomization/alloc	Groups similar	Patients/provider/outcome	ITT	Acceptable levels	Risk of bias
	ation concealment	at baseline?	assessors masked?	analysis?	of	
	adequate?				overall/differenti	
					al attrition?	
Young et al. 2020	Yes; Unclear	Yes	No; No; No	Yes	Yes; Yes	Moderate
Yu et al. 2017	Yes; Unclear	Yes	NR; NR; NR	Yes	Yes; Yes	Moderate
Zhang et al. 2020	Yes; NR	Yes	Yes; No; Yes	Yes	Yes; Yes	Moderate
K.S. Zhang et al. 2021	Yes; Unclear	No	No; No; No	No	No; Yes	High
Zhao et al. 2020	Unclear; Unclear	No	Yes; Yes; Yes	Yes	Yes; Yes	Moderate
Zhou et al. 2018	Yes; Unclear	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Moderate

3400 *This study was identified as part of the systematic review by the Pacific Northwest Evidence-Based Practice Center but was subsequently retracted.

3401 *Abbreviations*. ITT=Intent to treat; NR=Not reported.

- 3402 Appendix F. Balancing of Potential Benefits and Harms in Rating the Strength of the
- 3403 Guideline Statements
- 3404 Assessment and Treatment Planning
- **3405** Statement 1 Structured Assessments for Delirium
- 3406 APA recommends (1C) that patients with delirium or who are at risk for delirium undergo regular
- 3407 structured assessments for the presence or persistence of delirium using valid and reliable measures.

3408 Benefits

- 3409 Use of regular structured and validated assessments in patients with delirium or who are at risk for
- 3410 delirium can help identify the presence or persistence of delirium. Once delirium is identified, possible
- 3411 contributors can be identified and addressed. Thus, the indirect benefits of identifying delirium can
- 3412 potentially include decreases in morbidity due to delirium and its underlying physiological causes. Also,
- 3413 when delirium is identified, education of the patient (where feasible), family, and other care givers can
- 3414 enhance understanding and management of the patient's symptoms.

3415 Harms⁵

- 3416 The harms of regular structured assessments in patients with delirium or who are at risk for delirium
- 3417 include time spent conducting assessments that could be used on other activities of benefit to the
- 3418 patient. In addition, some patients may become frustrated with repeated questions that are part of the
- 3419 assessment. If structured assessment is erroneous in suggesting the presence of delirium, a patient
- 3420 could undergo unnecessary evaluations, including laboratory or other testing. There can also be false
- 3421 negative results of structured assessments, which can provide a false sense of security and lead
- 3422 reversible conditions to be overlooked.

3423 Patient Preferences

- 3424 No specific information is available on patient preferences related to structured assessments for
- 3425 delirium. However, clinical experience suggests that many patients are willing to be assessed. The
- 3426 manifestations of delirium can make it challenging for patients to cooperate with assessment and some
- 3427 patients may choose to avoid repeating questioning.

3428 Balancing of Benefits and Harms

- 3429 The potential benefits of this recommendation were viewed as far outweighing the potential harms.
- 3430 The level of research evidence is rated as low because evidence on the benefits of structured
- 3431 assessment is indirect and does not come from rigorous clinical studies. However, expert opinion
- 3432 suggests that the harms of structured assessment are negligible compared with the potential benefit of

⁵ Harms may include serious adverse events, less serious adverse events that affect tolerability, minor adverse events, negative effects of the intervention on quality of life, barriers and inconveniences associated with treatment and other negative aspects of the treatment that may influence decision making by the patient, the clinician or both. Harms may also include opportunity costs for the clinician who may have to forgo another clinical activity that would be more beneficial for the patient.

- such assessments in improving the identification of delirium. For additional discussion of the researchevidence, see Appendix C, Statement 1.
- 3435 Differences of Opinion Among Writing Group Members
- 3436 There were no differences of opinion. The writing group voted unanimously in favor of this
- 3437 recommendation.

3438 Review of Available Guidelines from Other Organizations

3439 Most (Aldecoa et al. 2017; American College of Emergency Physicians 2014; BC Centre for Palliative Care 3440 2017a; Cancer Care Ontario 2010; Devlin et al. 2018; Gage and Hogan 2014; Martin et al. 2010; Mohanty 3441 et al. 2016; Potter et al. 2006; Scottish Intercollegiate Guidelines Network 2019; Tropea et al. 2008) but 3442 not all (Bush et al. 2018) of other clinical practice guidelines suggest use of routine screening with 3443 validated scales to identify patients with delirium. Some guidelines specifically mention the need to 3444 confirm the diagnosis according to DSM or ICD criteria (BC Centre for Palliative Care 2017a; National 3445 Institute for Health and Care Excellence 2023), whereas others note the need for training in the use of 3446 the specific rating scales that are chosen for use (Gage and Hogan 2014; Scottish Intercollegiate 3447 Guidelines Network 2019; Tropea et al. 2008). Specific scales that are mentioned in other guidelines 3448 include the CAM (Gage and Hogan 2014; Potter et al. 2006; Tropea et al. 2008), CAM-ICU (Gage and 3449 Hogan 2014; Martin et al. 2010; Mohanty et al. 2016; Scottish Intercollegiate Guidelines Network 2019; 3450 Tropea et al. 2008), ICDSC (Mohanty et al. 2016; Scottish Intercollegiate Guidelines Network 2019),

- 3451 Delirium Rating Scale (DRS; Tropea et al. 2008), Delirium Symptom Interview (Gage and Hogan 2014;
- 3452 Tropea et al. 2008), Germany Care Delirium Screening Checklist (Martin et al. 2010), and the 4AT
- 3453 (Scottish Intercollegiate Guidelines Network 2019).
- **3454** *Statement 2 Determination of Baseline Neurocognitive Status*
- APA recommends **(1C)** that a patient's baseline neurocognitive status be determined to permit accurate interpretation of delirium assessments.

3457 Benefits

- 3458 Determining a patient's baseline neurocognitive status can permit accurate interpretation of delirium
- 3459 assessments and allow delirium to be identified when it is present. Once delirium is identified, possible
- 3460 contributors can be identified and addressed. Knowledge of the patient's baseline neurocognitive status
- also facilitates longitudinal monitoring to determine when the patient's delirium has resolved, includingin individuals who had some neurocognitive impairment prior to the onset of delirium. If pre-existing
- 3463 neurocognitive impairments were present, these may also warrant additional evaluation, treatment, or
- 2464 follow up apple of which could have additional herefits for national
- follow-up, each of which could have additional benefits for patients.

3465 Harms

- 3466 The harms of determining a patient's baseline neurocognitive status include time spent in obtaining this
- information (e.g., from collateral history, from electronic records, from clinical assessment), which couldbe used on other activities of benefit to the patient.

3469 Patient Preferences

- 3470 No specific information is available on patient preferences related to determination of neurocognitive
- 3471 status. However, clinical experience suggests that many patients are willing to be assessed and have
- 3472 staff contact family members or others for collateral information. The vast majority of patients would
- 3473 want staff to review prior records for relevant information that would have the potential to improve
- their care and their outcomes.

3475 Balancing of Benefits and Harms

- 3476 The potential benefits of this recommendation were viewed as far outweighing the potential harms.
- 3477 The level of research evidence is rated as low because evidence on the benefits of obtaining baseline
- 3478 neurocognitive status is indirect and does not come from rigorous clinical studies. However, expert
- 3479 opinion suggests that the harms of delineating the patient's neurocognitive baseline functioning are
- 3480 negligible compared with the potential benefit of such assessments in improving the recognition of and
- 3481 accurate identification of delirium. For additional discussion of the research evidence, see Appendix C,
- 3482 Statement 2.
- 3483 Differences of Opinion Among Writing Group Members
- 3484 There were no differences of opinion. The writing group voted unanimously in favor of this
- 3485 recommendation.
- 3486 Review of Available Guidelines from Other Organizations
- 3487 In patients whose characteristics would place them at increased risk for developing delirium, a few other
- 3488 guidelines suggest obtaining cognitive assessment, as part of routine outpatient care (Tropea et al.
- 2008), pre-operatively (Chow et al. 2012), or upon admission to the hospital (Potter et al. 2006). The
- potential role of collateral information from a relative or caregiver was also noted (Potter et al. 2006) as
- 3491 was the importance of being aware of pre-existing cognitive impairment in making a diagnosis of
- delirium (Devlin et al. 2018; Potter et al. 2006).
- **3493** Statement 3 Review for Predisposing or Contributing Factors
- APA recommends **(1C)** that patients with delirium or who are at risk for delirium undergo a detailed review of possible predisposing or contributing factors.
- 3496 Benefits
- 3497 In patients with delirium or who are at risk for delirium, a detailed review of possible predisposing or
- 3498 contributing factors can help in identifying issues that warrant clinical intervention and ultimately
- 3499 improve patient outcomes. Doing this in a systematic fashion can help to minimize cognitive biases such
- 3500 as anchoring biases.
- 3501 Harms
- 3502 The harms of conducting a detailed review of possible predisposing or contributing factors include time
- 3503 spent on assessment that could be used on other activities of benefit to the patient. If structured
- 3504 assessment is erroneous in identifying predisposing or contributing factors, a patient could undergo

unnecessary evaluations, with associated costs and patient discomfort as well as incidental findings thatwould not have required additional intervention.

3507 Patient Preferences

- 3508 No specific information is available on patient preferences related to review of predisposing or
- 3509 contributing factors of delirium. However, clinical experience suggests that the vast majority of patients
- 3510 would want and would value having a careful and thorough review of possible predisposing or
- 3511 contributing factors, with the potential to improve their care and their outcomes.

3512 Balancing of Benefits and Harms

- 3513 The potential benefits of this recommendation were viewed as far outweighing the potential harms.
- 3514 The level of research evidence is rated as low because evidence on review of possible predisposing or
- 3515 contributing factors is indirect and does not come from rigorous clinical studies. However, expert
- 3516 opinion suggests that the benefits of a review of predisposing or contributing factors of delirium
- 3517 outweigh the harms of such a review, which appear to be minimal. For additional discussion of the
- 3518 research evidence, see Appendix C, Statement 3.

3519 Differences of Opinion Among Writing Group Members

- 3520 There were no differences of opinion. The writing group voted unanimously in favor of this
- 3521 recommendation.

3522 Review of Available Guidelines from Other Organizations

- 3523 Although the specific lists of potential predisposing or contributing factors varies among guidelines,
- 3524 guidelines on delirium are consistent in discussing the importance of reviewing factors that may place
- individuals at risk for developing delirium or are associated with precipitating, maintaining, or
- exacerbating delirium (Aldecoa et al. 2017; American College of Emergency Physicians 2014; American
- 3527 Geriatrics Society Expert Panel on Postoperative Delirium in Older Adults 2015; BC Centre for Palliative
- 3528 Care 2017a; Chow et al. 2012; Devlin et al. 2018; Gage and Hogan 2014; Martin et al. 2010; Mohanty et
- al. 2016; National Institute for Health and Care Excellence 2023; Potter et al. 2006; Registered Nurses'
- Association of Ontario 2016; Scottish Intercollegiate Guidelines Network 2019; Tropea et al. 2008).

3531 Statement 4 – Review of Medications

- APA recommends (1C) that a detailed medication review be conducted in patients with delirium or who
- are at risk for delirium, especially those with pre-existing cognitive impairment.

3534 Benefits

- 3535 Conducting a detailed medication review in patients with delirium or who are at risk for delirium can
- help in identifying medications that may be contributing to delirium. Medication review can also identify
- 3537 medications that may be associated with other adverse effects, drug-disease interactions, or drug-drug
- 3538 interactions. Once identified, tapering or discontinuing of non-essential medications can reduce side
- 3539 effects for patients and lower medication costs.

3540 Harms

- 3541 The harms of conducting a detailed medication review include time spent on assessment that could be
- 3542 used on other activities of benefit to the patient. If medication review is erroneous in identifying
- 3543 potentially problematic medications, a necessary medication could be inappropriately stopped.

3544 Patient Preferences

- 3545 No specific information is available on patient preferences related to review of medications that may be
- 3546 contributing to delirium. However, clinical experience suggests that the vast majority of patients would
- want and would value having a careful and thorough review of medications, with the potential to
- 3548 improve their care and their outcomes.

3549 Balancing of Benefits and Harms

3550 The potential benefits of this recommendation were viewed as far outweighing the potential harms.

3551 The level of research evidence is rated as low because there is limited evidence on the benefits of

- 3552 medication reconciliation and deprescribing. The majority of studies that have examined medication-
- 3553 related interventions in patients with delirium have been small multi-component trials or retrospective
- or observational studies. However, expert opinion suggests that the benefits of a detailed medication
- review outweigh the harms of such a review, which appear to be minimal. For additional discussion of
- 3556 the research evidence, see Appendix C, Statement 4.
- 3557 Differences of Opinion Among Writing Group Members
- 3558 There were no differences of opinion. The writing group voted unanimously in favor of this
- 3559 recommendation.

3560 Review of Available Guidelines from Other Organizations

- 3561 The Canadian Coalition for Seniors' Mental Health, National Institute for Health and Care Excellence, and 3562 Scottish Intercollegiate Guidelines Network explicitly recommend medication review in patients with 3563 delirium or at risk for delirium (Gage and Hogan 2014; National Institute for Health and Care Excellence 3564 2023; Scottish Intercollegiate Guidelines Network 2019). Many other guidelines comment on the 3565 importance of specific medications (e.g., psychotropic agents, opioids, anticholinergic agents) or 3566 multiple medications as a risk factor for delirium and include assessment of medications as part of 3567 reviewing risk factors for delirium (see Statement 3). In addition, this recommendation is generally 3568 consistent with that from the American Geriatrics Society Choosing Wisely recommendations, which
- 3569 note the importance of a medication review before prescribing medications (Choosing Wisely 2021).
- **3570** *Statement* 5 *Use of Restraints*
- APA recommends **(1C)** that physical restraints not be used in patients with delirium, except in situations where injury to self or others is imminent and only:
- 3573•after review of factors that can contribute to racial/ethnic and other biases in decisions3574about restraint;
- with frequent monitoring; and

with repeated reassessment of the continued risks and benefits of restraint use as
 compared to less restrictive interventions.

3578 Benefits

- The benefits of limiting restraint use in patients with delirium, explicitly considering whether biases are involved in its use, and engaging in appropriate monitoring and reassessment are manifold. These
- 3581 include reduced likelihood of patient injury related to restraint, less emotional distress related to being
- 3582 restrained, and less potential for inequitable use of physical restraint.

3583 Harms

The harms of limiting restraint use in patients with delirium include possible increases in injury to the patient or others due to agitation or other behaviors that pose an imminent risk.

3586 Patient Preferences

- 3587 Studies of patient preferences related to restraint have typically been small qualitative studies and often
- 3588 focus on the experiences of patients in psychiatric settings rather than patients with delirium (Siegrist-
- 3589 Dreier et al. 2023; Tingleff et al. 2017). Clinical experience suggests that few individuals would wish to be
- 3590 physically restrained and that physical restraint is often perceived as a coercive intervention. Thus, it
- 3591 seems likely that patients would be in agreement with a recommendation that limits restraint, insofar as
- 3592 possible, and aims to preserve patient safety and equitable treatment.

3593 Balancing of Benefits and Harms

- 3594 The potential benefits of this recommendation were viewed as far outweighing the potential harms.
- 3595 The level of research evidence is rated as low because there are a limited number of studies that 3596 address potential benefits and harms of physical restraint in general and in individuals with delirium in 3597 particular. Multiple studies show disparities in the use of physical restraint, but these do not typically 3598 include individuals with delirium. Studies that do involve patients with delirium can be difficult to 3599 interpret because of concomitant disorders and other confounding factors. For example, individuals 3600 with more severe illness may be more likely to have severe hyperactive delirium with agitation but may 3601 also be more likely to experience associated morbidity and mortality regardless of restraint use. 3602 However, expert opinion and regulatory policy (Code of Federal Regulations 2019) support the 3603 appropriateness of limiting restraint use to situations that pose imminent risk and of using ongoing 3604 monitoring and frequent reassessment of restraint use as a way to mitigate restraint-related risks. In 3605 addition, expert opinion suggests that all interventions, including physical restraint, should be delivered 3606 in an equitable fashion without bias based on race, ethnicity, or other factors. For additional discussion
- 3607 of the research evidence, see Appendix C, Statement 5.

3608 Differences of Opinion Among Writing Group Members

- 3609 There were no differences of opinion. The writing group voted unanimously in favor of this
- 3610 recommendation.

- **3611** Review of Available Guidelines from Other Organizations
- 3612 A number of other guidelines recommend avoiding the use of physical restraints insofar as possible
- 3613 (American College of Emergency Physicians 2014; BC Centre for Palliative Care 2017a; Cancer Care
- 3614 Ontario 2010; Gage and Hogan 2014; National Institute for Health and Care Excellence 2023; Potter et
- 3615 al. 2006; Registered Nurses' Association of Ontario 2016; Tropea et al. 2008). Some of these guidelines
- 3616 also provide specific information on use of de-escalation techniques, less restrictive interventions, and
- 3617 frequent monitoring (e.g., Gage and Hogan 2014, National Institute for Health and Care Excellence
- 3618 2023). In addition, this recommendation is consistent with that from the American Geriatrics Society
- 3619 Choosing Wisely recommendations on managing behavioral symptoms of hospitalized adults with
- 3620 delirium (Choosing Wisely 2021). Factors related to bias in the use of physical restraints in patients with
- 3621 delirium do not seem to have been noted in other guidelines.
- **3622** Statement 6 Person-Centered Treatment Planning
- 3623 APA recommends (1C) that patients with delirium have a documented, comprehensive, and person-
- 3624 centered treatment plan.

3625 Benefits

- 3626 Development and documentation of a comprehensive, person-centered treatment plan assures that the
- 3627 clinician has considered available treatment options in the context of individual patient needs, including
- 3628 health-related social needs, with a goal of improving overall outcome. Documentation of a treatment
- 3629 plan also promotes accurate communication among all those caring for the patient.
- 3630 Harms
- 3631 The potential harms from this recommendation relate to the time spent in discussion and
- 3632 documentation of a comprehensive treatment plan that may reduce the opportunity to focus on other
- 3633 aspects of the evaluation.

3634 Patient Preferences

- 3635 No specific information is available on patient preferences related to treatment planning in patients
- 3636 with delirium. Clinical experience suggests that families and, insofar as possible, patients are
- 3637 cooperative with and accepting of efforts to establish treatment plans, particularly when they are
- 3638 patient centered.

3639 Balancing of Benefits and Harms

- 3640 The potential benefits of this guideline statement were viewed as far outweighing the potential harms.
- 3641 The level of research evidence is rated as low because no information is available on the harms of a
- 3642 comprehensive, person-centered treatment plan. There is also minimal research on whether developing
- 3643 and documenting a specific treatment plan improves outcomes as compared with assessment and
- 3644 documentation as usual. However, indirect evidence, including expert opinion, supports the benefits of
- 3645 comprehensive treatment planning. For additional discussion of the research evidence, see Appendix C,
- 3646 Statement 6.

- 3647 Differences of Opinion Among Writing Group Members
- 3648 There were no differences of opinion. The writing group voted unanimously in favor of this
- 3649 recommendation.
- **3650** Review of Available Guidelines from Other Organizations
- Although guidelines implicitly describe multiple aspects of the treatment plan that warrant
 consideration, explicit mention of treatment planning or person-centered care is relatively limited (BC
- 3653 Centre for Palliative Care 2017a, 2017b; Gage and Hogan 2014). Guidelines also vary in the scope of
- 3654 treatment plan elements that are explicitly considered with some focused on geriatric (American College
- of Emergency Physicians 2014; Potter et al. 2006), post-operative (Aldecoa et al. 2017; American
- 3656 Geriatrics Society Expert Panel on Postoperative Delirium in Older Adults 2015; Chow et al. 2012; Martin
- 3657 et al. 2010; Mohanty et al. 2016; Tropea et al. 2008), or oncology/palliative care patients (BC Centre for
- Palliative Care 2017a, 2017b; Bush et al. 2018; Cancer Care Ontario 2010) with others being broader
 (Danish Health Authority 2021; Devlin et al. 2018; Gage and Hogan 2014; National Institute for Health
- 3660 and Care Excellence 2023; Scottish Intercollegiate Guidelines Network 2019) in their recommendations
- 3661 related to delirium. In these general guidelines related to delirium, examples of treatment plan
- 3662 elements include aspects of assessment (e.g., physical examination, laboratory tests, imaging studies,
- 3663 electroencephalography, lumbar puncture, evaluation for infection), addressing patient needs (e.g.,
- 3664 communication, safety, mobility, pain, bowel and bladder function, sleep, hydration, nutrition,
- 3665 oxygenation, fluid and electrolyte balance, sensory impairment), modifying environmental risk factors,
- 3666 and providing education about delirium to the patient, family, and other care partners.
- 3667 Non-Pharmacological Interventions
- **3668** Statement 7 Multi-component Non-pharmacological Interventions
- 3669 APA recommends (1B) that patients with delirium or who are at risk for delirium receive multi-
- 3670 component non-pharmacological interventions to manage and prevent delirium.
- 3671 Benefits
- 3672 Use of multi-component non-pharmacological interventions in patients who are at risk for delirium can
- 3673 reduce the incidence and severity of delirium as well as reducing the duration of delirium in individuals
- 3674 who develop it. Other outcomes that are not specific to delirium but are reduced by multi-component
- 3675 non-pharmacological interventions such as the ABCDEF bundle include reductions in hospital death
- 3676 within 7 days, coma, next-day mechanical ventilation, physical restraint use, ICU readmission, and
- 3677 discharge to a facility other than home (Pun et al. 2019).
- 3678 Harms
- 3679 The harms of multi-component non-pharmacological interventions include time spent conducting these
- 3680 interventions that could be used on other activities of benefit to the patient. Because multi-component
- 3681 interventions are delivered predominantly by nursing staff, time spent delivering multi-component
- 3682 interventions may also reduce time available for addressing the care needs of other patients.

3683 Patient Preferences

- 3684 No specific information is available on patient preferences related to multi-component interventions.
- 3685 Although some patients may not wish to engage with all of these interventions, clinical experience and
- 3686 expert opinion suggest that patients are generally accepting of the elements of multi-component
- 3687 interventions and that family members and other caregivers are also interested in collaborating with the
- 3688 treatment team in the delivery of multi-component interventions.

3689 Balancing of Benefits and Harms

- The potential benefits of this recommendation were viewed as far outweighing the potential harms of implementing multi-component non-pharmacological interventions for patients with delirium or at risk for delirium.
- 3693 The level of research evidence is rated as moderate because multiple large studies were available that
- 3694 assessed the effects of multi-component interventions, with almost all of the studies having a moderate
- 3695 rather than a high risk of bias. There was also a dose-response effect for the number of components
- 3696 implemented and the consistency of implementation, which suggests an increased level of confidence in
- 3697 the research evidence findings. For additional discussion of the research evidence, see Appendix C,
- 3698 Statement 7.

3699 Differences of Opinion Among Writing Group Members

- 3700 There were no differences of opinion. The writing group voted unanimously in favor of this
- 3701 recommendation.

3702 Review of Available Guidelines from Other Organizations

- 3703 Many guidelines on delirium specifically recommend multi-component non-pharmacological
- 3704 interventions as a primary intervention (American Geriatrics Society Expert Panel on Postoperative
- 3705 Delirium in Older Adults 2015; BC Centre for Palliative Care 2017a; Danish Health Authority 2021; Devlin
- et al. 2018; Gage and Hogan 2014; Mohanty et al. 2016; National Institute for Health and Care
- 3707 Excellence 2023; Registered Nurses' Association of Ontario 2016; Scottish Intercollegiate Guidelines
- 3708 Network 2019; Tropea et al. 2008). Typically, they do not recommend use of a specific bundle of
- interventions (e.g., ABCDEF bundle, HELP bundle) but do describe typical interventions that warrantinclusion.

3711 Pharmacological Interventions

3712 *Statement 8 – Principles of Medication Use*

- APA recommends (1C) that antipsychotic agents and other medications to address neuropsychiatric
 disturbances of delirium be used only when all the following criteria are met:
- verbal and non-verbal de-escalation strategies have been ineffective;
 contributing factors have been assessed and, insofar as possible, addressed; and
- the disturbances cause the patient significant distress and/or present a risk of physical
 harm to the patient or others.

3719 Benefits

- 3720 Limiting use of antipsychotic agents and other medications to address neuropsychiatric disturbances of
- delirium can reduce the risk of side effects from these medications, which can include increases in
- 3722 weight, diabetes mellitus, metabolic syndrome, parkinsonism, acute dystonic reactions, dysphagia,
- 3723 dyskinetic movements, falls, orthostatic hypotension, and anticholinergic effects, among others (see
- 3724 Statement 8). In individuals with dementia, which is a risk factor for delirium and can co-occur with
- delirium, use of antipsychotic medication has been associated with increases in mortality and
- 3726 cerebrovascular adverse events. Limiting use of antipsychotic agents can also reduce the risk of drug-
- 3727 drug interactions and decrease the likelihood that unneeded antipsychotic medications will be
- 3728 continued after transitioning to another setting of care.

3729 Harms

- 3730 The potential harms of this statement are that a patient who might benefit from an antipsychotic or
- 3731 other medication will not receive it. Additionally, for a patient who is in significant distress or presenting
- a risk to self or others, harm could occur if a delay in treatment contributed to greater distress or harm.

3733 Patient Preferences

- 3734 No specific information is available on patient preferences related to use of antipsychotic agents or
- 3735 other medications to address neuropsychiatric disturbances in individuals with delirium. Clinical
- 3736 experience, including that with other psychiatric disorders in which antipsychotic medications are used,
- 3737 suggests that patients prefer to avoid use of an antipsychotic medication whenever possible.

3738 Balancing of Benefits and Harms

- 3739 The potential benefits of this recommendation were viewed as far outweighing the potential harms.
- 3740 The level of research evidence is rated as low because there was a moderate to high risk of bias in the
- 3741 vast majority of available studies on antipsychotic medications in preventing or treating delirium.
- 3742 Evidence on the use of other medications to address neuropsychiatric disturbances of delirium is even
- 3743 more limited. For antipsychotic medications, studies show minimal to no benefits of treatment in
- patients with delirium, and the potential harms of antipsychotic side effects (including potential
- 3745 mortality in some patient subgroups) outweigh the benefits of their use. For additional discussion of the
- 3746 research evidence, see Appendix C, Statement 8.

3747 Differences of Opinion Among Writing Group Members

3748 There were no differences of opinion. The writing group voted unanimously in favor of this 3749 recommendation.

3750 Review of Available Guidelines from Other Organizations

- 3751 Many guidelines recommend that non-pharmacological interventions be used as a primary approach to
- 3752 treatment of neuropsychiatric and behavioral symptoms of delirium with a psychotropic medication
- 3753 considered only in situations in which non-pharmacological interventions are unsuccessful and when
- 3754 patients are significantly distressed or at risk of harming themselves or others (American Geriatrics
- 3755 Society Expert Panel on Postoperative Delirium in Older Adults 2015; BC Centre for Palliative Care
- 2017a; Danish Health Authority 2021; Gage and Hogan 2014; Mohanty et al. 2016; National Institute for

Health and Care Excellence 2023; Scottish Intercollegiate Guidelines Network 2019; Tropea et al. 2008).
This recommendation is also consistent with that from the American Geriatrics Society Choosing Wisely
recommendations on managing behavioral symptoms of hospitalized adults with delirium (Choosing
Wisely 2021).

3761 When a psychotropic medication does appear to be indicated for an individual patient, antipsychotic 3762 medications are typically suggested in lieu of benzodiazepines, unless there are specific indications for 3763 benzodiazepine use. However, if antipsychotic medications are considered for use, other guidelines 3764 offer caveats about using low doses, adjusting doses cautiously, and using second-generation 3765 antipsychotic agents rather than haloperidol for patients with Parkinson's disease or dementia with 3766 Lewy Bodies (American Geriatrics Society Expert Panel on Postoperative Delirium in Older Adults 2015; 3767 BC Center for Palliative Care 2017b; Gage and Hogan 2014; Mohanty et al. 2016; National Institute for 3768 Health and Care Excellence 2023).

3769 *Statement 9 – Antipsychotic Agents*

3770 APA recommends **(1C)** that antipsychotic agents not be used to prevent delirium or hasten its

3771 resolution.

3772 Benefits

- Available studies on antipsychotic medications suggest that have minimal benefits in preventing or
 treating delirium. Limiting use of antipsychotic agents would reduce the risk of side effects from these
 medications (see Statement 8). In individuals with dementia, which is a risk factor for delirium and can
 co-occur with delirium, use of antipsychotic medication has been associated with increases in mortality
 and cerebrovascular adverse events. Limiting use of antipsychotic agents can also reduce the risk of
- 3778 drug-drug interactions and decrease the likelihood that unneeded antipsychotic medications will be
- 3779 continued after transitioning to another setting of care.

3780 Harms

- 3781 The potential harms of this statement are that a patient who might benefit from an antipsychotic
- 3782 medication will not receive it.

3783 Patient Preferences

- 3784 No specific information is available on patient preferences related to the use of antipsychotic agents to
- 3785 address neuropsychiatric disturbances in individuals with delirium. Clinical experience, including that
- 3786 with other psychiatric disorders in which antipsychotic medications are used, suggests that patients
- 3787 prefer to avoid use of an antipsychotic medication whenever possible.

3788 Balancing of Benefits and Harms

- 3789 The potential benefits of this recommendation were viewed as far outweighing the potential harms.
- 3790 The level of research evidence is rated as low because there was a moderate to high risk of bias in the
- 3791 vast majority of available studies on antipsychotic medications in preventing or treating delirium.
- 3792 Because these studies show minimal to no benefits of antipsychotic treatment in patients with delirium
- or at risk for delirium, the potential harms of antipsychotic side effects (including potential mortality in

- some patient subgroups) were viewed as outweighing the benefits of their use. For additional discussion
 of the research evidence, see Appendix C, Statement 8.
- 3796 Differences of Opinion Among Writing Group Members
- 3797 There were no differences of opinion. The writing group voted unanimously in favor of this
- 3798 recommendation.
- **3799** Review of Available Guidelines from Other Organizations
- 3800 The majority of guidelines on delirium (American Geriatrics Society Expert Panel on Postoperative 3801 Delirium in Older Adults 2015; BC Centre for Palliative Care 2017a; Danish Health Authority 2021; Devlin 3802 et al. 2018; Gage and Hogan 2014; Scottish Intercollegiate Guidelines Network 2019), but not all (Martin 3803 et al. 2010), note that there is insufficient evidence to support the use of antipsychotic medication to 3804 prevent delirium in at risk patients. In the treatment of delirium, particularly neuropsychiatric symptoms 3805 of delirium, a large number of guidelines recommend that non-pharmacological interventions be used as 3806 a primary approach to treatment of neuropsychiatric symptoms of delirium with a psychotropic 3807 medication considered only in situations in which non-pharmacological interventions are unsuccessful 3808 and when patients are significantly distressed or at risk of harming themselves or others (American 3809 Geriatrics Society Expert Panel on Postoperative Delirium in Older Adults 2015; BC Centre for Palliative 3810 Care 2017b; Danish Health Authority 2021; Gage and Hogan 2014; Mohanty et al. 2016; National 3811 Institute for Health and Care Excellence 2023; Scottish Intercollegiate Guidelines Network 2019; Tropea 3812 et al. 2008). However, several guidelines note that antipsychotic medications may have some role in 3813 treatment even when symptoms are less severe (Aldecoa et al. 2017; Cancer Care Ontario 2010; Martin 3814 et al. 2010). If an antipsychotic medication does seem appropriate for use in a patient with delirium, 3815 several guidelines suggest the need for additional caution in patients with Parkinson's disease or
- 3816 dementia with Lewy Bodies and that a second-generation antipsychotic would be preferred rather than
- haloperidol (BC Center for Palliative Care 2017 (FPON); Gage and Hogan 2014; National Institute for
- 3818 Health and Care Excellence 2023).
- **3819** *Statement 10 Benzodiazepines*

APA recommends **(1C)** that benzodiazepines not be used in patients with delirium or who are at risk for delirium, including those with pre-existing cognitive impairment, unless there is a specific indication for

3822 their use.

3823 Benefits

- 3824 Available studies on benzodiazepines suggest that they have minimal benefits in preventing or treating
- delirium. Limiting use of benzodiazepines would reduce the risk of side effects, drug-drug interactions,
- 3826 or medication misuse and decrease the likelihood that unneeded benzodiazepines will be continued
- 3827 after transitioning to another setting of care.

3828 Harms

- 3829 For conditions other than delirium, there are some circumstances in which a benzodiazepine may be an
- 3830 optimal treatment. The potential harms of this statement are that a patient who might benefit from a
- 3831 benzodiazepine will not receive it. However, l

3832 Patient Preferences

- 3833 No specific information is available on patient preferences related to the use of benzodiazepines in
- 3834 patients with delirium or who are at risk for delirium. Clinical experience suggests that patients prefer to
- avoid use of medication whenever possible unless it is clinically indicated.

3836 Balancing of Benefits and Harms

- 3837 The potential benefits of this recommendation were viewed as far outweighing the potential harms.
- 3838 The level of research evidence is rated as low because the number of studies was small, and the
- 3839 available research had a moderate to high risk of bias and inconsistent findings. Because these studies
- 3840 show minimal to no benefits of benzodiazepines in patients with delirium or at risk for delirium, the
- 3841 potential harms of benzodiazepine side effects or medication misuse were viewed as outweighing the
- 3842 benefits of their use, unless another indication for benzodiazepine treatment was present. For
- 3843 additional discussion of the research evidence, see Appendix C, Statement 10.

3844 Differences of Opinion Among Writing Group Members

- 3845 There were no differences of opinion. The writing group voted unanimously in favor of this
- 3846 recommendation.
- **3847** Review of Available Guidelines from Other Organizations
- 3848 The majority of guidelines note that benzodiazepines should generally not be used in individuals with
- delirium (American Geriatrics Society Expert Panel on Postoperative Delirium in Older Adults 2015; BC
- 3850 Center for Palliative Care 2017b; Cancer Care Ontario 2010; Chow et al. 2012; Gage and Hogan 2014;
- 3851 Martin et al. 2010; Potter et al. 2006). Some guidelines note that a benzodiazepine may be indicated in
- 3852 individuals experiencing alcohol or sedative withdrawal (American Geriatrics Society Expert Panel on
- Postoperative Delirium in Older Adults 2015; Cancer Care Ontario 2010; Gage and Hogan 2014; Martin
- et al. 2010) and in those already taking a benzodiazepine (Chow et al. 2012). Several guidelines note that
- 3855 benzodiazepines may be appropriate in the context of oncologic and palliative care (BC Centre for
- Palliative Care 2017a; Bush et al. 2018; Danish Health Authority 2021). If a benzodiazepine is used, one
- 3857 guideline notes that paradoxical agitation may occur (Danish Health Authority 2021).
- **3858** Statement 11 Dexmedetomidine to Prevent Delirium
- APA suggests (2B) that dexmedetomidine be used rather than other sedating agents to prevent delirium
 in patients who are undergoing major surgery or receiving mechanical ventilation in a critical care
 setting.
- Sour setting
- 3862 Benefits
- 3863 Use of dexmedetomidine in patients who are undergoing major surgery or receiving mechanical
- 3864 ventilation in a critical care setting is associated with variable but consistent benefits in reducing the
- incidence of delirium relative to placebo or other sedating medications.
- 3866 Harms
- 3867 Potential harms of using dexmedetomidine in patients who are undergoing major surgery or receiving
- 3868 mechanical ventilation in a critical care setting include bradycardia and hypotension.

3869 Patient Preferences

3870 No information is available on patient preferences related to the use of dexmedetomidine patients at
 3871 risk for delirium in relation to surgery or critical care settings.

3872 Balancing of Benefits and Harms

- 3873 The potential benefits of this recommendation in reducing the incidence of delirium were viewed as
- 3874 likely outweighing the potential harms of bradycardia and hypotension but there may be individual
- 3875 variations in potential risks of dexmedetomidine treatment depending on the patient's clinical status.
- 3876 The level of research evidence is rated as moderate for reductions in the incidence of delirium because
- 3877 there were a substantial number of studies that had a low to moderate risk of bias and a large number
- 3878 of participants in the trials when taken together. The consistency of the findings in post-operative and
- 3879 ICU patients and in placebo-controlled and head-to-head comparisons increased the confidence in
- 3880 findings. For adverse effects of dexmedetomidine, the strength of research evidence was low, and most
- 3881 studies showed no significant differences in adverse effects between the dexmedetomidine and
- 3882 comparison groups. Nevertheless, the potential balancing of benefits and harms was less clear because
- 3883 of the potential for bradycardia or hypotension in individual patients in the context of a post-operative
- 3884 or critical care setting. For additional discussion of the research evidence, see Appendix C, Statement 11.
- 3885 Differences of Opinion Among Writing Group Members
- 3886 There were no differences of opinion. The writing group voted unanimously in favor of this
- 3887 recommendation.
- **3888** Review of Available Guidelines from Other Organizations
- 3889 Few guidelines comment on the use of dexmedetomidine to prevent delirium. The Canadian Coalition
- 3890 for Seniors' Mental Health suggests that dexmedetomidine should be considered as a sedative
- 3891 alternative to benzodiazepines and propofol to reduce delirium risk in mechanically ventilated patients
- 3892 (Gage and Hogan 2014). In contrast, the Society of Critical Care Medicine suggests that
- 3893 dexmedetomidine not be used to prevent delirium in all critically ill adults (Devlin et al. 2018).
- **3894** Statement 12 Dexmedetomidine in Patients with Delirium
- 3895 APA suggests **(2C)** that when patients with delirium are sedated for mechanical ventilation in a critical 3896 care setting, dexmedetomidine be used rather than other sedating agents.
- 3897 Benefits
- 3898 Use of dexmedetomidine in patients who are sedated for mechanical ventilation in a critical care setting
- is associated with variable but greater response of delirium relative to placebo or other sedating
- 3900 medications. It may also reduce time to weaning from mechanical ventilation.
- 3901 Harms
- 3902 Potential harms of using dexmedetomidine in patients who are receiving mechanical ventilation in a
- 3903 critical care setting include bradycardia and hypotension.

- 3904 Patient Preferences
- No information is available on patient preferences related to the use of dexmedetomidine patients at
 risk for delirium in relation to surgery or critical care settings.

3907 Balancing of Benefits and Harms

- 3908 The potential benefits of this recommendation in the response of delirium symptoms to
- 3909 dexmedetomidine were viewed as likely outweighing the potential harms of bradycardia and
- 3910 hypotension with treatment, but there may be individual variations in potential risks of
- 3911 dexmedetomidine treatment depending upon the patient's clinical status.
- 3912 The level of research evidence is rated as low for response of delirium symptoms, facilitation of weaning
- 3913 from mechanical ventilation, and adverse effects of dexmedetomidine because the number of studies
- 3914 and the total number of patients was small. The potential balancing of benefits and harms favored use
- 3915 of dexmedetomidine but was less clear because of the potential for bradycardia or hypotension in
- individual patients in the context of a critical care setting. For additional discussion of the research
- 3917 evidence, see Appendix C, Statement 12.
- 3918 Differences of Opinion Among Writing Group Members
- 3919 There were no differences of opinion. The writing group voted unanimously in favor of this
- 3920 recommendation.
- **3921** Review of Available Guidelines from Other Organizations
- 3922 Few guidelines comment on the use of dexmedetomidine in critical care patients with delirium. In this
- regard, the Society of Critical Care Medicine suggests that dexmedetomidine can be used "in
- 3924 mechanically ventilated adults where agitation is precluding weaning/extubation" (Devlin et al. 2018).
- **3925** Statement 13 Melatonin and Ramelteon
- 3926 APA suggests (2C) that melatonin and ramelteon not be used to prevent or treat delirium.
- 3927 Benefits
- 3928 Limiting use of melatonin and ramelteon is beneficial by not giving a medication that does not appear to
- 3929 have benefits for patients in preventing or treating delirium.
- 3930 Harms
- 3931 The potential harms of this statement are that a patient who might benefit from melatonin or
- 3932 ramelteon will not receive it.

3933 Patient Preferences

- 3934 No information is available on patient preferences related to the use of melatonin or ramelteon in
- individuals with delirium or at risk for delirium. Clinical experience suggests that many individuals would
- benefit from and prefer an enhanced amount and quality of sleep while hospitalized and may be
- interested in taking a medication to facilitate this even if the benefits are minimal or inconsistent.

3938 Balancing of Benefits and Harms

3939 The potential benefits of this recommendation were viewed as likely outweighing the potential harms.

- 3940 Although the benefits of melatonin and ramelteon were minimal in preventing or treating delirium,
- 3941 these medications have been used for treatment of insomnia, particularly in relation to circadian rhythm
- disturbances, and there are few side effects of these medications. Thus, the potential benefits as well as
- the potential risks of using melatonin and ramelteon appear to be small, and the balance of benefits andharms is unclear.
- The level of research evidence is rated as low because most studies had a moderate risk of bias, many
- had small samples, and only a few studies were available that assessed effects of these medications in
- patients with delirium. For additional discussion of the research evidence, see Appendix C, Statement13.
- **3949** Differences of Opinion Among Writing Group Members
- 3950 There were no differences of opinion. The writing group voted unanimously in favor of this
- 3951 recommendation.
- **3952** Review of Available Guidelines from Other Organizations
- 3953 Several guidelines note that there is insufficient evidence to support the use of melatonin in patients
- with delirium or at risk for delirium (BC Centre for Palliative Care 2017a; Danish Health Authority 2021;
- 3955 Gage and Hogan 2014). Other guidelines do not comment on the use of ramelteon in preventing or
- 3956 treating delirium.
- **3957** Transitions of Care
- **3958** Statement 14 Medication Review at Transitions of Care
- 3959 APA recommends (1C) that, in patients with delirium or who are at risk for delirium, a detailed
- 3960 medication review, medication reconciliation, and reassessment of the indications for medications,
- including psychotropic medications, be conducted at transitions of care within the hospital.
- 3962 Benefits
- In patients with delirium or who are at risk for delirium, a detailed medication review, medication
 reconciliation, and reassessment of the indications for medications at transitions of care within the
 hospital can help in identifying medications that may be contributing to delirium. Medication review can
 also identify medications that may be associated with other adverse effects, drug-disease interactions,
 or drug-drug interactions. Once identified, tapering or discontinuing of non-essential medications can
 reduce medication costs and side effects for patients.
- 3969 Harms
- 3970 The harms of conducting a detailed medication review, medication reconciliation, and reassessment of
- 3971 the indications for medications include time spent on assessment that could be used on other activities
- of benefit to the patient. If medication review is erroneous in identifying potentially problematic
- 3973 medications, a necessary medication could be inappropriately stopped.

3974 Patient Preferences

- 3975 No specific information is available on patient preferences related to a detailed review of medications
- 3976 that may be contributing to or could predispose someone to developing delirium. However, clinical

- experience suggests that the vast majority of patients would want and would value having a careful and
 thorough review of medications, with the potential to improve their care and their outcomes.
- **3979** Balancing of Benefits and Harms
- 3980 The potential benefits of this recommendation were viewed as far outweighing the potential harms.
- 3981 The level of research evidence is rated as low because there is limited evidence on the benefits of
- 3982 medication review, medication reconciliation, or reassessment of the indications for medication. The
- 3983 majority of studies that have examined medication-related interventions in patients with delirium have
- been small multi-component trials or retrospective or observational studies. However, expert opinion
- 3985 suggests that the benefits of a detailed medication review outweigh the harms of such a review, which
- 3986 appear to be minimal. For additional discussion of the research evidence, see Appendix C, Statement 14.
- **3987** Differences of Opinion Among Writing Group Members
- 3988 There were no differences of opinion. The writing group voted unanimously in favor of this
- 3989 recommendation.
- **3990** Review of Available Guidelines from Other Organizations
- 3991 Guidelines on delirium do not specifically recommend medication review at transitions of care but they
- 3992 do emphasize the importance of reviewing patients' medications or avoiding use of medications that
- 3993 appear to increase the risk of developing or exacerbating delirium (Aldecoa et al. 2017; American
- 3994 Geriatrics Society Expert Panel on Postoperative Delirium in Older Adults 2015; BC Centre for Palliative
- Care 2017a; Bush et al. 2018; Cancer Care Ontario 2010; Danish Health Authority 2021; Devlin et al.
- 2018; Gage and Hogan 2014; Mohanty et al. 2016; National Institute for Health and Care Excellence
- 3997 2023; Potter et al. 2006; Registered Nurses' Association of Ontario 2016; Scottish Intercollegiate
- 3998 Guidelines Network 2019; Tropea et al. 2008). As such, this recommendation is generally consistent with
- that from the American Geriatrics Society Choosing Wisely recommendations, which note the
- 4000 importance of a medication review before prescribing medications (Choosing Wisely 2021).
- **4001** Statement 15 Follow-up Planning at Transitions of Care
- 4002 APA recommends (1C) that, when patients with delirium are transferred to another setting of care, plans4003 for follow-up include:
- 4004 continued assessments for persistence of delirium;
- 4005•detailed medication review, medication reconciliation, and reassessment of the4006indications for medications, including psychotropic medications;
- 4007•assessment of consequences of delirium (e.g., post-traumatic symptoms, cognitive4008impairment); and
- psychoeducation about delirium for patients and their care partners.
- 4010 Benefits
- 4011 Attention to follow-up plans when patients with delirium are transferred to another setting of care can
- 4012 help assure that patients are monitored for persistence of delirium and its consequences after
- 4013 transitioning to another setting. Promoting enhanced understanding of delirium in patients and their

- 4014 care partners may aid in follow-up and help individuals understand emotionally upsetting perceptions or
- 4015 behaviors that may have occurred while a patient was delirious. A detailed medication review,
- 4016 medication reconciliation, and reassessment of the indications for medications at transitions of care can
- 4017 help in identifying medications that may be perpetuating delirium and may identify medications, such as
- 4018 antipsychotic agents or benzodiazepines, that are no longer needed. Once identified, tapering or
- 4019 discontinuing of non-essential medications can reduce medication costs, side effects, and drug-disease
- 4020 or drug-drug interactions.

4021 Harms

- The harms of developing a follow-up plan upon transfer to another setting of care include time spent
 that could be used on other activities of benefit to the patient. If medication review is erroneous in
 identifying potentially problematic medications, a necessary medication could be inappropriately
 stopped.
- 4026 Patient Preferences
- 4027 No specific information is available on patient preferences related to developing a follow-up plan or
- 4028 conducting a detailed review of medications. However, clinical experience suggests that the vast
- 4029 majority of patients would want and would value having a careful and thorough plan for follow-up care
- 4030 as well as a detailed review of medications, with the potential to improve their care and their outcomes.

4031 Balancing of Benefits and Harms

- 4032 The potential benefits of this recommendation were viewed as far outweighing the potential harms.
- 4033 The level of research evidence is rated as low because there is limited evidence on the benefits of
- 4034 developing a follow-up plan or conducting a detailed review of medications. However, these benefits
- 4035 appear to outweigh the harms of a follow-up plan and detailed medication review, which appear to be
- 4036 minimal. For additional discussion of the research evidence, see Appendix C, Statement 15.
- 4037 Differences of Opinion Among Writing Group Members
- 4038 There were no differences of opinion. The writing group voted unanimously in favor of this
- 4039 recommendation.

4040 Review of Available Guidelines from Other Organizations

- 4041 Few guidelines discuss aspects of follow-up care for individuals with delirium. Principles of medication
- 4042 review upon transitioning to another setting are consistent with recommendations for medication
- 4043 reconciliation (The Joint Commission 2023) and general guideline recommendations related to
- 4044 medication review (Aldecoa et al. 2017; American Geriatrics Society Expert Panel on Postoperative
- 4045 Delirium in Older Adults 2015; BC Centre for Palliative Care 2017a; Bush et al. 2018; Cancer Care Ontario
- 4046 2010; Choosing Wisely 2021; Danish Health Authority 2021; Devlin et al. 2018; Gage and Hogan 2014;
- 4047 Mohanty et al. 2016; National Institute for Health and Care Excellence 2023; Potter et al. 2006;
- 4048 Registered Nurses' Association of Ontario 2016; Scottish Intercollegiate Guidelines Network 2019;
- 4049 Tropea et al. 2008). Several guidelines also note the importance of follow-up communication and
- 4050 documentation (Gage and Hogan 2014; Scottish Intercollegiate Guidelines Network 2019; Tropea et al.
- 4051 2008) as well as patient, family, and other caregiver education after discharge (Tropea et al. 2008).

4052 Appendix G. Description of Additional Studies Reviewed

- 4053 The Pacific Northwest EPC systematic review included other studies that did not have a sufficient
- 4054 strength of research evidence or evidence of benefits relative to harms to be incorporated into a
- 4055 guideline statement. These are summarized in the sections that follow.
- 4056 Additional Non-Pharmacological Interventions for Prevention of Delirium
- 4057 Non-pharmacological studies identified in the Pacific Northwest EPC systematic review aimed at
- 4058 prevention of delirium included post-operative use of liberal versus restrictive red blood cell transfusion
- 4059 (Gregersen et al. 2015; Gruber-Baldini et al. 2013); use of "fast-track" surgery or enhanced recovery
- 4060 after surgery—an approach to perioperative management designed to prevent post-operative delirium
- 4061 (Jia et al. 2014); variations on mechanical ventilation (e.g., giving patients no sedation, using interrupted
- 4062 sedation, using continuous sedation [Girard et al. 2008; Mehta et al. 2012; Nassar Junior and Park
- 4063 2014]); and a trial of fluid therapy (Bruera et al. 2013). These interventions largely showed inconsistent
- 4064 or non-significant effects, although "fast-track" colorectal carcinoma surgery was associated with
- significantly lower delirium incidence versus usual care (3.4% vs. 12.9%, *P*=0.008 [Jia et al. 2014]).
- 4066 Some of these interventions were explored within subpopulations of ICU patients and showed few
- 4067 significant differences in delirium incidence, mortality, adverse events, or length of stay. In two studies,
- 4068 in a total of 813 ICU patients on mechanical ventilation, a protocol of no sedation was compared with
- 4069 one of sedation that included daily interruption until patients awakened (Olsen et al. 2020; Strøm et al.
- 4070 2010). In the smaller of the two studies (N=113) comparing no sedation with sedation, the incidence of 4071 hyperactive delirium was significantly greater in patients who were not sedated (20% vs. 7%, *P*=0.04
- 4072 [Strøm et al. 2010]). In this study, patients without sedation had shorter ICU stays (mean 13 days vs. 23
- 4073 days with interrupted sedation, *P*=0.032 [Strøm et al. 2010]). Hospital stay was a mean of 34 days
- 4074 compared with 58 days (*P*=0.004 [Strøm et al. 2010]). By contrast, the larger of the two studies (N=700)
- 4075 found that patients given no sedation had 1 more day without coma or delirium than those sedated
- 4076 (median 27 days vs. 26 days, 95% CI 0–2 for the difference [Olsen et al. 2020)]. Another two trials
- 4077 (N=758) used sedation with an opioid, benzodiazepine, and/or propofol, and compared daily
- 4078 interruption of sedation with continuous sedation (Girard et al. 2008; Mehta et al. 2012). A fifth trial
- 4079 with high risk of bias also assessed daily interruption of sedation, and compared it with "intermittent"
- 4080 sedation, where interruption was attempted three times daily in 60 participants (Nassar Junior and Park
- 4081 2014). A sixth study compared Synchronized Intermittent Mandatory Ventilation with Pressure Support
- 4082 (SIMV+PS) to Assist/Control (A/C) ventilation in 40 patients with acute respiratory distress syndrome
- 4083 who were intubated (Luo et al. 2015). The two trials comparing interrupted with continuous sedation
- 4084 found no difference in the incidence of delirium (62% vs. 62%, RR 1.02, 95% CI 0.92–1.14, I²=0% [Girard
- 4085 et al. 2008; Mehta et al. 2012]). Interruption once a day compared with 3 times daily (intermittent
 4086 sedation) also did not have a significant effect on delirium incidence (40% vs. 30%, *P*=0.47 [Nassar Junior
- 4087 and Park 2014]). There was again no statistically significant difference in delirium incidence between
- 4088 SIMV+PS (0%) and A/C ventilation groups (20%, *P*=0.11 [Luo et al. 2015]).
- Eight trials (N=1,254) assessed various mechanical interventions for the prevention of delirium in the
 surgical setting, including cerebral and cerebral oximetry monitoring (Lei et al. 2017), transcutaneous
 electrical acupoints stimulation (TEAS; Gao et al. 2018), "fast-track" surgery (Jia et al. 2014), variations in

4092 mean arterial pressure (MAP) intra-operatively (Brown et al. 2019; Xu et al. 2020), variations in 4093 mechanical ventilation (Wang et al. 2015; J. Wang et al. 2020), and continuous positive airway pressure 4094 (CPAP; Nadler et al. 2017). "Fast-track" surgery was not well described but reportedly included pre-4095 operative oral purgatives, thoracic epidural, and early out of bed mobilization. Comparisons were usual 4096 care, sham TEAS (Gao et al. 2018), and varying levels of MAP (Xu et al. 2020). Assessment times ranged 4097 from the second post-operative day until discharge. Outcome reporting was uneven, but the most 4098 common outcomes were incidence of delirium and length of hospital or ICU stay. Three studies enrolled 4099 patients from the United States or Canada (Brown et al. 2019; Lei et al. 2017; Nadler et al. 2017), and 4100 five studies enrolled patients in China (Gao et al. 2018; Jia et al. 2014; Wang et al. 2015; J. Wang et al. 4101 2020; Xu et al. 2020). One additional trial (N=55) compared mild hyperthermia (nasopharyngeal 4102 temperature of 34°C to 35°C) with usual care (36°C) after acute aortic dissection (Fu et al. 2020). Sample 4103 sizes were generally small; most had fewer than 200 subjects. The weighted mean age of patients was 4104 70 years old, and 51% were female. Race was only reported in one trial, which included 13.1% Black 4105 patients and 5.5% patients of another race (Brown et al. 2019). Patients with cognitive impairments, 4106 such as dementia, were either not reported or excluded, except in one study that included 2% of 4107 patients with dementia or severe cognitive impairment (Nadler et al. 2017). The scales used to assess

- 4108 delirium included CAM, CAM-ICU, DSM-IV, DRS-R-98, and RASS.
- 4109 All nine trials reported incidence of delirium (Table G-1). Two trials found variable lung protective
- 4110 mechanical ventilation during surgery resulted in significantly fewer cases of delirium (Wang et al. 2015;
- 4111 J. Wang et al. 2020). Three other interventions that were associated with a significantly lower incidence
- 4112 of delirium included TEAS during spine surgery (Gao et al. 2018), "fast-track" colorectal carcinoma
- 4113 surgery (Jia et al. 2014), and increased MAP during cardiac bypass surgery (Brown et al. 2019). In the
- 4114 latter study, delirium duration was shorter with the intervention than the control group (elevated MAP
- 4115 median 0 day vs. 1 day, *P*=0.05), but delirium severity did not differ (median 7 vs. 8 respectively, *P*=0.10)
- 4116 (Brown et al. 2019). The remaining studies did not find statistically significant differences in incidence of
- 4117 delirium and used CPAP in orthopedic surgery patients (Nadler et al. 2017), reduced MAP in older
- orthopedic surgery patients (Xu et al. 2020), and cerebral oximetry monitoring in cardiac surgerypatients (Lei et al. 2017).

4120 The effects of these interventions on length of stay were variable. Overall, hospital length of stay was 4121 reduced compared to usual care with "fast-track" colorectal carcinoma surgery (9.01 days vs. 13.21 days 4122 respectively, P<0.001 [Jia et al. 2014]), but not with cerebral oximetry monitoring (median of 8 days in 4123 both groups [Lei et al. 2017], variable protective mechanical ventilation (10.3 days vs. 10.7 days 4124 respectively, P=0.49 [Wang et al. 2015]), or mild hyperthermia (mean of 20.40 days vs. 22.78 days, 4125 P=0.31 [Fu et al. 2020]). For ICU length of stay, mild hyperthermia was associated with a shorter length 4126 of stay (mean of 5.53 days vs. 9.35 days, P=0.38 [Fu et al. 2020]), but cerebral oximetry monitoring was 4127 not (both median 2.04 days [Lei et al. 2017]). Regarding mortality and adverse events, one trial that 4128 compared cerebral oximetry monitoring with usual care during cardiac surgery reported no difference 4129 between the intervention and control groups on incidence of mortality (2.4% vs. 3% respectively [Lei et 4130 al. 2017]). Adverse events reported were limited to surgical complications.

- 4131 In palliative care patients, one trial (N=101) explored daily fluid therapy with 1000 mL of normal saline
- 4132 compared with 100 mL saline given as placebo and only found a statistically significant difference
- 4133 between groups for the NuDESC night score, which deteriorated more between baseline and day 4 for
- 4134 placebo than for treated patients (*P*=0.03 [Bruera et al. 2013]).
 - Study **Risk of Bias** Interventions Sample Size Population **Main Findings** Duration Interventions: CPAP vs. usual Difference in delirium incidence Study: Nadler et Age: ≥50 years al. 2017 care Surgery type: hip not statistically significant (21% **RoB: Low** vs. 16%, OR 1.36, 95% CI 0.52-Duration: During surgery or knee surgery N: 114 3.54, P=0.53) Interventions: Elevated MAP Study: Brown et Age: ≥55 years Difference in delirium incidence al. 2019 during cardiac bypass based Surgery type: significantly lower with RoB: Low above pre-bypass evaluating cardiac surgery elevated MAP (POD 3: 38% vs. N: 199 autoregulation level vs. usual 53%, OR 0.55, 95% CI 0.31-0.97, P=0.04) care Duration: During surgery Study: Xu et al. Interventions: Intra-operative Age: >65 years Difference between groups not 2020 MAP maintained at 10% to 20% Surgery type: statistically significant (POD 3: **RoB: Moderate** below baseline vs. baseline to 4% vs. 2% vs. 0%, P=0.360) orthopedic surgery N: 150 10% below vs. 10% above (hip) baseline **Duration: During surgery** Difference in delirium incidence Study: Lei et al. Interventions: Cerebral Age: ≥60 years 2017 oximetry monitoring vs. usual Surgery type: not statistically significant (24% RoB: Moderate vs. 25%, OR 0.98, 95% CI 0.55care cardiac surgery 1.76, P=0.97) N: 249 **Duration: Through POD 7** Difference in delirium incidence Study: Gao et al. Interventions: TEAS vs. sham Age: ≥55 years 2018 Duration: During surgery Surgery type: spine significantly lower with TEAS RoB: Moderate surgery (6.3% vs. 25.0%, P=0.039) N: 64 Study: Jia et al. Interventions: "Fast-track" Age: 70–88 years Difference in delirium incidence significantly lower with "fast-2014 surgery vs. usual care Surgery type: Duration: Through POD 3 colorectal track" surgery (3.4% vs. 12.9%, **RoB: Moderate** N: 233 carcinoma surgery P=0.008) Interventions: Variable lung Difference in delirium incidence Study: Wang et Age: ≥60 years al. 2015 protection mechanical Surgery type: significantly lower with lung RoB: Moderate ventilation vs. usual care protection (15% vs. 29%, gastrointestinal N: 174 **Duration: During surgery** tumor resection P=0.036) Difference in delirium incidence Study: Wang J. Interventions: Lung protection Age: ≥65 years et al. 2020 ventilation vs. usual care significantly lower with lung Surgery type: **RoB: Moderate** Duration: During surgery mixed surgery protection (6% vs. 25%, N: 71 P=0.039)
- 4135 Table G-1. Delirium incidence in other prevention studies

Study Risk of Bias	Interventions		
Sample Size	Duration	Population	Main Findings
Study: Fu et al.	Interventions: Mild	Age: 18–75 years	Difference in delirium incidence
2020	hyperthermia vs. usual care	Surgery type: acute	not statistically significant (37%
RoB: High	Duration: 24 hours	aortic dissection	vs. 465 <i>, P</i> =0.48)
N: 55			

4136 *Abbreviations.* CI=confidence interval; CPAP=continuous positive airway pressure; MAP=mean arterial pressure;

N=number; OR=odds ratio; POD=post-operative day; RoB=risk of bias; TEAS=transcutaneous electrical acupoint
 stimulation.

4139 *Source*. Brown et al. 2019; Fu et al. 2020; Gao et al. 2018; Jia et al. 2014; Lei et al. 2017; Nadler et al. 2017; Wang et

4140 al. 2015; J. Wang et al. 2020; Xu et al. 2020.

4141 Additional Pharmacological Interventions for Prevention of Delirium

4142 The Pacific Northwest EPC systematic review included additional pharmacological interventions aimed

4143 at prevention of delirium. Bispectral index (BIS)-guided anesthesia demonstrated a lower incidence of

4144 delirium, but none of the pooled analyses for other anesthetic comparisons showed significant

4145 differences between groups. Steroids resulted in a significant reduction in incident delirium in post-

4146 surgical patients. Opioid and GABAergic medications generally had no effect on incidence or related

4147 outcomes (e.g., mortality, delirium duration, ICU/hospital length of stay). Cholinesterase inhibitors

4148 demonstrated no impact on delirium incidence in post-operative patients, but subgroup analyses

showed a significant reduction in orthopedic patients. Finally, among miscellaneous pharmacologic

4150 interventions, some did show a significant reduction in delirium incidence in post-operative patients,

4151 including hypertonic saline, ondansetron, and methylene blue but the number of studies was small.

4152 Electroencephalography-Guided Anesthesia

4153 The Pacific Northwest EPC identified nine trials (N=4,030) of electroencephalography-guided anesthesia

4154 (e.g., BIS) as compared to usual anesthesia care (Chan et al. 2013; Cotae et al. 2021; Kunst et al. 2020;

4155 Radtke et al. 2013; Sieber et al. 2010, 2018; C.J. Tang et al. 2020; Wildes et al. 2019; Zhou et al. 2018).

The aim of electroencephalography-guided anesthesia was to optimize the depth of anesthesia and

4157 avoid deep sedation, although differing anesthetic parameters were used among the studies.

4158 Orthopedic surgery was performed in two trials (Sieber et al. 2010, 2018), cardiac surgery in one trial

4159 (Kunst et al. 2020), colorectal surgery in one trial (Zhou et al. 2018), trauma surgery in one trial (Cotae et

4160 al. 2021), and a variety of surgeries in four trials (Chan et al. 2013; Radtke et al. 2013; C.J. Tang et al.

4161 2020; Wildes et al. 2019). Five trials were rated as having a moderate risk of bias.

4162 BIS-guided anesthesia resulted in a very small but statistically significant difference in incidence of

4163 delirium compared with usual anesthesia (8 RCTs, N=3,956; 19.8% vs. 23.8%, RR 0.78, 95% CI 0.61–0.98,

4164 I²=64% [Chan et al. 2013; Kunst et al. 2020; Radtke et al. 2013; Sieber et al. 2010, 2018; C.J. Tang et al.

4165 2020; Wildes et al. 2019; Zhou et al. 2018]). The findings did not differ significantly by type of surgery or

4166 study risk of bias (interaction *P*-values 0.15). No BIS-guided anesthesia trial reported severity of delirium

4167 (Sieber et al. 2010; Wildes et al. 2019), but depth of anesthesia did not alter the duration of delirium

- 4168 significantly (N=331; MD -0.01 days, 95% CI -0.35–0.33, I²=0%). There was also no significant difference
- 4169 in length of hospital stay (6 trials, N=3,665; MD -0.10, 95% CI -0.82–0.61, I²=78%) or length of ICU stay

4170 (N=1,727; MD 0.03 days, 95% CI -0.06–0.12, I²=11%) (Chan et al. 2013; Kunst et al. 2020; Sieber et al. 4171 2010; Wildes et al. 2019) between BIS-guided and usual anesthesia care. Mortality across five trials did 4172 not differ significantly between BIS-guided anesthesia and usual anesthesia care (N=2,785; 2.8% vs. 4173 4.1%, RR 0.56, 95% Cl 0.24–1.30, I²=50% [Kunst et al. 2020; Radtke et al. 2013; Sieber et al. 2010, 2018; 4174 Wildes et al. 2019]). In terms of post-operative complications or adverse effects, findings were mixed. 4175 One trial (N=902) reported significantly fewer post-operative complications in the BIS-guided anesthesia 4176 group compared with the usual care group (10.7% vs. 20.8%, P=0.01 [Chan et al. 2013]), and another 4177 trial comparing usual anesthesia care plus anesthesia depth monitoring and nociception reported fewer 4178 patients experienced at least 1 episode of hypotension with anesthesia depth monitoring than in the 4179 usual care group (18 vs. 36, P=0.0001 [Cotae et al. 2021]). In contrast, one trial found no difference in 4180 the number of patients with one or more complications (N=114; 46% light sedation vs. 53% deep 4181 sedation, P=0.57 [Sieber et al. 2010]) and another trial found no difference in the risk of experiencing 4182 any adverse event (N=204; 14% intervention vs. 16% standard care, RR 0.88, 95% CI 0.45-1.69 [C.J. Tang

4183 et al. 2020]).

4184 Additional Anesthetic Comparisons

4185 26 trials (N=5,819) evaluated other anesthesia comparisons: three of xenon gas versus sevoflurane gas 4186 (Al Tmimi et al. 2020; Coburn et al. 2018; Stoppe et al. 2013); four of sevoflurane gas versus propofol 4187 (Ishii et al. 2016; Lurati Buse et al. 2012; X. Mei et al. 2020; Nishikawa et al. 2004); one of desflurane 4188 versus propofol (Tanaka et al. 2017); three of ketamine versus normal saline (Avidan et al. 2017; 4189 Hollinger et al. 2021; Hudetz et al. 2009); nine of a form of regional anesthesia versus placebo, general 4190 anesthesia, or opioid therapy (L. Jin et al. 2020; Li et al. 2021; Mann et al. 2000; Mouzopoulos et al. 4191 2009; Papaioannou et al. 2005; Strike et al. 2019; Unneby et al. 2020; Uysal et al. 2020; Williams-Russo 4192 et al. 1995); one of a pecto-intercostal fascial plane block versus placebo (Khera et al. 2021), one of a 4193 deep versus standard neuromuscular blockade (rocuronium [C.S. Oh et al. 2021]), one of anaortic off-4194 pump coronary bypass with total arterial revascularization versus carbon dioxide field flooding or use of 4195 vein grafts (Szwed et al. 2021), one of unilateral spinal anesthesia versus combined lumbar-sacral plexus 4196 block plus general anesthesia (Tang et al. 2021); and two of high-versus low-pressure systemic 4197 perfusion (Hu et al. 2021; Siepe et al. 2011). Cardiac surgery was performed in six trials (Hudetz et al. 4198 2009; Khera et al. 2021; Siepe et al. 2011; Stoppe et al. 2013; Strike et al. 2019; Szwed et al. 2021), 4199 orthopedic surgery in seven trials (Coburn et al. 2018; X. Mei et al. 2020; Mouzopoulos et al. 2009; 4200 Tanaka et al. 2017; Unneby et al. 2020; Uysal et al. 2020; Williams-Russo et al. 1995), abdominal surgery in three trials (Ishii et al. 2016; Mann et al. 2000; Nishikawa et al. 2004), one trial of esophageal surgery 4201 4202 (L. Jin et al. 2020), and a variety of major surgeries in seven trials (Avidan et al. 2017; Hu et al. 2021; Li et 4203 al. 2021; Lurati Buse et al. 2012; C.S. Oh et al. 2021; Papaioannou et al. 2005; Tang et al. 2021). Five 4204 trials were rated as having a low risk of bias, one as having a high risk of bias, and the remainder were 4205 rated as having moderate risk of bias.

None of the pooled analyses for other anesthetic comparisons showed significant differences between
groups. Based on three trials, incidence of delirium was not reduced by the use of ketamine (N=821; RR
0.50, 95% CI 0.21–1.71, I²=58% [Avidan et al. 2017; Hollinger et al. 2021; Hudetz et al. 2009]). A
subgroup analysis was not possible with only three studies, but the two studies that enrolled patients

- 4210 undergoing a variety of types of surgeries clearly showed no effect of ketamine, whereas the single
- 4211 study of patients undergoing cardiac surgery did show a benefit (N=58; 3.4% vs. 31%, RR 0.11, 95% CI
- 4212 0.02–0.82 [Hudetz et al. 2009]). The incidence of delirium did not differ significantly in comparisons of
- 4213 xenon gas with sevoflurane gas, and sevoflurane or desflurane with propofol, regardless of surgery type
- 4214 (Coburn et al. 2018; Ishii et al. 2016; Lurati Buse et al. 2012; X. Mei et al. 2020; Nishikawa et al. 2004;
- 4215 Stoppe et al. 2013; Tanaka et al. 2017).
- 4216 Eight trials compared regional/epidural anesthesia with general anesthesia (L. Jin et al. 2020;
- 4217 Papaioannou et al. 2005; Unneby et al. 2020; Williams-Russo et al. 1995), opioids (Mann et al. 2000;
- 4218 Strike et al. 2019) IV acetaminophen (Uysal et al. 2020), or placebo (block given for pain prophylaxis
 4219 [Mouzopoulos et al. 2009]). A pooled analysis of two trials that compared paravertebral block in cardiac
- 4220 surgery (Strike et al. 2019) or in esophagectomy (L. Jin et al. 2020) found less delirium with the block
- 4221 (N=211; 12.3% vs. 26.7%, RR 0.48, 95% CI 0.26–0.88). One trial enrolled hip fracture patients aged 70
- 4222 years or older who were deemed to be at intermediate or high risk for delirium and reported
- 4223 prophylactic fascia iliac compartment block was associated with lower delirium incidence than placebo
- 4224 (10.8% vs. 23.8%, RR 0.45, 95% Cl 0.24–0.87 [Mouzopoulos et al. 2009]). The difference in absolute
- 4225 incidence of delirium post-operatively was large (14%) in a small study (N=92) of high-pressure systemic
- 4226 perfusion compared with low-pressure perfusion, but the difference was not statistically significant
 4227 (Siepe et al. 2011). In one cardiac surgery trial, there was no difference between a pecto-intercostal
- 4228 fascial plane block and placebo for midline sternotomy pain on delirium incidence (7.5% vs. 12.5%, RR
- 4229 0.60, 95% CI 0.15–2.34 [Khera et al. 2021]). In another cardiac surgery trial, however, anaortic off-pump
- 4230 coronary bypass with total arterial revascularization resulted in a lower incidence of delirium than off-
- 4231 pump coronary artery bypass with carbon dioxide surgical field flooding (12.7% vs. 32.8%, RR 0.39, 95%
- 4232 CI 0.19–0.81 [Szwed et al. 2021]). In the same trial, anaortic off-pump coronary bypass with total arterial
- 4233 revascularization also resulted in less delirium than conventional off-pump coronary bypass with vein
- 4234 grafts (12.7% vs. 35.9%, RR 0.35, 95% CI 0.17–0.73), whereas there was no difference in delirium
- incidence between the two comparisons groups (RR 0.91, 95% CI 0.57–1.48 [Szwed et al. 2021]). In a
 trial in patients having non-cardiothoracic surgery with general anesthesia, maintaining a high mean
- 4237 arterial pressure versus a low mean arterial pressure resulted in fewer patients with delirium (11.6% vs.
- 4237 alternal pressure versus a low mean alternal pressure resulted in rewel patients with definition (11.0% vs.
- 4238 25.2%, RR 0.46, 95% CI 0.28–0.77 [Hu et al. 2021]). There was also a lower incidence of delirium in
 4239 patients having noncardiac thoracic or abdominal surgery with general anesthesia plus an epidural
- 4240 versus general anesthesia alone (1.8% vs. 5.0%, RR 0.35, 95% Cl 0.20–0.63 [Li et al. 2021]). In patients
- 4241 with hip fracture, there was no difference in delirium incidence between unilateral spinal anesthesia
- 4242 compared with combined lumbar-sacral plexus block plus general anesthesia (10.9% vs. 14.3%, RR 0.76,
 4243 95% CI 0.28–2.06 [Tang et al. 2021]). In the trial in patients having a hip replacement, patients received a
- 4244deep neuromuscular blockade with additional rocuronium or a standard neuromuscular blockade and4245found no difference in delirium incidence base on rocuronium dose (17.1% vs. 34.1%, RR 0.50, 95% CI
- 4246 0.23–1.11 [C.S. Oh et al. 2021]).
- In terms of other delirium outcomes, there was no difference in delirium duration between intraoperative xenon gas and servoflurane gas in a pooled analysis of two trials (N=108; MD -0.08 days, 95%
 CI, -0.69–0.54 [Al Tmimi et al. 2020; Coburn et al. 2018]). In a comparison of fascial iliac compartment

- 4250 block and placebo, the duration of delirium was significantly shorter in study participants who 4251 experienced it (N=36; MD -5.75 days, 95% CI -9.85 to -1.97 [Mouzopoulos et al. 2009]). All patients 4252 received the same epidural anesthesia during surgery in this study. In a trial in patients having non-4253 cardiothoracic surgery with general anesthesia, maintaining a high mean arterial pressure versus a low 4254 mean arterial pressure resulted in a shorter duration of delirium (median 2 days vs. 3 days, P=0.006 [Hu 4255 et al. 2021]). The iliac block group also had significantly lower severity of delirium (moderate size of 4256 effect), based on the highest value of the DRS-R-98 (14.34 vs. 18.61 in the placebo group, MD 4.27, 95% 4257 CI 1.8–5.64) in one small trial (N=11; Mouzopoulos et al. 2009). Delirium severity was also lower with 4258 sevoflurane gas than with propofol in a small trial (N=50) of patients having abdominal surgery (3 to 5 4259 points on post-operative days 2 to 3 [Nishikawa et al. 2004]) but not different between groups in a trial 4260 (N=209) of patients having orthopedic surgery (X. Mei et al. 2020). A trial comparing xenon gas with 4261 servoflurane gas in cardiac surgery patients also reported no difference in delirium severity post-4262 operatively (Al Tmimi et al. 2020).
- 4263 Length of ICU stay after cardiac surgery was significantly shorter with paravertebral block compared 4264 with patient-controlled opioid analgesia in a single small study (N=44; MD -5.73 days, 95% CI -8.64 to -4265 2.82 [Strike et al. 2019]). Other trials in patients undergoing cardiac surgery found no differences on 4266 duration of ICU stay between xenon gas and sevoflurane gas (2 trials, N=220; MD -0.17 days, 95% CI -0.63–0.29 [AI Tmimi et al. 2020; Stoppe et al. 2013]), between ketamine 0.5 mg/kg and normal saline (1 4267 4268 trial, N=58; MD 0.00 days, 95% CI -0.81–0.81 [Hudetz et al. 2009]), or between high-pressure perfusion 4269 and low-pressure perfusion (1 trial, N=92; -0.80 days, 95% CI -2.11–0.51 [Siepe et al. 2011]). One trial of 4270 pecto-intercostal fascial plane block versus placebo for midline sternotomy pain found no difference 4271 between groups in duration of ICU stay (MD -0.30 days, 95% CI -0.98–0.38) or in length of hospital stay 4272 (MD 0.83 days, 95% CI, -0.51–2.18 [Khera et al. 2021]). In noncardiac surgery patients, who received 4273 epidural plus general anesthesia versus general anesthesia alone, the duration of ICU stay was slightly 4274 shorter (HR 1.30, 95% CI 1.05–1.62, P=0.017) but the hospital length of stay did not differ (HR 1.01, 95% 4275 CI 0.92-1.12, P=0.778 [Li et al. 2021]).
- 4276 One trial found shorter hospital stays with paravertebral block in esophagectomy compared with 4277 patient-controlled systemic opioid analgesia (N=167; MD -0.90 days, 95% CI -1.24 to -0.55 [L. Jin et al. 4278 2020]) although there was no difference in hospital stay with paravertebral block versus patient 4279 controlled systemic opioids in cardiac surgery (N=44; MD 0.80 days, 95% CI -3.85–5.45 [Strike et al. 4280 2019]) or with femoral nerve block compared with conventional pain management in hip surgery 4281 (N=231; MD 1.6 days, 95% CI -2.77–5.97 [Unneby et al. 2020]). Ina pooled analysis of three trials (N=476) 4282 of xenon gas versus sevoflurane gas, there was also no difference in length of hospital stay (MD -0.28 4283 days, 95% CI -1.24–0.67 [Al Tmimi et al. 2020; Coburn et al. 2018; Stoppe et al. 2013]). Similarly, one trial 4284 each of ketamine versus normal saline (N=58; MD 1.00 days, 95% CI -0.82–2.82 [Hudetz et al. 2009]); 4285 high-versus low-pressure systemic perfusion (N=92; MD 0.40 days, 95% CI -2.67–3.47 [Siepe et al. 4286 2011]); and sufentanil plus a bupivacaine epidural followed by sufentanil plus bupivacaine in a patient-4287 controlled anesthesia (PCA) epidural pump versus sufentanil IV followed by a PCA morphine pump 4288 (N=64; MD -0.50 days, 95% CI -3.26–2.26 [Mann et al. 2000]) found no differences between comparisons 4289 in hospital stay. One trial in noncardiac surgery comparing high mean arterial pressure to low mean

4290 arterial pressure also found no difference in length of hospital stay (MD 0 days, 95% CI -4.24–4.24 [Hu et 4291 al. 2021]).

4292 Regarding mortality and adverse events, one trial each reported no deaths with xenon gas or 4293 sevoflurane gas (N=30; Stoppe et al. 2013) or with high- or low-pressure systemic perfusion (N=92; Siepe 4294 et al. 2011) among cardiac surgery patients. There was no difference in reported deaths in one trial each 4295 of: xenon gas versus sevoflurane gas in orthopedic surgery patients (N=256; 0% vs. 4.5%, RR 0.10, 95% CI 4296 0.01–1.73 [Coburn et al. 2018]), sevoflurane gas versus propofol in patients who underwent a variety of 4297 surgeries (N=385; 13.6% vs. 11.4%, RR 1.19, 95% CI 0.70-2.02 [Lurati Buse et al. 2012]), and 4298 paravertebral block versus patient controlled systemic opioids in cardiac surgery patients (N=44; 4.5% 4299 vs. 9.1%, RR 0.50, 95% CI 0.05–5.12 [Strike et al. 2019]). There were no differences between high mean 4300 arterial pressure and low mean arterial pressure in in-hospital mortality (0% vs. 0.6% [Hu et al. 2021]) 4301 and between general anesthesia plus epidural versus general anesthesia alone in 30-day mortality (0.7% 4302 vs. 0.2%) after noncardiac surgery (Li et al. 2021). There was also no difference between off-pump 4303 coronary artery bypass methods (1.5% vs. 1.5% vs. 0%) in in-hospital mortality after cardiac surgery 4304 (Szwed et al. 2021). An additional study reported that one death occurred but did not report what 4305 intervention the patient received (Khera et al. 2021).

4306 There was an increased incidence of systolic hypotension in patients (N=64) undergoing major 4307 abdominal surgery with sufentanil plus a bupivacaine epidural followed by sufentanil plus bupivacaine in 4308 a PCA epidural pump versus sufentanil IV followed by a PCA morphine pump (16% vs. 0%, P<0.05 [Mann 4309 et al. 2000]). Significant differences in adverse events (114 vs. 124, P=0.27) or severe adverse events (13 4310 vs. 22, P=0.14) were not found between study participants who received xenon gas or sevoflurane gas (N=256 [Coburn et al. 2018]). Another trial (N=30) also reported no difference in the number of 4311 4312 participants who experienced any adverse event (40% vs. 53%, P=0.46) between xenon gas and 4313 sevoflurane gas (Stoppe et al. 2013). There was also no difference in the mean number of complications 4314 in one trial of femoral nerve block versus conventional pain management in hip fracture surgery (N=236, 4315 mean 5.6 vs. 5.7, P=0.841 [Unneby et al. 2020]). There were no differences in adverse events (Hu et al. 4316 2021; Szwed et al. 2021; Tang et al. 2021) or in "intervention-related" adverse events (Khera et al. 2021) 4317 between intervention and control groups post-operatively. One trial reported that intra-operative 4318 hypotension was more likely with combined general and epidural anesthesia, whereas intra-operative 4319 and post-operative hypertension was more likely with general anesthesia alone in patients undergoing

4320 noncardiac surgery (Li et al. 2021).

4321 GABAergic Anticonvulsant Medications

Among post-operative populations, four trials (N=1,042) assessed gabapentin (3 trials; Dighe et al. 2014;
Leung et al. 2006, 2017) and pregabalin (1 trial; Farlinger et al. 2018) compared with placebo. For two of
the studies (Dighe et al. 2014; Farlinger et al. 2018), data on delirium was obtained through chart review
and post-hoc analysis of trials intended to assess pain (Clarke et al. 2014, 2015). The patients were all
undergoing orthopedic surgeries, with three enrolling patients with a mean age 60 to 63 (Dighe et al.
2014; Farlinger et al. 2018; Leung et al. 2006), and one enrolling patients over 65 years (mean 73 years
[Leung et al. 2017]). Gabapentin was dosed at 600 mg to 900 mg daily, and pregabalin was dosed at 100

4329 mg daily given 1 to 2 hours pre-operatively, and then for 3 to 4 days post-operatively.

- 4330 All four trials reported delirium incidence, with two trials using the CAM instrument (Leung et al. 2006, 4331 2017) and two using unspecified methods of chart review (Dighe et al. 2014; Farlinger et al. 2018). 4332 Assessment time was 3 to 4 days after surgery. The incidence of delirium was not different compared 4333 with placebo (18% vs. 17%, RR 1.00, 95% CI 0.62–1.63, I²=18%). In one trial of gabapentin, analyses 4334 stratified by type of surgery or anesthesia did not alter the findings on incidence of delirium (Leung et al. 4335 2017). In patients who developed delirium, its duration was 1 day in the two post-hoc analyses that reported it (Dighe et al. 2014; Farlinger et al. 2018). None of the studies reported severity of delirium. 4336 4337 Three trials reported on hospital length of stay, with no difference between groups (MD 0.16 days, 95% 4338 CI -0.13–0.46, I²=0% [Dighe et al. 2014; Farlinger et al. 2018; Leung et al. 2017]). Regarding mortality and 4339 adverse events in post-operative populations, there were no deaths in any of the trials. Incidences of 4340 sedation and dizziness were reported as not significantly different in all four trials (data could not be 4341 pooled due to heterogeneous reporting). Two trials reported lower rates of nausea and vomiting in the 4342 gabapentin groups than placebo, but there were also differences in other post-operative treatments
- 4343 (e.g., opioids).

4344 Cholinesterase Inhibitors

- 4345 Three moderate risk of bias trials (N=232) assessed cholinesterase inhibitors compared with placebo or 4346 no treatment to prevent delirium in post-operative patients (Gamberini et al. 2009; Sampson et al. 2007; 4347 Youn et al. 2017). One enrolled older patients undergoing elective cardiac surgery (Gamberini et al. 4348 2009), and two enrolled patients undergoing orthopedic surgeries (1 hip replacement, 1 hip fracture in 4349 patients with cognitive impairment at baseline) (Sampson et al. 2007; Youn et al. 2017). Rivastigmine 4350 was used in two trials—one with oral dosing of 1.5 mg 3 times a day starting the evening before surgery 4351 and continuing for 6 days, and the other used a transdermal patch (4.6 mg) daily, starting 2 to 3 days 4352 prior to surgery and continuing for 7 days (Gamberini et al. 2009; Youn et al. 2017). The third trial used 4353 donepezil 5 mg daily starting immediately following surgery and continuing for 3 days (Sampson et al. 4354 2007). In the trial of rivastigmine patch, patients ages 65 and older were included if their cognitive status 4355 was judged to be impaired, as reflected by scores of 10 to 26 on the MMSE and 3 to 5 on the Global 4356 Deterioration Scale (Youn et al. 2017).
- A pooled analysis of the three trials did not find a significant impact on incidence of delirium (24% vs.
 35%, RR 0.56, 95% CI 0.23–1.37, I²=66%). A subgroup analysis by type of surgery found reduction in
 incidence based on the combined estimate from the two orthopedic surgery studies (14% vs. 42%, RR
 0.34, 95% CI 0.16–0.73, I²=0% [Sampson et al. 2007; Youn et al. 2017]); however, the *P*-value for the
 subgroup interaction term was not statistically significant (*P*=0.25) and it is not clear whether there is a
- 4362 meaningful difference between orthopedic and cardiac surgery.
- Two trials reported on the duration of delirium, with only small, non-significant differences between
 groups (Gamberini et al. 2009; Sampson et al. 2007). In one trial, rivastigmine resulted in a median
 duration of 2.5 days (range 1 to 5) compared with 3 days (range 1 to 6) in the placebo group (Gamberini
 et al. 2009). In the other, donepezil resulted in a median duration of 1.5 days compared with 1.8 days in
 the placebo group (MD -0.3 days, 95% Cl -0.38–1.41 [Sampson et al. 2007]).

- 4368 The trial of rivastigmine patch in orthopedic surgery patients with cognitive impairment at baseline
- reported on the severity of delirium (Youn et al. 2017). Using the DRS, this trial found that severity was
- 4370 significantly lower in the rivastigmine group (DRS 2.2 vs. 6.2, *P*=0.03).
- 4371 Rivastigmine and placebo groups did not differ in length of ICU stay or overall hospital stay in older
- 4372 cardiac surgery patients (median 2 days for ICU stay and median 13 days for hospital stay [Gamberini et
- 4373 al. 2009]). The trial of patients undergoing hip replacement (mean age 68) found a significantly lower
- 4374 length of hospital stay with donepezil than placebo (mean 9.9 days vs. 12.1 days, MD -2.19, 95% CI -
- 4375 0.39–4.78 [Sampson et al. 2007]). However, this study was conducted in England, from 2003 to 2004,
- 4376 and the clinical relevance of this finding to the United States is limited.
- 4377 Similar numbers of patients in the trial of rivastigmine in cardiac surgery patients required rescue
- 4378 medication treatment with haloperidol (32% vs. 30%, RR 0.96, 95% Cl 0.55–1.67 [Gamberini et al.
- 4379 2009]). This trial also reported no differences between groups on measures of cognition, such as the
- 4380 MMSE change from baseline to day 2 or minimum value, or the Clock Drawing test.
- 4381 Mortality was rare in the one trial that reported it (1 of 59 vs. 1 of 61 [Gamberini et al. 2009]). All three
- 4382 trials reported on adverse events that are typical with cholinesterase inhibitors, mainly gastrointestinal
- 4383 effects, with no differences between groups (Gamberini et al. 2009; Sampson et al. 2007; Youn et al.
- 4384 2017). One trial reported there were no serious adverse events (Sampson et al. 2007).

4385 Opioid Medications

- 4386 Three trials (N=297) assessed the effect of opioids on post-operative delirium (Beaussier et al. 2006; Liu 4387 et al. 2017; Wang et al. 2019). Trials enrolled an older population undergoing major surgery. Incidence 4388 of delirium was not significantly different between pre-operative intrathecal morphine 300 µg followed 4389 by post-operative PCA systemic morphine 0.3 mg and subcutaneous saline in a trial (N=52) of patients 4390 over 70 years undergoing major abdominal surgery (34.6% vs. 38.5%, RR 0.90, 95% CI 0.44–1.85 4391 [Beaussier et al. 2006]). Length of hospital stay and mortality were also not different between groups in 4392 this study (length of stay MD -0.50 days, 95% CI -1.51–0.51; and mortality 0% vs. 3.7%, RR 0.35, 95% CI 4393 0.02–0.12 [Beaussier et al. 2006]). Delirium incidence was not significantly different between post-4394 operative flurbiprofen axetil 300 mg plus sufentanil 150 µg in a PCA pump for 3 days and sufentanil 150 4395 µg alone in a PCA pump in patients over 65 years undergoing major noncardiac surgery (N=140, 12.9%
- 4396 vs. 18.6%, RR 0.69, 95% CI 0.32–1.51 [Wang et al. 2019]). In a comparison of fentanyl versus remifentanil
- 4397 versus placebo, where all three groups received midazolam, there was no difference in delirium
- 4398 incidence between fentanyl versus placebo (n=70; 40% vs. 57%, RR 0.70, 95% Cl 0.42–1.15) or between
- 4399 fentanyl and remifentanil (n=70; 40% vs. 23%, RR 1.75, 95% Cl 0.84–3.64), but there was less delirium
- 4400 with remifentanil compared with placebo (n=70; 23% vs. 57%, RR 0.40, 95% CI 0.20–0.78) (Liu et al.
- 4401 2017). There was no difference between fentanyl, remifentanil, and placebo on duration of delirium or
- on length of hospital stay (Liu et al. 2017).

4403 Steroid Medications

- 4404 Four placebo-controlled trials in patients undergoing cardiac surgery (N=5,151)—three of
- 4405 dexamethasone (N=4,654; Dieleman et al. 2012; Kluger et al. 2021; Mardani and Bigdelian 2012) and

- one of methylprednisolone (N=498; Royse et al. 2017)—assessed steroids for decreasing inflammation
- and preventing delirium. The first dose of steroids was given pre-operatively (Kluger et al. 2021; Mardani
- 4408 and Bigdelian 2012), at induction (Royse et al. 2017), or intra-operatively (Dieleman et al. 2012). Dose
- regimens consisted of 1 dose (Dieleman et al. 2012), 1 dose (Royse et al. 2017), or 1 dose pre-
- 4410 operatively followed by 3 days of steroid therapy (Mardani and Bigdelian 2012). Two trials were rated as
- 4411 having a moderate risk of bias, one as having a low risk of bias, and one as having a high risk of bias.
- 4412 The pooled analysis of delirium incidence was significantly lower with steroids compared with placebo (5 4413 trials, N=5,269; 9.2% vs. 12.0%, RR 0.76, 95% CI, 0.65–0.89, I²=0%); however, these results are driven by
- 4414 one large trial (N=4,482) of a single dose of dexamethasone 1 mg/kg given intra-operatively in patients
- 4415 having cardiac surgery with cardiopulmonary bypass (Dieleman et al. 2012). In one of the sites that
- 4416 participated in this large multicenter trial (n=737), patients who developed delirium showed no
- 4417 significantly difference in its duration regardless of whether they received dexamethasone or placebo
- 4418 (median 2 days vs. 2 days, *P*=0.45 [Sauer et al. 2014]). One trial in hip fracture patients found severity of
- delirium, measured with the MDAS, was significantly lower in the dexamethasone group (N=14; median
- 4420 5 vs. 9, *P*=0.010) but no difference in delirium incidence at post-operative day 3 (15% vs. 23%, *P*=0.360
- 4421 [Kluger et al. 2021]). An additional trial (N=117) of a single, pre-operative IV dose of 125 mg
- 4422 methylprednisolone in older hip fracture patients showed no significant difference in delirium severity
- score over the first 3 post-operative days as measured by the CAM ([range]) cumulative between the
- 4424 methylprednisolone and placebo groups (median 1 [IQR 0–6] vs. median 2 [IQR 0–10], P=0.294)
- 4425 (Clemmesen et al. 2018).
- 4426 Two trials of dexamethasone reported duration of ICU stay. One trial (N=4,482) of a single dose of intra-
- 4427 operative dexamethasone 1 mg/kg versus placebo found a statistically shorter ICU stay with
- 4428 dexamethasone (MD -0.013 days, 95% CI, -0.023 to -0.004), but the difference is very small (19 minutes
- 4429 [Dieleman et al. 2012]) and not likely to be clinically significant. The second trial of dexamethasone 8 mg
- 4430 pre-operatively and 24 mg daily for 3 days post-operatively also found shorter ICU stays with
- dexamethasone (N=93; MD -0.82 days, 95% CI -1.36 to -0.29 [Mardani and Bigdelian 2012]). The same
- 4432 two trials also reported shorter hospital stays with dexamethasone (N=4,482, MD -0.33 days, 95% CI -
- 4433 0.59 to -0.07 [Dieleman et al. 2012]; and N=93, MD -0.71 days, 95% CI -1.28 to -0.14 [Mardani and
- 4434 Bigdelian 2012]). The pooled analysis indicated a small but significant difference, favoring steroids (4
- 4435 trials, N=4,561; MD -0.40, 95% CI -0.63 to -0.1, I²=0%). Stratifying by surgery type (cardiac vs.
- 4436 orthopedic) did not alter the findings.
- 4437 A single site analysis from a large multicenter trial (Dieleman et al. 2012) reported on mortality and 4438 found no significant difference with a single dose of dexamethasone 1 mg/kg versus placebo (1.1% vs. 4439 0.54%, RR 2.02, 95% CI 0.37–10.94 [Sauer et al. 2014]). The overall multicenter trial of single-dose 4440 dexamethasone reported a primary composite outcome of death, stroke, renal failure, and respiratory 4441 failure, finding no significant difference (7% vs. 8.5%, RR 0.83, 95% CI 0.67–1.01 [Dieleman et al. 2012]). 4442 Infection risk was reported in two studies of dexamethasone, with different regimens and different 4443 results. In the large multicenter trial, there was a statistically significantly lower risk of any post-4444 operative infection with dexamethasone (9.5% vs. 14.8%, RR 0.64, 95% CI 0.54–0.75) than with placebo 4445 (Dieleman et al. 2012). A second trial of dexamethasone (pre-operative 8 mg and 24 mg daily post-

- 4446 operatively for 3 days) did not find a significant difference in infection risk (N=93; 7.0% vs. 4.0%, RR 1.74,
- 4447 95% CI 0.31–9.96 [Mardani and Bigdelian 2012]). The study in hip fracture patients reported low
- 4448 incidence of mortality at 30 days (0 in dexamethasone, 1 in placebo) and between 1 and 6 months (1
- dexamethasone, 0 placebo [Kluger et al. 2021]). Although adverse events occurred more frequently in
- the dexamethasone group, differences were not statistically significant (hyperglycemia 15% vs. 11%,
- 4451 *P*=0.526; and infection 20% vs. 8%, *P*=0.193 [Kluger et al. 2021]).

4452 Additional Medications

- 4453 Thirteen trials (N=1,916) in post-operative patients studied other drugs, with generally one trial per
- specific drug class or type of intervention (Bielza et al. 2020; Deng et al. 2020; Kim et al. 1996; Y.N. Li et
- 4455 al. 2017; Mohammadi et al. 2016; Moslemi et al. 2020; Nakamura et al. 2021; Papadopoulos et al. 2014;
- 4456 Robinson et al. 2014; Rubino et al. 2010; Saager et al. 2015; Spies et al. 2021; Xin et al. 2017). The
- 4457 classes of drugs were calcium channel blocker, nonsteroidal anti-inflammatory drug, antiemetic,
- 4458 antihistamine (1 histamine-1 and 1 histamine-2 blocker), central alpha agonist, an amino acid,
- 4459 hypertonic saline, insulin clamping, iron, thiamine, physostigmine, and methylene blue. All but one study
- 4460 compared the drug with a placebo or usual care (insulin clamp); the study of histamine-1 blockers was a
- 4461 head-to-head trial. These trials are summarized in Table G-2 below.

4462 Table G-2. Miscellaneous drugs for prevention of delirium in surgical patients post-operatively
--

Study Risk of Bias		Duration (follow-up		
Sample size	Drug and dose	time)	Population	Delirium incidence ^a
Study: Kim et	Cimetidine 900	Post-operative	Age: Adults	25% vs. 25%,
al. 1996	mg/day IV vs.	until discharge	Surgery type:	adjusted OR 0.72,
RoB:	ranitidine 150	(mean 8.8 days)	Cardiac	95% CI 0.29–1.80
Moderate	mg/day IV			
N: 127				
Study: Rubino	Clonidine 0.5 mcg/kg	During weaning	Age: Adults	40% vs. 33.3%
et al. 2010	IV bolus followed by	from	Surgery type:	(<i>P</i> >0.05)
RoB:	1-2 mcg/kg/h	mechanical	Cardiothoracic	
Moderate	infusion vs. placebo	ventilation (POD		
N: 30		7)		
Study:	Cyproheptadine 4 mg	7 days	Age: Adults	15% vs. 35%,
Mohammadi	three times daily vs.	(POD 7)	Surgery type:	adjusted OR 0.14,
et al. 2016	placebo		Noncardiac, ICU	95% CI 0.09–0.86,
RoB:				<i>P=</i> 0.04;
Moderate				severity DRS: NSD on
N: 45				days 1-7
Study: Saager	Insulin clamp,	Intra-	Age: Adults	28% vs. 14%, RR 1.89,
et al. 2015	titrated to blood	operatively only	Surgery type:	95% CI 1.06–3.37,
RoB: Low	glucose 80–110	(POD 5)	Cardiac	<i>P=</i> 0.03
N: 203	mg/dL vs. usual care			

Study		Duration		
Risk of Bias Sample size	Drug and dose	(follow-up time)	Population	Delirium incidence ^a
Study: Xin et al. 2017 RoB: Moderate N: 120	Hypertonic saline (7.5%) 4 ml/kg vs. normal saline	Pre-operatively only (POD 3)	Age: >65 years Surgery type: Orthopedic, hip fracture	12% vs. 38%, OR 0.13, 95% Cl 0.04–0.41, <i>P</i> =0.001
Study: Robinson et al. 2014 RoB: Low N: 301	L-tryptophan 1 gm three times daily vs. placebo	3 days (mean POD 5)	Age: >60 years Surgery type: Miscellaneous, with ICU stay	40% vs. 37% (<i>P</i> =0.60); duration: 2.9 days vs. 2.4 days (<i>P</i> =0.17)
Study: Li Y.N. et al. 2017 RoB: High N: 30	Nimodipine 7.5 mg/kg/hour IV vs. saline	Pre-operatively only (POD 7)	Age: Adults Surgery type: Orthopedic, spine	7% vs. 17% (<i>P=</i> 0.017) (from graph)
Study: Papadopoulos et al. 2014 RoB: Moderate N: 106	Ondansetron 8 mg IV daily vs. placebo	5 days (POD 5)	Age: >40 years Surgery type: Orthopedic, hip fracture	POD 2: 36% vs. 53% (P=0.07); POD 3: 16% vs. 42% (P=0.003); POD 4: 2% vs. 27% (P<0.001); POD 5: 0% vs. 27% (P<0.001)
Study: Bielza et al. 2020 RoB: Low N: 253	Iron sucrose 200 mg IV days 1,3,5) vs. normal saline	5 (POD 5)	Age: >70 years Surgery type: Orthopedic, hip fracture	12.8% vs. 13.5% (<i>P=</i> 0.871)
Study: Moslemi et al. 2020 RoB: Moderate N: 96	Thiamine 200 mg IV daily vs. saline	3 days (POD 3)	Age: Adults Surgery type: Gastrointestinal, ICU	6.2% vs. 14.6% (<i>P</i> =0.15)
Study: Nakamura et al. 2021 RoB: Moderate N: 64	Thiamine 200 mg IV vs. placebo	30 days (post- transplantation)	Age: Adults Surgery type: Post-operative, cancer	28% vs. 21% (<i>P</i> =0.73)

Study Risk of Bias		Duration (follow-up		
Sample size	Drug and dose	time)	Population	Delirium incidence ^a
Study: Deng et al. 2020 RoB: Moderate N: 248	Methylene blue 2 mg/kg IV vs. normal saline	5 (POD 5)	Age: Elderly Surgery type: Noncardiac, non- neurosurgical	7.4% vs. 24.2% (<i>P<</i> 0.001)
Study: Spies et al. 2021 RoB: Low N: 261	Physostigmine 0.02 mg/kg IV bolus, then 0.01 mg/kg infusion vs. placebo	1 year (POD 7, 90, and 365)	Age: Adults Surgery type: Intra-operative, liver	20% vs. 15% (<i>P=</i> 0.334)

4463 ^a Results as reported by study authors.

4464 *Abbreviations.* CI=confidence interval; DRS=Delirium Rating Scale; ICU=intensive care unit; IV=intravenous; NSD=no 4465 significant difference; OR=odds ratio; POD=post-operative day; RoB=risk of bias; RR=risk ratio.

- 4466 Sources. Bielza et al. 2020; Deng et al. 2020; Kim et al. 1996; Y.N. Li et al. 2017; Mohammadi et al. 2016; Moslemi
- 4467 et al. 2020; Nakamura et al. 2021; Papadopoulos et al. 2014; Robinson et al. 2014; Rubino et al. 2010; Saager et al.

4468 2015; Spies et al. 2021; Xin et al. 2017.

4469 Additional Pharmacological Interventions for Treatment of Delirium

4470 Cholinesterase Inhibitors

- 4471 In a single study of the cholinesterase inhibitor rivastigmine, the trial was halted after enrolling 104 of a
- 4472 planned 440 patients because of higher mortality compared with placebo, when each were used in
- addition to usual care with haloperidol in an ICU setting (22% vs. 8%, P=0.07 [van Eijk et al. 2010]).
- 4474 However, mortality at 90-day follow-up did not show a statistically significant increase with rivastigmine
- 4475 (33% vs. 22%, *P*=0.14). In the patients who were enrolled prior to study cessation, delirium duration
- seemed longer with the cholinesterase inhibitor (median 5 days vs. 3 days, *P*=0.06), and severity was
- 4477 greater when measured by the ratio of Delirium Severity Index and days with delirium (2.3 vs. 2.0,
- 4478 *P*=0.004). Rivastigmine was also associated with longer ICU stays (median 15 days vs. 8 days, *P*<0.0001)
- and a trend towards longer hospital stays (median 29 days vs. 25 days, *P*=0.06). Rescue medication use
- did not differ between groups.
- 4481 In general inpatients, a very small study (N=15) with high risk of bias compared rivastigmine with
- 4482 placebo and reported a statistically significant difference in delirium response (100% vs. 43% became
- 4483 CAM-negative, P=0.03 [Overshott et al. 2010]). Mortality was also lower in the treatment arm (0 vs. 4
- 4484 deaths, *P*=0.03). In this trial, there was no significant difference with rivastigmine in delirium duration,
- 4485 and only one adverse event occurred. Three patients in the placebo group needed rescue medication,
- 4486 while none were reported in the treatment group.

4487 Benzodiazepine Antagonist

- 4488 Twenty-two ICU patients were included in a placebo-controlled trial of the benzodiazepine antagonist
- 4489 flumazenil (Schomer et al. 2020). Eligible patients had hypoactive delirium associated with
- 4490 benzodiazepine treatment in the ICU and also responded with decreased sedation to a test dose of
- flumazenil before random assignment. The study suggested a higher rate of delirium resolution with

- flumazenil compared with placebo, but the difference was not statistically significant (90% vs. 70%,
- 4493 *P*=0.2). The effect of flumazenil on delirium- and coma-free days was also not significant (median 12.7
- 4494 vs. 9.2 out of 14 days, *P*=0.079). ICU length of stay and adverse events were similar with and without
- treatment.

4496 Appendix H. Evidence Tables for Additional Studies Reviewed

4497 Additional Non-Pharmacological Interventions for Prevention of Delirium

4498 Red Blood Cell Transfusion

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		and attrition rates	Bias
name		interventions, duration,	criteria			
		and follow-up				
Gregersen et	Design: RCT	Randomized N: 179	Inclusion: ≥65 years, admitted	Mean (SD) age: 87.6 (6.5)	Main outcomes: Liberal blood	Moderate
al. 2015);	Setting:	Analyzed N: 179	from nursing homes for hip	Female %: 75	transfusion prevents	
Blandfort et	Postop, hip	Intervention 1 (N=90):	fracture surgery, and postop	Race %: NR	development of delirium on day	
al. (2017)	Country:	Liberal red blood cell	hemoglobin levels between	Delirium %: Unclear	10, compared to restrictive blood	
(post hoc	Denmark	transfusion strategy	9.7 (6 mmol/L) and 11.3 g/dL	Modified Barthel Index:	transfusion (OR 0.41, 95 % CI 0.17	
analysis)	Funding:	(hemoglobin <11.3 g/dL; 7	(7 mmol/L) during the first 6	100 to 90: 12%	to 0.96).	
	University	mmol/L)	postop days	89 to 50: 68%	Attrition: 9% vs. 9%	
		Intervention 2 (N=89):	Exclusion: Active cancer,	49 to 0: 20%		
		Restrictive red blood cell	pathological fracture, fluid	Dementia %: 56		
		transfusion strategy	overload, or irregular	Postop %: 100		
		(hemoglobin <9.7 g/dL; 6	erythrocyte antibodies	Cancer %: NR (active cancer		
		mmol/L)		excluded)		
		Duration: Hemoglobin				
		measured for 30 days after				
		surgery with transfusions				
		performed as necessary				
		Follow-up (days): 90				
Gruber-	Design: RCT	Randomized N: 139	Inclusion: ≥50 years	Mean (SD) age: 81.46 (9.09)	Main outcomes: There were no	Moderate
Baldini et al.	Setting:	Analyzed N: 138	undergoing hip fracture	Female %: 73	significant differences in the	
(2013)	Postop, hip	Intervention 1 (N=67):	surgery with a hemoglobin of	Race %:	prevalence of delirium at any	
	Country: U.S.	Liberal; 1 unit of packed	<10 g/dL within 3 days after	Caucasian: 90.6	time point during the study with	
	Funding:	red blood cells and	surgery	Black/African American: 8.7	the largest difference on day 1	
	Mixed	additional blood given to	Exclusion: Unable to walk	Asian: NR	post randomization (31% vs. 40%,	
		hemoglobin >10 g/dL	without human assistance	Other: NR	p>0.29).	
		Intervention 2 (N=72):	prior to hip fracture, declined	Delirium %: 24.2	Attrition: 1% vs. 0%	
		Restrictive; blood given to	blood transfusions, multiple	Mean ASA: 2.9		
		hemoglobin >8 g/dL	trauma, pathologic hip	Dementia %: 31.9		
			fracture, clinically recognized	Postop %: 100 hip fracture		

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		and attrition rates	Bias
name		interventions, duration,	criteria			
		and follow-up				
		Duration: Postop	acute myocardial infarction	surgery		
		Follow-up (days): Delirium	within 30 days prior to	Cancer %: 0 (16% had chart		
		assessed multiple times	randomization, previously	history of cancer)		
		within 5 days of	participated in the trial,			
		randomization or discharge	symptoms associated with			
			anemia, or actively bleeding			
Abbreviations. ASA	=American Society of	f Anesthesiologists; CI=confidence	interval; N=number; NR=not reported	; OR=odds ratio; postop=post-opera	tive; RCT=randomized controlled trial; SD	-standard

4499 4500

4500 deviation.

4501 Fluid Therapy

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
name		interventions, duration,				
		and follow-up				
Bruera et	Design: RCT	Randomized N: 129	Inclusion: ≥18 years with advanced	Median age: 67 (range: 41-92)	Main outcomes: MDAS and	Low
al. (2013)	Setting:	Analyzed N: 102	cancer, admitted to hospice, a	Female %: 47	RASS scores significantly	
	Palliative care	Intervention 1 (N=63):	reduced oral intake of fluids with	Race %:	worsened from baseline in	
	Country: U.S.	1,000 mL of normal saline	evidence of mild or moderate	Caucasian: 60	both groups at days 4 and 7	
	Funding:	Intervention 2 (N=66):	dehydration, intensity of ≥1 on 0-	Black/African American: 26	(p<0.001). There was a trend	
	Government	Placebo; 100 mL of	10 scale for fatigue and 2 of 3	Asian: NR	for less deterioration in the	
		normal saline	target symptoms (hallucinations,	Other: 1	hydration group as compared	
		Duration: Over 4 hours	sedation, and myoclonus), life	Hispanic: 13	with the placebo group (RASS	
		daily	expectancy of ≥1 week, and MDAS	Median (IQR) MDAS score at	p=0.065, MDAS p=0.085). By	
		Follow-up (days): Until	score <13	baseline: 6 (3-9)	day 4, the placebo group	
		patient was	Exclusion: Severe dehydration,	Median (IQR) NuDESC at	showed significantly more	
		unresponsive, developed	decreased levels of consciousness,	baseline, day: 1 (0-3)	deterioration from baseline	
		progressive coma, or died	no urine output for 12 hours,	Median (IQR) FACIT-F at	in night-time NuDESC scores	
			history of evidence of renal failure	baseline: 72 (59-84)	as compared with the	
			with creatinine >1.5 X upper	Median (IQR) ESAS, depression	hydration group (p=0.028).	
			normal limit, history of evidence of	scale: 2 (0-5)	Attrition: 22% vs. 20%	
			congestive heart failure, and	Dementia %: NR		
			history of bleeding disorder or	Postop %: NR		
			active bleeding	Cancer %: 100		

4502 *Abbreviations.* ESAS=Edmonton Symptom Assessment Scale; FACIT-F=Functional Assessment of Chronic Illness Therapy–Fatigue; IQR=interquartile range; MDAS=Memorial Delirium Assessment Scale; 4503 N=number; NR=not reported; NuDESC=Nursing Delirium Screening Scale; OR=odds ratio; postop=post-operative; RASS=Richmond Agitation Sedation Scale; RCT=randomized controlled trial.

4504 Mechanical Ventilation in Intensive Care Unit Setting

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
name		interventions, duration, and				
		follow-up				
Girard et	Design: RCT	Randomized N: 336	Inclusion: ≥18 years who required MV	Median age: 60 vs. 64	Main outcomes: The duration of	Moderate
al. (2008)	Setting: ICU	Analyzed N: 335	for ≥12 hours; receiving full support or	Female %: 47.8	coma was significantly shorter	
	Country: U.S.	Intervention (N=168):	support was being weaned	Race %: NR	in the intervention group than	
	Funding:	Spontaneous waking trials	Exclusion: Admission after	Delirium %: NR	in the control group, whereas	
	Mixed	along with spontaneous	cardiopulmonary arrest, continuous	Median APACHE II: 26	the duration of delirium was	
		breathing trial protocols	MV ≥2 weeks, moribund state,	Dementia %: NR, severe	similar between the 2 groups.	
		Control (N=168): Usual care	withdrawal of life support, profound	dementia excluded	Of the assessable patients,	
		with spontaneous breathing	neurological deficits (e.g., large stroke	Postop %: NR	delirium occurred in 124 (74%)	
		trial protocols followed	or severe dementia), or current	Cancer %: 1.5	in the intervention group and	
		Duration: MV	enrolment in another trial		119 (71%) in the control group	
		Follow-up (days): Discharge			(p=0·66).	
		365			Attrition: 1% vs. 4%	
Luo et al.	Design: RCT	Randomized N: 40	Inclusion: ≥18 years receiving invasive	Mean (SD) age: 54.55	Main outcomes: There was no	Moderate
(2015)	Setting: ICU	Analyzed N: 40	MV for acute respiratory distress	(16.3)	significant difference in	
	Country:	Intervention 1 (N=20):	syndrome	Female %: 60	incidence of delirium based on	
	China	Synchronized intermittent	Exclusion: Pregnancy, severe	Race %: NR	ventilation techniques (0% vs.	
	Funding:	mandatory ventilation with	arrhythmia or acute myocardial	Delirium %: NR	20%, p=0.106).	
	Government	pressure support	ischemia, pneumothorax or	APACHE II %: 18.0	Attrition: NR; 14 patients died	
		Intervention 2 (N=20):	mediastinal emphysema, intracranial	Dementia %: NR	during the follow-up (6 in the	
		Assist/Control ventilation	hypertension, neuromuscular diseases	Postop %: NR	intervention group vs. 8 in	
		Duration: MV	that could impair spontaneous	Cancer %: Excluded end-	control group)	
		Follow-up (days): 28 or	breathing, severe COPD, severe	stage malignant		
		discharge	multiple organs dysfunction, end-	carcinoma		
			stage malignant carcinoma with an			
			estimated 6-month mortality risk			
			exceeding 50%, sickle cell disease,			
			immunosuppression			
			conditions, attending confounding			
			trials within 30 days before			

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
name		interventions, duration, and				
		follow-up				
			enrollment, or unwilling or refusing			
			the use of full life support			
Mehta et	Design: RCT	Randomized N: 430	Inclusion: Critically ill adults admitted	Mean (SD) age: 58	Main outcomes: The incidence	Moderate
al. (2012)	Setting: ICU	Analyzed N: 423	to ICU who were expected to require	Female %: 44	of delirium was not different	
	Country:	Intervention 1 (N=218): Daily	MV for at least 48 hours	Race %: NR	between interrupted sedation	
	Canada	interrupted continuous	Exclusion: Admitted to ICU after	Delirium %: NR	and continuous sedation (53.3%	
	Funding:	infusion of midazolam or	cardiac arrest or traumatic brain	APACHE II: 28.4	vs. 54.1%, p=0.83).	
	Government	lorazepam and morphine or	injury, receiving neuromuscular	Dementia %: NR	Attrition: 2% vs. 1%	
		fentanyl	blocking agents, enrolled in another	Postop %: 12.3		
		Intervention 2 (N=212):	trial or previously enrolled in the	Cancer %: NR		
		Continuous infusion of	current study, or a lack of			
		midazolam or lorazepam and	commitment			
		morphine or fentanyl without				
		interruption				
		Duration: MV				
		Follow-up (days): Delirium				
		assessed daily				
Nassar	Design: RCT	Randomized N: 60	Inclusion: ≥18 years who required MV	Median age: 47 vs. 51	Main outcomes: There were no	Moderate
Junior and	Setting: ICU	Analyzed N: 60	within the last 24 hours and were	Female %: 50	differences in ICU mortality	
Park (2014)	Country: Brazil	Intervention (N=30): Daily	expected to need MV for >24 hours	Race %: NR	(40% vs. 23.3%, p=0.165),	
	Funding: None	interruption of sedation	Exclusion: Those needing deep levels	Delirium %: NR	hospital mortality (43.3% vs.	
		protocol, along with	of sedation, previously cognitively	Median APACHE II: 22 vs.	30%, p=0.284), incidence of	
		spontaneous breathing trial	impaired (e.g., advanced dementia),	18	delirium (30% vs. 40%,	
		protocols	or readmitted to the ICU after	Dementia %: NR, severe	p=0.472).	
		Control (N=30): Usual care	participating in the trial	dementia excluded	Overall attrition: 0%	
		with spontaneous breathing		Postop %: NR		
		trial protocols followed		Cancer %: 1.5		
		Duration: MV				
		Follow-up (days): Discharge,				
		28				

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
name		interventions, duration, and				
		follow-up				
Olsen et al. (2020)	Design: RCT Setting: ICU Country: Denmark, Norway, and Sweden Funding: Government	Randomized N: 710 Analyzed N: 700 Intervention 1 (N=354): No sedation Intervention 2 (N=356): Light sedation with daily interruption Duration: Until discharge from ICU Follow-up (days): 90	Inclusion: ≥18 years, had undergone endotracheal intubation within 24 hours before screening, and were expected to receive MV for >24 hours Exclusion: Severe head trauma, therapeutic hypothermia, status epilepticus, participated in a previous trial, transferred from another ICU with a LOS >48 hours, comatose on admission, brain-dead, a ratio of the partial pressure of arterial oxygen to the fraction of inspired oxygen of <9, or sedation anticipated to be necessary for oxygenation or for the patient to remain in a prone position	Median age: 72 vs. 70 Female %: 39 Race %: NR Delirium %: NR Median APACHE II: 26 vs. 25 Dementia %: 0 (excluded) Postop %: 31.5 Cancer %: NR	Main outcomes: The patients in the no sedation group had a median of 27 days free from coma or delirium, and those in the sedation group had a median of 26 days free from coma or delirium. Attrition: 1% vs. 1%	Moderate
Strøm et al. (2010)	Design: RCT Setting: ICU Country: Denmark Funding: Mixed	Randomized N: 140 Analyzed N: 113 Intervention 1 (N=70): No sedation Intervention 2 (N=70): Interrupted sedation of propofol IV 20 mg/mL; after 48 hours propofol discontinued and midazolam IV 1 mg/mL begun Duration: MV Follow-up (days): Discharge	Inclusion: ≥18 years critically ill patients expected to need MV for > 24 hours Exclusion: Increased intracranial pressure, sedation needed (e.g., for status epilepticus, or hypothermia after cardiac arrest), pregnancy, meeting criteria for weaning from ventilation (FiO ₂ ≤40% and positive end-expiratory pressure of 5 cm H ₂ O), or no cerebral contact	Mean age: 66 Female %: 33 Race %: NR Delirium %: NR APACHE II: 26 Dementia %: NR Postop %: NR Cancer %: NR	Main outcomes: Agitated delirium was more common in the patients who had no sedation compared with interrupted sedation (20% vs. 7%, p=0.040). Attrition: 21% vs. 17%	Moderate

4505 4506

Abbreviations. APACHE II=Acute Physiology and Chronic Health Evaluation II; COPD=chronic obstructive pulmonary disease; ICU=intensive care unit; IV=intravenous; LOS=length of stay; MV=medical ventilation; N=number; NR=not reported; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

4507 Mechanical Interventions in Surgical Setting

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition rates	Bias
name		interventions, duration, and	criteria			
		follow-up				
Brown et al.	Design: RCT	Randomized N: 215	Inclusion: ≥55 years	Mean (SD) age: 70.3 (7.5)	Main outcomes: Excluding 5	Low
(2019)	Setting: Intra-	Analyzed N: 199	undergoing primary or preop	Female %: 24.6	patients with coma, delirium	
	operative,	Intervention (N=112):	CABG with or without valvular	Race %:	occurred in 48/91 (53%) in	
	cardiothoracic	Autoregulation group;	surgery or ascending aorta	Caucasian: 81.4	usual care group vs. 39/103	
	Country: U.S.	targeting MAP during CPB to	surgery that required CPB, and	Black/African American: 13.1	(38%) in the intervention	
	Funding:	be greater than the patient's	high-risk of neurologic	Asian: NR	group (p=0.04). The odds of	
	Mixed	the lower limit of	complications	Other: 5.5	delirium were reduced by 45%	
		autoregulation	Exclusion: Patients with	Delirium %: 0 (excluded)	in patients randomized to the	
		Control (N=103): Usual care;	delirium at baseline or	Functioning: NR	autoregulation group (OR	
		the patient's MAP during CPB	emergency surgery	Median (IQR) MMSE: 27 (26 to	0.55, 95% CI 0.31 to 0.97,	
		was maintained using usual		29) vs. 28 (26 to 29)	p=0.04).	
		MAP targets, typically greater		Postop %: 100	Attrition: 6% vs. 9%	
		than 60 mmHg, using the		Cancer: NR		
		same protocol.		Reoperation %: 8		
		Duration: During surgery				
		Follow-up (days): 4				
Fu et al.	Design: RCT	Randomized N: 63	Inclusion: Age 18-75 years,	Mean (SD) age: 52 (11)	Main outcomes: Cerebral	High
(2020)	Setting:	Analyzed N: 55	acute Stanford type A aortic	Female %: 21.8	tissue oxygen saturation,	
	Postop, cardiac	Intervention (N=27): Mild	dissection involving the aortic	Race %: NR	incidence of delirium or	
	Country: China	hyperthermia: after DHCA	arch, confirmed by computed	Delirium %: NR	permanent neurological	
	Funding:	patients were gradually	tomography angiography and	Mean (SD) APACHE II: 15.5	dysfunction, duration of	
	Industry	rewarmed to a	echocardiography, and	(4.11)	hospital stay, and 28-day	
		nasopharyngeal temperature	requiring surgical treatment	Dementia %: NR	mortality showed no	
		of 34°C and maintained at this	Exclusion: Immediate death	Postop %: 100	statistical difference.	
		temperature for 24 hours	after surgery, history of	Cancer %: NR	Attrition: 13% vs. 13%	
		after surgery	nervous system disease or			
		Control (N=28): Usual care:	mental illness, long-term use			
		after DHCA patients were	of hormones or			
		gradually rewarmed to a	immunosuppressive agents,			
		nasopharyngeal temperature	confirmed infection, and			
		of 36°C and maintained at this	history of malignant tumors,			

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition rates	Bias
name		interventions, duration, and	criteria			
		follow-up				
		temperature for 24 hours	other immune diseases, or			
		after surgery	organ transplants			
		Duration: During surgery				
		Follow-up (days): Discharge,				
		28				
Gao et al.	Design: RCT	Randomized N: 64	Inclusion: ≥65 years,	Mean (SD) age: 72 (5)	Main outcomes: Incidence of	Moderate
(2018)	Setting: Intra-	Analyzed N: 64	undergoing spine surgery,	Female %: 48	delirium was lower with TEAS	
	operative,	Intervention (N=32): TEAS at	assessed for lacunar infarction	Race %: NR	than sham treatment (6.3% vs	
	spine	acupoints Hegu and Neiguan	by MRI	Delirium %: 0 (excluded)	25.0%, p=0.039).	
	Country: China	bilaterally; disperse-dense	Exclusion: MMSE < 24,	ASA physical status ≥3 %: 0	Attrition: NR	
	Funding:	waves, frequency 2/100 Hz,	dementia, preop delirium,	Dementia %: 0 (excluded)		
	Government	and maximum tolerated	history of neurological illness,	Postop %: 100		
		current	current use of	Cancer: NR		
		Control (N=32): Sham TEAS;	antidepressants, history of			
		electrodes placed at acupoints	endocrine or metabolic			
		Hegu and Neiguan bilaterally	disorder, recent use of			
		and no current	glucocorticoids or other			
		Duration: Preop (30 minutes	hormones, infections, chronic			
		before anesthesia) through	inflammatory conditions, or			
		end of surgery	anti-inflammatory drugs			
		Follow-up (days): POD 3				
Jia et al.	Design: RCT	Randomized N: 240	Inclusion: Age 70-88 years	Mean age: 75.18	Main outcomes: The	Moderate
(2014)	Setting: Preop	Analyzed N: 233	undergoing open curative	Female %: 37.5	incidence of POD was	
	and postop,	Intervention (N=120): Fast	resection for colorectal	Race %: NR	significantly lower in patients	
	cancer	track surgery, with preop and	carcinoma	Delirium %: NR	with the fast-track therapy	
	Country: China	postop management	Exclusion: History of	Function: NR	(4/117, 3.4 %) than with the	
	Funding:	Control (N=120): Usual care	dementia, alcohol intake ≥250	Dementia %: 0 (excluded)	traditional therapy (15/116,	
	Government	Intervention duration: Preop	g/day, long-term use of	Postop %: 100	12.9 %; p=0.008).	
		and postop through day 3	sleeping pills or anxiolytics,	Cancer %: 100	Attrition: 3% vs. 3%	
		Control duration: During	received anesthesia within the			
		hospitalization	past 30 days, given intra-			

Author (year); trial	Study characteristics	Study protocol including numbers of participants,	Study population including main inclusion and exclusion	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
name		interventions, duration, and	criteria			
		follow-up				
		Follow-up (days): Until	operative blood transfusion,			
		discharge	or admitted to ICU			
Lei et al.	Design: RCT	Randomized N: 250	Inclusion: ≥60 years,	Mean (SD) age: 73.5 (6.4)	Main outcomes: POD	Moderate
(2017)	Setting:	Analyzed N: 249	combined valve and coronary	Female %: 29	occurred in 30/123 (24.4%) vs.	
	Postop, cardiac	Intervention (N=124): Cerebral	re-vascularization, repeat	Race %: NR	31/126 (24.6%) patients in the	
	surgery	oximetry monitoring with	cardiac surgery, multiple valve	Delirium %: NR	intervention and control	
	Country:	rScO2 desaturation to baseline	replacement or repair, or	Regional cerebral oxygenation	groups, respectively (OR 0.98,	
	Canada	values	surgery of ascending aorta	(rScO2):10%	95% CI 0.55 to 1.76, p=0.97).	
	Funding:	Control (N=126): Usual care	and aortic arch with or	Dementia: NR	POD was present in 20/28	
	Industry	Intervention duration: Postop	without circulatory arrest	Cancer: NR	(71%) patients with baseline	
		12-hour intervals for 7 days	Exclusion: History of serious	Medications taken at baseline:	regional cerebral oxygen	
		Control duration: Pre-	mental illness, delirium, or	Beta-blockers %: 54.5 vs. 54.7	saturation ≤ 50%, compared	
		operatively (baseline) and	undergoing either emergency	Calcium channel blockers %:	with 41/221 (18%) patients	
		post-operatively every 12	or surgery without bypass	26.8 vs. 26.9	with baseline regional	
		hours or as needed until		ACE inhibitors %: 33.3 vs. 40.5	cerebral oxygen saturation >	
		discharge		Statins %: 63.4 vs. 68.2	50% (p=0.0001).	
		Follow-up (days): 7		Aspirin %: 65.8 vs. 66.6	Attrition: 1% vs. 0%	
				Antidepressants %: 5.7 vs. 8.7		
				Benzodiazepines %: 7.3 vs.		
				11.1		
				Lorazepam premedication %:		
				48.8 vs. 52.3		
Nadler et al.	Design: RCT	Randomized N: 135	Inclusion: ≥50 years, at risk of	Mean (SD) age: 65.7 (8.9)	Main outcomes: Delirium was	Moderate
(2017)	Setting:	Analyzed N: 114	obstructive sleep apnea, and	Female %: 60.7	equally common in both	
	Postop, ortho	Intervention (N=68): CPAP	scheduled for elective knee or	Race %: NR	groups: 21% (12/58) in the	
	Country: U.S.	used any time patient slept	hip arthroplasty	Delirium %: NR	CPAP group and 16% (9/56) in	
	Funding:	before surgery and on postop	Exclusion: Severe tracheal or	Depression %: 43.8	the routine care group (OR	
	Industry	days 0, 1, and 2	lung disease or previous	Dementia or significant	1.36,95% CI 0.52 to 3.54,	
		Control (N=67): Usual Care	obstructive sleep apnea	cognitive impairment %: 2	p=0.53). Delirious subjects	
		Duration: During		Postop %: 100	were slightly older (mean [SD]	
		hospitalization		Cancer %: NR	age 68.9 [10.7] vs. 64.9 [8.2],	
				Alcohol abuse %: 5.3	p=0.07), but had nearly	

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition rates	Bias
name		interventions, duration, and	criteria			
		follow-up				
		Follow-up (days): Until			identical preop STOP-Bang	
		discharge			scores (4.19 [1.1] vs. 4.27	
					[1.3], p=0.79).	
					Attrition: 15% vs. 16%	
Wang et al.	Design: RCT	Randomized N: 174	Inclusion: ≥60 years	Mean (SD) age: 67.44 (7.28)	Main outcomes: There was	Moderate
(2015)	Setting: Intra-	Analyzed N: 162	undergoing elective	Female %: 61	less POD in the group that	
	operative, GI	Intervention (N=87): Variable	gastrointestinal tumor	Race %: NR	received variable ventilation	
	surgery	lung protective MV during	resection via laparotomy	Delirium %: 0	than conventional ventilation	
	Country: China	surgery	Exclusion: MMSE<24 or	ASA II, III %: 100	(16.5% vs. 28.9%, p=0.036).	
	Funding:	Control (N=87): Conventional	history of dementia	Dementia %: 0 (excluded)	Attrition: 6% vs. 2%	
	Industry	lung protective MV		Postop %: GI surgery 100		
		Duration: Intra-operative		Cancer: NR		
		Follow-up (days): 7				
Wang J. et	Design: RCT	Randomized N: 71	Inclusion: ≥65 years, BMI <28,	Mean (SD) age: 69.1 (2.6)	Main outcomes: The	Moderate
al. (2020)	Setting: Intra-	Analyzed N: 64	ASA status ≤III, and MMSE ≥23	Female %: 64	incidences of cerebral	
	operative,	Intervention (N=35): Lung	Exclusion: History of anemia,	Race %: NR	desaturation and POD were	
	mixed	protective ventilation	hypoalbuminemia, CNS	Delirium: NR	significantly lower in the lung	
	Country: China	Control (N=36): Usual care;	disorders, mental illness,	ASA II %: 59	protective ventilation group	
	Funding:	MV	hypoxemia, chronic lung	Dementia %: NR	(p<0.05).	
	Industry	Duration: Intra-operative	disease, asthma, or treatment	Mean (SD) MMSE: 26.6 (1.7)	Attrition: 9% vs. 11%	
		Follow-up (days): 1,2,3	with antidepressants or	Postop %: 100		
			sedatives; baseline rSO ₂ <60%	Cancer %: NR		
			before anesthesia induction;			
			change in surgical plan;			
			refused blood donations; >4			
			hours of operation time; >800			
			ml of intra-operative blood			
			loss			
Xu et al.	Design: RCT	Randomized N: 156	Inclusion: Age 65-80 years	Mean (SD) age: 68.6 (7.4)	Main outcomes: Patients in	Moderate
(2020)	Setting: Intra-	Analyzed N: 150	undergoing elective hip	Female %: 60	Intervention 3 showed a	
	operative,	Intervention 1 (N=52): MAP	replacement with ASA status II	Race %: NR	lower incidence of POD on the	
	ortho	maintained from 10% to 20%	or III and New York Heart	Delirium %: NR	1 st day than those in	

Author (year); trial	Study characteristics	Study protocol including numbers of participants,	Study population including main inclusion and exclusion	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
name	characteristics	interventions, duration, and	criteria		outcomes and attrition rates	Dias
indifie		follow-up				
	Country: China	below baseline level	Association Functional	ASA III: 25%	Intervention 1 and	
	Funding: None	Intervention 2 (N=52): MAP	Classification class II or III	Dementia %: NR, but implied	Intervention 2 (22% and 16%	
		maintained from baseline to	Exclusion: Diseases of brain	excluded	vs. 4%, p=0.031). There is no	
		10% below baseline level	tumor disease, history of	Postop %: 100	difference of incidence of POD	
		Intervention 3 (N=52): MAP	cerebrovascular accident,	Cancer %: NR	on the 2 nd and 3 rd days post-	
		maintained from baseline to	history of mental diseases and		operatively.	
		10% above the baseline level	taking psychotropic drugs		Attrition at follow-up: 4% vs.	
			within 6 months before		4% vs. 4%	
		Duration: Intra-operative	admission, visual auditory, or			
		Follow-up (days): 1, 2, 3	language communication			
			disorder, liver and kidney			
			dysfunction, and long-term			
			alcohol abuse			

08 Abbreviations. AAAD=acute Stanford type A aortic dissection; APACHE II=Acute Physiology and Chronic Health Evaluation II; ASA=American Society of Anesthesiologists; BMI=body mass index;

4509 CABG=coronary artery bypass graf; CI=confidence interval; CNS=central nervous system; CPAP=continuous positive airway pressure; CPB=cardiopulmonary bypass; DHCA=deep hypothermic

4510 circulatory arrest; Gl=gastrointestinal; ICU=intensive care unit; IQR=interquartile range; MAP=mean arterial pressure; MMSE=Mini-Mental State Examination; MRI=magnetic resonance imaging;

4511 MV=medical ventilation; N=number; NR=not reported; OR=odds ratio; POD=post-operative delirium; postop=post-operative; preop=pre-operative; RCT=randomized controlled trial; SD=standard

4512 deviation; TEAS=Transcutaneous electrical acupoint stimulation.

4513 Additional Pharmacological Interventions for Prevention of Delirium

4514 Electroencephalography-Guided Anesthesia vs. Usual Anesthesia

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition	Bias
name		interventions, duration, and	criteria		rates	
		follow-up				
Chan et al.	Design: RCT	Randomized N: 921	Inclusion: ≥60 years	Mean (SD) age: 67.85 (8.25)	Main outcomes: There were	Low
(2013); Chan	Setting: Intra-	Analyzed N: Week 1 N=783; 3	scheduled for elective major	Female %: 39	fewer patients with delirium	
and Gin	operative,	months N=835	colorectal surgery with	Race %: NR	in the BIS group compared	
(2014); CODA	colorectal	Intervention (N=462): BIS-guided	general anesthesia expected	Delirium %: 0	with usual anesthesia care	
	Country: Hong	anesthesia (a BIS value between	to last for at least 2 hours	ASA I, II %: 83.7	(15.6% vs. 24.1%, p=0.01).	
	Kong	40 and 60)	with an anticipated hospital	Dementia %: 0	Attrition at 1 week: 17% vs.	
	Funding:	Control (N=459): Usual	stay of at least 4 days	Postop %: 100	13%	
	Government	anesthesia care	Exclusion: Patients with	Gastrointestinal surgery		

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition	Bias
name		interventions, duration, and	criteria		rates	
		follow-up				
		Duration: Intra-operative	suspected dementia or	Cancer %: 76 gastrointestinal		
		Follow-up (days): 7, 90,	memory impairment or	cancer		
		discharge	MMSE score of <24			
Cotae et al.	Design: RCT	Randomized N: 95	Inclusion: ≥18 years and	Mean age: 44.5	Main outcomes: Fewer	Moderate
(2021)	Setting: Intra-	Analyzed N: 74	noncardiac trauma surgery	Female %: 43.2	patients experienced POD in	
	operative,	Intervention (N=48): Standard	expected to last at least 2	Race %: NR	the intervention group	
	trauma surgery	anesthesia monitoring plus	hours	Delirium %: NR	compared with the control	
	Country:	assessment of anesthesia depth	Exclusion: Neurotrauma,	ASA II-IV %: 100	group, but the results were	
	Romania	and nociception (Surgical Pleth	chronic use of psychoactive	Dementia %: NR	not statistically significant	
	Funding: No	Index)	substances or alcohol,	Postop %: 100	(p<0.08).	
	external	Control (N=47): Standard	impaired preop cognitive	Abdominal surgery: NR	Attrition: 21% vs. 23%	
	funding	anesthesia monitoring	function pre-existing	Orthopedic surgery: NR		
		Duration: Intra-operative	psychopathological			
		Follow-up (days): 1, 2, 3	symptoms, neurological			
			deficits, or expected surgery			
			time less than 2 hours			
Kunst et al.	Design: RCT	Randomized N: 90 (2 patients	Inclusion: ≥65 years	Mean (SD) age: 71.8 (4.67)	Main outcomes: There was	Moderate
(2020)	Setting: Intra-	withdrawn before surgery)	undergoing elective CABG	Female %: 18	a reduction in the incidence	
	operative,	Analyzed N: 82	surgery on CPB	Race %:	of delirium in the	
	cardiac	Intervention (N=45): BIS-guided	Exclusion: Dementia	Caucasian: 87	intervention group	
	Country: U.K.	anesthesia plus regional cerebral		Black/African American: 0	compared with the control	
	Funding:	tissue oxygenation optimization		Asian: 13	group (2.4% vs. 20%,	
	University	Control (N=43): Usual anesthesia		Other: 0	p=0.01).	
		care		Delirium %: NR	Attrition: 7% vs. 7%	
		Duration: Intra-operative		MMSE< 24 %: 0		
		Follow-up (days): 3 to 5		Dementia %: 0		
				Postop %: 100 cardiac		
				surgery		
				Cancer %: 0		
Radtke et al.	Design: RCT	Randomized N: 1,277	Inclusion: ≥60 years	Mean (SD) age: 69.9 (6.4)	Main outcomes: POD was	Moderate
(2013)	Setting: Intra-	Analyzed N: 1,155	undergoing elective surgery	Female %: 46	detected in 95 patients	
	operative,	Intervention (N=638): BIS-guided		Race %: NR	(16.7%) in the intervention	

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition	Bias
name		interventions, duration, and	criteria		rates	
		follow-up				
	mixed	anesthesia	expected to last ≥60 minutes	Delirium %: NR	group compared with 124	
	Country:	Control (N=639): Usual care	Exclusion: <24 on MMSE	ASA I-II %: 52	patients (21.4%) in the	
	Germany	Duration: During surgery		Dementia %: 0 (excluded)	control group (p=0.036).	
	Funding:	Follow-up (days): Until		Mean (SD) MMSE: 28.8 (1.5)	Attrition: 10% vs. 9%	
	Mixed	discharge, 90		Postop %: 100		
				Cancer %: NR		
Sieber et al.	Design: RCT	Randomized N: 114	Inclusion: ≥65 years	Mean (SD) age: 81.5 (7.16)	Main outcomes: POD was	Low
(2010)	Setting: Intra-	Analyzed N: 114	undergoing hip fracture	Female %: 73	significantly lower in the	
	operative, hip	Intervention 1 (N=57): Light	repair with spinal anesthesia	Race %: NR	light sedation group	
	Country: U.S.	Sedation (BIS approximately 50)	and propofol	Delirium %: 0	compared with the deep	
	Funding:	Intervention 2 (N=57): Deep	Exclusion: Preop delirium	ASA: Median 3	sedation (19% vs. 40%,	
	Unclear	Sedation (BIS \geq 80)		MMSE: 24.7	p=0.02).	
		Duration: Intra-operative		Living independently %: 65	Overall attrition: 0%	
		Follow-up (days): Discharge		Dementia %: 35		
				Postop %: 100		
				Cancer %: NR		
Sieber et al.	Design: RCT	Randomized N: 200	Inclusion: ≥65 years	Mean (SD) age: 81.8 (7.7)	Main outcomes: There was	Low
(2018, 2019);	Setting: Intra-	Analyzed N: 200	undergoing hip fracture	Female %: 73	no difference in the	
STRIDE	operative, hip	Intervention 1 (N=100): Light	repair with spinal anesthesia	Race %: White: 97	incidence of delirium	
	Country: U.S.	Sedation (OAA/S 3-5)	and propofol	Delirium %: 0	between lighter compared	
	Funding:	Intervention 2 (N=100): Deep	Exclusion: Preop delirium and	Subsyndromal Delirium %:	with deeper sedation (34%	
	Government	Sedation (OAA/S 0-2)	severe dementia	6.5	vs. 39%, p=0.46).	
		Duration: Intra-operative		ASA≥3 %: 69.5	Attrition: 4% vs. 3%	
		Follow-up (days): POD 5		MMSE: 24.3		
				Assisted living/nursing		
				home %: 7		
				Clinical Dementia Rating		
				Score=0 %: 41.4		
				Postop %: 100		
				Cancer %: NR		

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition	Bias
name		interventions, duration, and	criteria		rates	
		follow-up				
Tang C. J. et	Design: RCT	Randomized N: 223	Inclusion: ≥65 years	Mean (SD) age: 71.9 (5.4)	Main outcomes: The	Moderate
al. (2020);	Setting: Intra-	Analyzed N: 102	undergoing major elective,	Female %: 52	incidence of delirium was	
ADAPT-2	operative,	Intervention (N=109): Processed	noncardiac surgery, with an	Race %:	not found to be different	
	mixed	EEG-guided anesthetic	anticipated hospital stay of	Caucasian: 89	between the intervention	
	Country: U.S.	management	≥2 days	Black/African American: NR	(17%) and the standard care	
	Funding: None	Control (N=114): Standard	Exclusion: Preop delirium,	Asian: NR	groups (20%) (RR 0.85, 95%	
		anesthesia care	inability to perform	Other: NR	CI 0.47 to 1.5).	
		Duration: Intra-operative	neurocognitive testing,	Delirium %: 0 (excluded)	Attrition: 6% vs. 11%	
		Follow-up (days): 3	history of intra-operative	ASA III or IV %: 53.4		
			recall, or undergoing surgery	Dementia %: NR		
			of the brain	Preop cognitive		
				impairment %: 10.3		
				Postop %: 100		
				Cancer %: NR		
Wildes et al.	Design: RCT	Randomized N: 1,232	Inclusion: ≥60 years,	Median age: 69	Main outcomes: POD	Low
(2016, 2019)	Setting: Intra-	Analyzed N: 1,213	undergoing major surgery	Female %: 45.7	occurred in 26.0% of the	
	operative,	Intervention (N=614): EEG/BIS-	with general anesthesia	Race %:	EEG-guided anesthetic	
	mixed	guided anesthesia (≥40)	Exclusion: Delirious, history	White: 90	group and 23.0% of the	
	Country: U.S.	Control (N=618): Usual care	of intra-operative awareness,	Black: 8.7	usual care group; a	
	Funding:	Duration: During surgery	or scheduled for a second	Other: 1	difference that was not	
	Government	Follow-up (days): POD 1-5, 30	surgery within 5 days of	Delirium %: 0 (excluded)	statistically significant.	
			initial surgery	History of Delirium %: 12.8	Attrition: 2% vs. 1%	
				ASA >III %: 15		
				History of depression %: 13.6		
				Dementia %: NR		
				Postop %: 100		
				Cancer %: NR		
Zhou et al.	Design: RCT	Randomized N: 89	Inclusion: Age 65-75 years	Mean (SD) age: 68.59 (2.90)	Main outcomes: The	Moderate
(2018)	Setting: Intra-	Analyzed N: 81	undergoing surgery for colon	Female %: 69	incidence of delirium was	
	operative,	Intervention (N=44): BIS-guided	cancer with surgery expected	Race %: NR	lower in the group who	
	colorectal	anesthesia (40 to 60)	to last at least 2 hours	Delirium %: 0	received BIS-guided	
	cancer			ASA I-III %: 100	anesthesia compared with	

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition	Bias
name		interventions, duration, and	criteria		rates	
		follow-up				
	Country: China	Control (N=45): Usual anesthesia	Exclusion: MMSE≤27,	Parkinson, Alzheimer's	usual anesthesia care (17%	
	Funding:	care	Parkinson, or Alzheimer's	Dementia %: 0	vs. 27.5%, p<0.001).	
	University	Duration: Intra-operative		MMSE: 29.08	Attrition at 5 days	
		Follow-up (days): Through POD 5		Postop %: 100 colon surgery	assessments: 7% vs. 11%	
				Cancer %: 100 colon cancer		

4515 *Abbreviations*. ASA=American Society of Anesthesiologists; BIS=bispectral index; CABG=coronary artery bypass graf; CI=confidence interval; CPB=cardiopulmonary bypass; EEG=electroencephalogram;

4516 MMSE=Mini-Mental State Examination; N=number; NR=not reported; OAA/S=modified observer's assessment of alertness/sedation score; POD=post-operative delirium; postop=post-operative; 4517 preop=pre-operative; RCT=randomized controlled trial; RR=relative risk; SD=standard deviation

4518 Additional Anesthetic Comparisons

4519 Xenon Gas vs. Sevoflurane Gas

Author	Study	Study protocol including	Study population	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	including main inclusion		outcomes and attrition rates	Bias
name		interventions, duration, and	and exclusion criteria			
		follow-up				
Al Tmimi et	Design: RCT	Randomized N: 190	Inclusion: ≥65 years	Mean (SD) age: Median: 76	Main outcomes: Overall	Low
al. (2020)	Setting: Intra-	Analyzed N: 190	scheduled for cardiac	Female %: 48	incidence of POD was 41%	
	operative, cardiac	Intervention 1 (N=96): Xenon	surgery on CPB	Race %: NR	(78/190), with no statistically	
	surgery	40%-60% in oxygen	Exclusion: Severe COPD,	Delirium %: 0% (excluded)	significant difference	
	Country: Belgium	Intervention 2 (N=94):	disabling neuropsychiatric	ASA status IV %: 93.6	between the xenon and	
	Funding: Non-	Sevoflurane 1.0%-1.4% in	illness (dementia,	Dementia %: 0 (excluded)	sevoflurane groups (42.7%	
	profit	oxygen	schizophrenia, epilepsy,	Postop %: 100	[41/96] vs. 39.4% [37/94],	
		Duration: Intra-operative	intellectual disability),	Cancer %: NR	p=0.583, OR 1.18, 95% CI 0.65	
		Follow-up (days): 90, 180, 365	signs or symptoms of		to 2.16).	
			increases cranial pressure,		Overall attrition: 0%	
			history of stroke or TBI			
			with residual neurological			
			signs, risk factors for or			
			history of malignant			
			hyperthermia, or delirium			
			at baseline			

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
Coburn et al. (2018); HIPELD	Design: RCT Setting: Intra- operative, hip Country: 6 European countries Funding: Industry	Randomized N: 256 Analyzed N: 256 Intervention 1 (N=124): Xenon gas 5% Intervention 2 (N=132): Sevoflurane 1.0%-1.4% in oxygen Duration: Intra-operative Follow-up (days): Up to day 4	Inclusion: ≥75 years with planned surgery within 48 hours of hip fracture Exclusion: Delirium, severe dementia, Alzheimer's, moderate to severe depression, recent brain trauma, history of stroke, or MMSE<24	Mean (SD) age: 84.11 (4.85) Female %: 75 Race %: NR Delirium %: 0 ASA I, II %: 62.9 MMSE: 27.1 Severe Dementia %: 0 Postop %: 100 Cancer %: 0	Main outcomes: The incidence of delirium with xenon 9.7% (95% Cl 4.5 to 14.6) vs. sevoflurane 13.6% (95% Cl 7.8 to 18.5) was not significantly different (p=0.33). Incidence of serious adverse events and fatal adverse events was 8.0% vs. 15.9% (p=0.05) and 0% vs. 3.8% (p=0.06), respectively. Attrition: 11% vs. 9%	Moderate
Stoppe et al. (2013)	Design: RCT Setting: Intra- operative, cardiac Country: Germany Funding: Government	Randomized N: 30 Analyzed N: 30 Intervention 1 (N=15): Xenon gas Intervention 2 (N=15): Sevoflurane gas Duration: Intra-operative Follow-up (days): Until discharge	Inclusion: >50 years undergoing elective CABG without severe comorbidity Exclusion: Cardiac, respiratory, liver, or renal Failure; acute coronary syndrome within 24 hours before surgery; haemodynamic instability; emergency operations; lack of informed consent; severe neurological dysfunction; depression; GDS >5; MMSE <24; and patients with predisposition to malignant hyperthermia and/or hypersensitivity to the study drugs	Mean age: 67 Female %: 20 Race %: NR Delirium %: NR ASA II-IV %: 100 Dementia %: NR Postop %: 100 cardiac surgery Cancer %: 0	Main outcomes: There was no difference between use of xenon and sevoflurane in incidence of POD (20% vs. 27%, p=0.666). Overall attrition: 0%	Moderate

- Abbreviations. ASA=American Society of Anesthesiologists; CI=confidence interval; COPD=chronic obstructive pulmonary disease; CPB=cardiopulmonary bypass; GDS=Geriatric Depression Score;
- 4520 4521 MMSE=Mini-Mental State Examination; N=number; NR=not reported; OR=odds ratio; POD=post-operative delirium; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation;
- 4522 TBI=traumatic brain injury.

4523 Propofol vs. Dexmedetomidine

4524 In Surgical Settings

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
Chang et al.	Design: RCT	Randomized N: 60	Inclusion: Age 20-99 years	Mean (SD) age: 70.52 (11.08)	Main outcomes: There were	Moderate
(2018)	Setting: Postop,	Analyzed N: 60	undergoing major abdominal	Female %: 42	no instances of delirium	
	major	Intervention 1 (N=31):	surgery	Race %: NR	within 24 hours after	
	Country: Taiwan	Dexmedetomidine IV 0.1-	Exclusion: Refractory	Delirium %: NR	abdominal surgery.	
	Funding: Unclear	0.7 μg/kg/hour	bradycardia <60bpm, high	APACHE II score > 30 %: 0	Overall attrition: 0%	
		Intervention 2 (N=29):	degree atrioventricular	Dementia %: NR		
		Propofol IV 0.3-1.6	block (second or third	Postop %: 100 abdominal		
		mg/kg/hour	degree), refractory shock	surgery		
		Duration: Postop	despite resuscitation (MAP	Cancer %: NR		
		Follow-up (days): 0-24	<60 mm Hg), new onset of			
		hours postop	MI, New York Heart			
			Association Class IV heart			
			failure, acute physiology and			
			chronic health evaluation II			
			score >30, severe liver			
			cirrhosis (ChildePugh class B			
			or C), organ transplantation			
			within 1 year, pregnancy,			
			known allergic history to			
			dexmedetomidine or			
			propofol, enrolled in other			
			clinical trial of			
			dexmedetomidine or			
			propofol within 1 month,			
			signed consent of do not			
			resuscitate, other conditions			
			determined by surgeon or			

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria primary intensivist, and non-	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
Djaiani et al. (2016)	Design: RCT Setting: Postop, cardiac Country: Canada Funding: Mixed	Randomized N: 185 Analyzed N: 183 Intervention 1 (analyzed N=91): Dexmedetomidine continuous IV infusion of 0.4 µg/kg bolus followed by 0.2-0.7 µg/kg/hour; if MV needed beyond 24 hours, patients switched to propofol Intervention 2 (analyzed N=92): Propofol continuous IV infusion 25-50 µg/kg/minute Intervention 1 duration: Postop during MV, maximum 24 hours Intervention 2 duration: Intra-operative Follow-up (days): Through day 5	native speaker Inclusion: ≥60 years undergoing complex cardiac surgery or ≥70 years undergoing coronary revascularization or single- valve repair/replacement with the use of CPB Exclusion: Serious mental illness, delirium, or severe dementia	Mean (SD) age: 72.55 (6.3) Female %: 25 Race %: NR Delirium %: 0 Function: NR Severe Dementia %: 0 Postop %: 100 cardiac surgery Cancer %: 0	Main outcomes: POD was present in 16 of 91 (17.5%) and 29 of 92 (31.5%) patients in dexmedetomidine and propofol groups, respectively (p=0.028). Duration of POD was 2 days vs. 3 days (p=0.04). Overall attrition: 1%	Moderate
Liu X. et al. (2016)	Design: RCT Setting: Postop, cardiac Country: China Funding: Unclear	Randomized N: 68 Analyzed N: 61 Intervention 1 (N=34): Dexmedetomidine IV 0.2- 1.5 µg/kg/hour Intervention 2 (N=34): Propofol IV 5-50 µg/kg/minute Duration: Postop	Inclusion: ≥18 years undergoing elective cardiac valve surgery admitted to ICU Exclusion: Patients who received 2 or more sedatives after randomization and had a sedation time <4 hours or ≥24 hours	Median age: 54 Female %: 59 Race %: NR Delirium %: NR Median APACHE II: 15 or 16 Dementia %: NR Postop %: 100 cardiac surgery Cancer %: 0	Main outcomes: The incidence of delirium was not different in those who received dexmedetomidine vs. propofol (0% vs. 6%, p=0.493). Attrition: 12% vs. 6%	Moderate

Author (year);	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
trial name	characteristics	numbers of participants,	main inclusion and		outcomes and attrition	Bias
		interventions, duration,	exclusion criteria		rates	
		and follow-up				
		Follow-up (days): Unclear				
		(delirium listed as an				
		adverse event)				
Maldonado et	Design: RCT	Randomized N: 118	Inclusion: Age 18-90 years	Mean (SD) age: 57 (17)	Main outcomes: Postop	Moderate
al. (2009)	Setting: Postop,	Analyzed N: 90	undergoing elective cardiac	Female %: 36	sedation with	
	cardiac	Intervention 1 (N=40):	valve operation	Race %: NR	dexmedetomidine was	
	Country: U.S.	Dexmedetomidine IV 0.4	Exclusion: Preexisting	Delirium %: NR	associated with significantly	
	Funding: Unclear	µg/kg bolus followed by	dementia	Mean ASA: 3.4	lower rates of POD than	
		0.2-0.7 μg/kg/hour		MMSE: 29.4	propofol or midazolam (3%	
		Intervention 2 (N=38):		Dementia %: 0	vs. 50% vs. 50%).	
		Propofol IV 25-50		Postop %: 100 cardiac surgery	Attrition: 10% vs. 18% vs.	
		μg/kg/minute		Cancer %: 0	20%	
		Intervention 3 (N=40):				
		Midazolam IV 0.5-2.0				
		mg/hour				
		Duration: Postop				
		Follow-up (days): Through				
		POD 3				
Mei et al.	Design: RCT	Randomized N: 336	Inclusion: ≥65 years	Mean (SD) age: 75 (7)	Main outcomes: Patients	Low
(2018)	Setting: Intra-	Analyzed N: 296	undergoing total hip	Female %: 54	sedated with	
	operative, hip	Intervention 1 (N=167):	arthroplasty with nerve	Race %: NR	dexmedetomidine had a	
	Country: China	Dexmedetomidine IV 0.8-	block	Delirium %: 0	lower incidence of POD than	
	Funding:	1.0 μg/kg bolus followed by	Exclusion: Cognitive	Mean ASA: 3	patients sedated with	
	Government	0.1-0.5 µg/kg/hour until	impairment and/or preop	MMSE: 26	propofol (7% vs. 16%,	
		end of surgery	delirium	Dementia %: 0	p=0.030).	
		Intervention 2 (N=169):		Postop %: 100 hip arthroplasty	Attrition: 9% vs. 11%	
		Propofol IV 0.8-1.0 µg/mL		Cancer %: 0		
		Duration: Intra-operative				
		Follow-up (days): Through				
		POD 3				
Mei B. et al.	Design: RCT	Randomized N: 415*	Inclusion: ≥65 years	Mean (SD) age: 72.5 (10)	Main outcomes: Patients	Moderate
(2020)	Ŭ	Analyzed N: 366	undergoing total hip	Female %: 60	sedated with	

Author (year); trial name	Study characteristics	Study protocol including numbers of participants,	Study population including main inclusion and	Sample demographics	Results including main outcomes and attrition	Risk of Bias
		interventions, duration, and follow-up	exclusion criteria		rates	
	Setting: Intra- operative, hip	*The study noted 207 and 208 patients were assigned	arthroplasty with nerve block	Race %: NR Delirium %: 0	dexmedetomidine had a lower incidence of POD than	
	Country: China Funding: Government	to the groups but it is not clear which group had which number of patients. Intervention 1 (N=unclear): Dexmedetomidine IV 0.8- 1.0 μg/kg bolus followed by 0.1-0.5 μg/kg/hour until end of surgery Intervention 2 (N=unclear): Propofol IV 0.8 -1.0 μg/mL Duration: Intra-operative	Exclusion: Cognitive impairment and/or preop delirium	Mean ASA: 2 MMSE: 26.9 Dementia %: 0 Postop %: 100 knee arthroplasty Cancer %: 0	patients sedated with propofol (14% vs. 23%, p=0.032). Attrition: 5% vs. 8%	
		Follow-up (days): Through POD 7				
Sheikh et al. (2018)	Design: RCT Setting: Intra- operative, cardiac Country: India Funding: None	Randomized N: 60 Analyzed N: 60 Intervention 1 (N=30): Dexmedetomidine IV 1.0 µg/kg bolus followed by 0.2-0.6 µg/kg/hour Intervention 2 (N=30): Propofol IV 0.25-1.0 µg/kg/hour Duration: Intra-operative Follow-up (days): Discharge	Inclusion: Age 15-60 years undergoing elective open- heart surgery Exclusion: Patients with neurological/psychological disorders	Mean (SD) age: 34.58 (10.74) Female %: NR Race %: NR Delirium %: NR Function: NR Dementia %: NR Postop %: 100 cardiac surgery Cancer %: NR	Main outcomes: The risk of delirium was significantly less in the dexmedetomidine group compared with the propofol group (3.3% vs. 23.3%, p=0.02). Attrition: NR	High
Susheela et al. (2017) ; O'Neal et al. (2015)	Design: RCT Setting: Postop, cardiac Country: U.S. Funding: Government	Randomized N: 12 Analyzed N: 12 Intervention 1 (N=3): Dexmedetomidine IV 0.1- 1.0 µg/kg/hour Intervention 2 (N=3):	Inclusion: ≥60 undergoing CABG and/or valve surgery Exclusion: Preexisting cognitive impairment or medications for cognitive decline	Mean (SD) age: NR Female %: NR Race %: NR Delirium %: NR Function: NR Cognitive Impairment %: 0	Main outcomes: The incidence of delirium was 2/3 in the dexmedetomidine and the propofol groups, 1/3 in the dexmedetomidine plus	Moderate

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
		Propofol IV 25-100		Postop %: 100	acetaminophen group, and	
		μg/kg/minute		Cancer %: 0	0/3 in the group receiving	
		Intervention 3 (N=3):			propofol plus	
		Dexmedetomidine IV 0.1-			acetaminophen.	
		1.0 μg/kg/hour plus IV			Overall attrition: 0%	
		acetaminophen 1 g/6 hours				
		Intervention 4 (N=3):				
		Propofol IV 25-100				
		µg/kg/minute plus IV				
		acetaminophen 1 g/6 hours				
		Duration: Postop				
		Follow-up (days): Discharge				

4525 4526 Abbreviations. APACHE II=Acute Physiology and Chronic Health Evaluation II; ASA=American Society of Anesthesiologists; CABG=coronary artery bypass graf; CPB=cardiopulmonary bypass; IV=intravenous; MI=myocardial infarction; MMSE=Mini-Mental State Examination; MV=medical ventilation; N=number; NR=not reported; POD=post-operative delirium; postop=post-operative;

4527 preop=pre-operative; RCT=randomized controlled trial; SD=standard deviation.

4528 In Intensive Care Unit Setting

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and		outcomes and attrition	Bias
name		interventions, duration, and	exclusion criteria		rates	
		follow-up				
Jakob et al.	Design: RCT	Randomized N: 500	Inclusion: ≥18 years	Median age: 65	Main outcomes: There was	Low
(2012);	Setting: ICU	Analyzed N: 498	requiring MV with light to	Female %: 35	no difference in the	
PRODEX	Country:	Intervention 1 (N=251):	moderate sedation for at	Race %: NR	incidence of delirium	
	Europe and	Dexmedetomidine IV 0.2-1.4	least 24 hours	Delirium %: NR	between the	
	Russia	μg/kg/hour	Exclusion: Acute severe	Simplified Acute Physiology	dexmedetomidine group	
	Funding:	Intervention 2 (N=249):	neurological disorder, MAP	Score II: 46.3	and the propofol group at 48	
	Industry	Propofol IV 0.3-4.0 mg/kg/hour	<55 mm Hg, heart rate	Dementia %: NR	hours post sedation (9.6%	
		Duration: MV	<50/minute,	Postop %: 56.2	vs. 13.7%, p=0.231).	
		Follow-up (days): Delirium	atrioventricular-conduction	Cancer %: NR	Attrition: 28% vs. 24%	
		assessed 48 hours after	grade II or III (unless			
		discontinuing sedation	pacemaker installed), and			

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and		outcomes and attrition	Bias
name		interventions, duration, and	exclusion criteria		rates	
		follow-up				
			use of α_2 agonists or			
			antagonists within 24 hours			
			prior to randomization			
Li et al.	Design: RCT	Randomized N: 126	Inclusion: ≥18 years	Mean (SD) age: 43.98 (14.05)	Main outcomes: The rate of	Moderate
(2019)	Setting: ICU	Analyzed N: 126	admitted to general ICU for	Female %: 44	delirium was significantly	
	Country: China	Intervention 1 (N=64):	more than 96 hours under	Race %: NR	lower in the	
	Funding: Mixed	Dexmedetomidine IV 0.8	continuous sedation and	Delirium %: NR	dexmedetomidine group	
		μg/kg/hour	analgesia for 48 hours or	APACHE II: 20.5	than in the control group	
		Intervention 2 (N=62):	longer	Dementia %: NR	(28% vs. 55%, p=0.0023).	
		Midazolam IV 0.06 mg/kg/hour	Exclusion: GCS <13 at	Postop %: 0 within 24 hours of	Attrition: NR	
		or propofol IV 0.5-2	baseline in ED	study		
		mg/kg/hour		Cancer %: 0		
		Duration: During ICU stay				
		Follow-up (days): Delirium				
		assessed twice daily until				
		discharged from ICU				
Ruokonen et	Design: RCT	Randomized N: 85	Inclusion: ≥18 years, MV,	Median age: 64 vs. 68	Main outcomes: Delirium	Moderate
al. (2009)	Setting: ICU	Analyzed N: 85	need for sedation for ≥24	Female %: 17.6	was more common in the	
	Country:	Intervention 1 (N=41):	hours after randomization,	Race %: NR	dexmedetomidine group	
	Finland	Dexmedetomidine 0.8	and an expected ICU stay	Delirium %: NR	than in the standard care	
	Funding:	µg/kg/hour for 1 hour, then	≥48 hours	Function: NR	group (43.9% vs. 25.0%,	
	Industry	adjusted stepwise at 0.25, 0.5,	Exclusion: Acute severe	Dementia %: NR	p=0.035) when analyzed as	
		0.8, 1.1, and 1.4 μg/kg/hour	neurological disorder, MAP	Postop %: NR	the combined endpoint of	
		Intervention 2 (N=44):	<55 mmHg despite volume	Cancer %: NR	CAM-ICU and adverse	
		Standard care: 1) propofol 2.4	and vasopressors, heart rate		events of delirium and	
		mg/kg/hour for 1 hour, then	<50 beats/minute,		confusion. However, more	
		adjusted stepwise at 0.8, 1.6,	atrioventricular-conduction		CAM-ICU assessments were	
		2.4, 3.2, and 4.0 mg/kg/hour	block II to III (unless		performed in the	
		OR 2) midazolam IV bolus 1-2	pacemaker installed),		dexmedetomidine group	
		mg starting at 3 boluses/hour	hepatic SOFA score >2,		than in the standard care	
		for 1 hour, thereafter 1-4	bilirubin >101 lmol/L, muscle		group (106 vs. 84), and the	
		boluses/hour; if not sufficient	relaxation, loss of hearing or		proportion of positive CAM-	

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and		outcomes and attrition	Bias
name		interventions, duration, and	exclusion criteria		rates	
		follow-up				
		as continuous infusion of 0.2	vision, any other condition		ICU results was comparable	
		mg/kg/hour for 1 hour	interfering with RASS		(17.0% vs. 17.9%, p=NS).	
		followed by adjustment at	assessment, or use of α_2		During the follow-up to ICU	
		0.04, 0.08, 0.12, 0.16, and 0.20	agonists or antagonists at		discharge, no significant	
		mg/kg/hour	the time of randomization		difference was observed in	
		Duration: During ICU stay			the occurrence rate of	
		Follow-up (days): 45			positive RASS scores (26%	
					vs. 32%).	
					Attrition: 24% vs. 16%	
Winings et al.	Design: RCT	Randomized N: 57	Inclusion: ≥18 years, MV,	Mean (SD) age: 50.6 (19.2)	Main outcomes: There was	Moderate
(2021)	Setting: ICU	Analyzed N: 57	placed on the institutional	Female %: 28.9	no difference between the	
	Country: U.S.	Intervention 1 (N=28):	sedation protocol, expected	Race %: NR	groups in ICU mortality, ICU	
	Funding: None	Dexmedetomidine mean dose	to require sedation lasting	Delirium %: NR	and hospital LOS, or	
		of 0.48 mcg/kg/hour	24 hours after	Mean (SD) APACHE II: 17.5	incidence of delirium.	
		Intervention 2 (N=29): Propofol	randomization, and	(7.4)	Attrition: NR	
		mean dose of 24.6	admitted to the TSICU and	Dementia %: NR		
		mcg/kg/minute	followed by the TSICU	Postop %: 29.8		
		Duration: During ICU stay	Service	Cancer %: NR		
		Follow-up (days): 4	Exclusion: ≥72 hours since			
			sedation protocol initiation,			
			treatment per the			
			institutional TBI protocol,			
			concomitant continuous			
			infusion of a neuromuscular			
			blocking agent, heart rate			
			<50 beats/minute, MAP <55			
			mmHg despite fluid			
			resuscitation and			
			vasopressors, and/or use of			
			other α_2 agonists within 24			
			hours of randomization			

- 4529 4530 Abbreviations. APACHE II=Acute Physiology and Chronic Health Evaluation II; CAM-ICU=Confusion Assessment Method for the ICU; ED=emergency department; GCS=Glasgow Coma Scale;
- ICU=intensive care unit; LOS=length of stay; MAP=mean arterial pressure; MV=medical ventilation; N=number; NS=not significant; NR=not reported; postop=post-operative; RASS=Richmond Agitation
- 4531 Sedation Scale; RCT=randomized controlled trial; SD=standard deviation; SOFA=Sequential Organ Failure Assessment; TBI=traumatic brain injury; TSICU=trauma/surgical ICU.

4532 Propofol vs. Sevoflurane Gas

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and		outcomes and attrition rates	Bias
name		interventions, duration, and	exclusion criteria			
		follow-up				
Ishii et al.	Design: RCT	Randomized N: 59	Inclusion: ≥70 years with	Mean (SD) age: 76.9 (4.5)	Main outcomes: The	Moderate
(2016)	Setting: Intra-	Analyzed N: 59	ASA status I or II, scheduled	Female %: 32.2	incidence of POD in the	
	operative, mixed	Intervention 1 (N=29):	to undergo elective	Race %: NR	propofol anesthesia (6.9%)	
	Country: Japan	Propofol IV 1.5-3 μg/mL	gastrectomy, colectomy, or	Delirium %: NR	was significantly less than	
F	Funding: NR	Intervention 2 (N=30):	rectectomy under general	ASA I or II %: 100	that observed in the	
		Sevoflurane 1-1.5 minimum	anesthesia combined with	Dementia %: 0 (excluded)	sevoflurane anesthesia	
		alveolar concentration	epidural anesthesia	Postop %: 100	(26.7%) (p=0.038).	
		Duration: During surgery	Exclusion: History of	Cancer %: NR	Attrition: NR	
		Follow-up (days): Until	dementia, depression,			
		discharge	alcoholism, and liver			
			cirrhosis; history of using			
			benzodiazepine, major			
			tranquilizers, or steroids; an			
			ineffective postop analgesia			
			via epidural anesthesia			
Lurati Buse	Design: RCT	Randomized N: 385	Inclusion: Proven coronary	Mean (SD) age: 72.5 (8)	Main outcomes: There was	Low
et al.	Setting: Intra-	Analyzed N: 385	artery disease and	Female %: 24	no difference between	
(2012)	operative,	Intervention 1 (N=184):	scheduled for major surgery	Race %: NR	sevoflurane and propofol on	
	cardiothoracic	Sevoflurane dose not	or at risk for coronary	Delirium %: NR	POD (11.4% vs. 14.4%,	
	Country:	restricted by study protocol	artery disease and	ASA III, IV %: 86.2	p=0.379).	
	Switzerland	Intervention 2 (N=201):	scheduled for major	Dementia %: NR	Overall attrition: 0%	
	Funding: Unclear	Propofol dose not restricted	vascular surgery	Postop %: 100 major surgery		
		by study protocol	Exclusion: Current	Cancer %: NR		
		Duration: Intra-operative	medication with			
		Follow-up (days): POD 1, ,2,	sulfonylurea derivatives or			
		7	theophylline unless stopped			
			≥2 days before surgery,			
			current congestive heart			

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and		outcomes and attrition rates	Bias
name		interventions, duration, and	exclusion criteria			
		follow-up				
			failure, current unstable			
			angina pectoris, preop			
			hemodynamic instability,			
			hepatic disease, renal			
			insufficiency, emergent			
			surgery, severe COPD, prior			
			enrollment in the study,			
			concurrent enrollment in			
			another RCT, pregnancy, or			
			absence of written			
			informed consent			
Mei X. et	Design: RCT	Randomized N: 240	Inclusion: ≥60 years	Mean (SD) age: 71.2 (6.75)	Main outcomes: POD was	Moderate
al. (2020)	Setting: Intra-	Analyzed N: 209	scheduled for surgery under	Female %: 71	33.0% (propofol) vs. 23.3%	
	operative, mixed	Intervention 1 (N=118):	general anesthesia, ASA	Race %: NR	(sevoflurane), (p=0.119). Days	
	Country: China	Sevoflurane anesthesia	class I to III, and normal	Delirium %: 0 (excluded)	of POD per person were	
	Funding:	Intervention 2 (N=122):	cognitive function (MMSE	ASA II %: 80.4	higher with propofol	
	Government	Propofol anesthesia	>24)	Dementia %: 0 (excluded)	(0.5±0.8) vs. sevoflurane	
		Duration: Intra-operative	Exclusion: Pre-existing	Postop %: 100	(0.3±0.5) (p=0.049).	
		Follow-up (days): 1, 2, 3	delirium, prior diagnoses of	Cancer %: NR	Attrition at follow-up: 13% vs.	
			neurologic diseases (e.g.,		13%	
			stroke and Parkinson's			
			disease), or history of			
			mental disorders			
Nishikawa	Design: RCT	Randomized N: 50	Inclusion: >65 years, ASA	Mean (SD) age: 71 (7.5)	Main outcomes: There was	Moderate
et al.	Setting: Intra-	Analyzed N: 50	status I or II, or scheduled	Female %: 42.1	no significant difference	
(2004)	operative, mixed	Intervention 1 (N=25):	for elective laparoscope-	Race %: NR	between the incidences of	
	Country: Japan	Propofol induction of 4	assisted surgical procedures	Delirium %: NR	POD in the 2 groups during	
	Funding: NR	μg/mL	which would last >3 hours	ASA I %: 26	the first 3 days after surgery.	
		Intervention 2 (N=25):	under combined general	ASA II %: 74	The scores for DRS on day 2	
		Sevoflurane gas	and epidural anesthesia	Dementia %: NR, excluded	and 3 after surgery, however,	
		Duration: During surgery	Exclusion: Anticoagulation,	cognitive impairment	were significantly higher in	
		Follow-up (days): 1, 2, 3	symptomatic coronary		the propofol group than in	

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and		outcomes and attrition rates	Bias
name		interventions, duration, and	exclusion criteria			
		follow-up				
			artery disease, cardiac	Postop %: 100	the sevoflurane group	
			valvular regurgitation or	Cancer %: NR	(p<0.01).	
			stenosis, CNS or		Attrition: NR	
			neuromuscular disorders,			
			major or minor tranquilizer			
			medication, or psychotic			
			symptoms or cognitive			
			impairment			

33 *Abbreviations.* ASA=American Society of Anesthesiologists; CNS=central nervous system; DRS=Delirium Rating Scale; MMSE=Mini-Mental State Examination; N=number; NR=not reported; POD=post-

4534 operative delirium; postop=post-operative; preop=pre-operative; RCT=randomized controlled trial; SD=standard deviation.

4535 Propofol vs. Desflurane

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and		outcomes and attrition rates	Bias
name		interventions, duration, and	exclusion criteria			
		follow-up				
Tanaka et al.	Design: RCT	Randomized N: 100	Inclusion: ≥65 years	Mean age: 70.2	Main outcomes: There was	Moderate
(2017)	Setting: Intra-	Analyzed N: 90	undergoing total knee	Female %: 56	no difference in incident	
	operative, knee	Intervention 1 (N=45	replacement	Race %: NR	delirium in patients whose	
	Country: U.S.	analyzed): Desflurane	Exclusion: Neurocognitive	Delirium %: 0	anesthesia was maintained	
	Funding: Industry	maintenance anesthesia	disorders and MMSE score	MMSE≤ 23 %: 0	with desflurane compared	
		Intervention 2 (N=45	≤23	ASA III %: 46.7	with propofol (0% vs. 2.2%,	
		analyzed): Propofol		Dementia %: NR	p=0.315).	
		maintenance anesthesia		(neurocognitive disorders	Overall attrition: 21%	
		Duration: Intra-operative		excluded)		
		Follow-up (days): 1, 2		Postop %: 100 knee		
				replacement surgery		
				Cancer %: 0		

4536 4537

Abbreviations. ASA=American Society of Anesthesiologists; COPD=chronic obstructive pulmonary disease; MMSE=Mini-Mental State Examination; N=number; NR=not reported; postop=postoperative; RCT=randomized controlled trial.

4538 Propofol vs. Midazolam

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
Chen (2020)	Design: RCT Setting: ICU Country: China Funding: None	Randomized N: 120 Analyzed N: 120 Intervention 1 (N=60): Midazolam IV 0.05-0.2 mg/kg/hour Intervention 2 (N=60): Propofol IV 0.5-4 mg/kg/hour Duration: During MV Follow-up (days): 28	Inclusion: Age 18-60 years with expected sedation time of ≤72 hours and required continuous sedation with MV Exclusion: Cerebral surgery; history of CNS and mental illness (including Alzheimer's disease); long-term use of antidepressants or sedatives, and alcoholics; serious liver and kidney dysfunction, internal environment disorder, or hyper- lipidaemia; in a coma; obvious abnormal blood glucose and great fluctuations; sepsis, unstable circulation, severe complicated hypoproteinaemia, anemia, and thrombocytopenia; allergic to midazolam or	Mean age: 41 to 60 years; 51% Female %: 30 Race %: NR Delirium %: NR Function: NR Dementia %: 0 (excluded) Postop %: NR Cancer %: NR	Main outcomes: The difference in the incidence of delirium, adverse reactions, ICU LOS, and mortality in 28 days between the groups was not statistically significant (p>0.05). However, time to spontaneous eye opening was longer in the midazolam group (p<0.05). The onset effect time of sedatives was slightly longer in the midazolam group, compared with the propofol group (p<0.05). The difference in the time to reach the optimal level of sedation between these 2 groups was not statistically significant (p>0.05). Attrition: NR	High
Li et al. (2019)	Design: RCT Setting: ICU Country: China Funding: Mixed	Randomized N: 126 Analyzed N: 126 Intervention 1 (N=64): Dexmedetomidine IV 0.8 µg/kg/hour Intervention 2 (N=62): Midazolam IV 0.06	propofol Inclusion: ≥18 years admitted to general ICU for more than 96 hours under continuous sedation and analgesia for 48 hours or longer	Mean (SD) age: 43.98 (14.05) Female %: 44 Race %: NR Delirium %: NR APACHE II: 20.5 Dementia %: NR Postop %: 0 within 24 hours of	Main outcomes: The rate of delirium was significantly lower in the dexmedetomidine group than in the control group (28% vs. 55%, p=0.0023). Attrition: NR	Moderate

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up mg/kg/hour or propofol IV	Study population including main inclusion and exclusion criteria Exclusion: GCS <13 at	Sample demographics study	Results including main outcomes and attrition rates	Risk of Bias
		0.5-2 mg/kg/hour Duration: During ICU stay Follow-up (days): Delirium assessed twice daily until discharged from ICU	baseline in ED	Cancer %: 0		
Maldonado et al. (2009)	Design: RCT Setting: Postop, cardiac Country: U.S. Funding: Unclear	Randomized N: 118 Analyzed N: 90 Intervention 1 (N=40): Dexmedetomidine IV 0.4 µg/kg bolus followed by 0.2- 0.7 µg/kg/hour Intervention 2 (N=38): Propofol IV 25-50 µg/kg/minute Intervention 3 (N=40): Midazolam IV 0.5-2.0 mg/hour Duration: Postop Follow-up (days): Through POD 3	Inclusion: Age 18-90 years undergoing elective cardiac valve operation Exclusion: Preexisting dementia	Mean (SD) age: 57 (17) Female %: 36 Race %: NR Delirium %: NR Mean ASA: 3.4 MMSE: 29.4 Dementia %: 0 Postop %: 100 cardiac surgery Cancer %: 0	Main outcomes: Postop sedation with dexmedetomidine was associated with significantly lower rates of POD than propofol or midazolam (3% vs. 50% vs. 50%). Attrition: 10% vs. 18% vs. 20%	Moderate

Abbreviations. APACHE II=Acute Physiology and Chronic Health Evaluation II; ASA=American Society of Anesthesiologists; CNS=central nervous system; ED=emergency department; GCS=Glasgow

4540 Coma Scale; ICU=intensive care unit; IV=intravenous; LOS=length of stay; MMSE=Mini-Mental State Examination; MV=medical ventilation; N=number; NR=not reported; POD=post-operative delirium; 4541 postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

4542 Propofol vs. No Sedation

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
name		interventions, duration,			rates	
		and follow-up				
Strøm et al.	Design: RCT	Randomized N: 140	Inclusion: ≥18 years critically ill	Mean (SD) age: 66	Main outcomes: Agitated	Moderate
(2010)		Analyzed N: 113	patients expected to need MV for	Female %: 33	delirium was more common	
		Intervention 1 (N=70): No	more than 24 hours	Race %: NR	in the patients who had no	

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
name		interventions, duration,			rates	
		and follow-up				
	Setting: ICU	sedation	Exclusion: Increased intracranial	Delirium %: NR	sedation compared with	
	Country: Denmark	Intervention 2 (N=70):	pressure, sedation needed (e.g., for	APACHE II: 26	interrupted sedation (20%	
	Funding: Mixed	Interrupted sedation of	status epilepticus, or hypothermia	Dementia %: NR	vs. 7%, p=0.040).	
		propofol IV 20mg/mL; after	after cardiac arrest), pregnancy,	Postop %: NR	Attrition: 21% vs. 17%	
		48 hours propofol	meeting criteria for weaning from	Cancer %: NR		
		discontinued and	ventilation (FiO₂≤40% and positive			
		midazolam IV 1 mg/mL	end-expiratory pressure of 5 cm			
		begun	H ₂ O), or no cerebral contact			
		Duration: MV				
		Follow-up (days): Discharge				

4543 *Abbreviations.* APACHE II=Acute Physiology and Chronic Health Evaluation II; ICU=intensive care unit; IV=intravenous; MV=medical ventilation; N=number; NR=not reported; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

4545 Ketamine (Low/High) vs. Normal Saline

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition	Bias
name		interventions, duration, and	criteria		rates	
		follow-up				
Avidan et	Design: RCT	Randomized N: 672	Inclusion: ≥60 years	Mean (SD) age: 70 (7.1)	Main outcomes: No	Low
al. (2017);	Setting: Intra-	Analyzed N: 654	undergoing major open	Female %: 38	difference was found in POD	
PODCAST	operative,	Intervention 1 (N=227):	cardiac or non-cardiac	Race %: NR	incidence between those in	
trial	mixed	Ketamine, low-dose (0.5	surgeries under general	Delirium %: 0 (excluded)	the combined ketamine	
	Country: U.S.	mg/kg)	anesthesia	Median (IQR) Charlson	groups and those who	
	Funding: Mixed	Intervention 2 (N=223):	Exclusion: Patients with	Comorbidity index: 5 (3-6)	received placebo (19.45% vs.	
		Ketamine, high-dose (1.0	delirium prior to surgery or	History of depression %: 11	19.82%, respectively;	
		mg/kg)	with a weight outside of the	Dementia %: NR	absolute difference 0.36%,	
		Intervention 3 (N=222):	range of 50-200 kg	Postop %: 100	95% CI -6.07% to 7.38%,	
		Placebo; normal saline		Cancer %: NR	p=0.92).	
		Duration: During surgery			Attrition: 2% vs. 2% vs. 3%	
		Follow-up (days): POD 3				
Hollinger et	Design: RCT	Randomized N: 192	Inclusion: ≥65 years	Mean (SD) age: 73.7 (6.1)	Main outcomes: None of the	Moderate
al. (2021)	Setting: Intra-	Analyzed N: 182	scheduled for visceral,	Female %: 43.4	3 study arms – haloperidol,	
	operative,	Intervention 1 (N=48):	orthopedic, vascular,	Race %: NR	ketamine, or both drugs	

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
	mixed Country: Switzerland Funding: Non- profit	Haloperidol 5 µg/kg Intervention 2 (N=49): Ketamine 1 mg/kg Intervention 3 (N=49): Haloperidol 5 µg/kg plus ketamine 1 mg/kg Intervention 4 (N=47): Placebo Duration: Once before induction of anesthesia Follow-up (days): 3	gynecological, cardiac, or thoracic surgery Exclusion: Delirium at admission or prior to surgery, MMSE <24, DOS ≥3, dementia, high risk for postop treatment in the ICU, QT interval prolongation, or drugs influencing QT interval, Parkinson's disease, intake of dopaminergic drugs, epilepsy, delay of surgery for >72 hours after set indication for surgery, or weight >100 kg	Delirium %: 0 (excluded) Function: NR Dementia %: 0 (excluded) Postop %: 100 Cancer %: NR	combined – was significantly superior to placebo for prevention of postop brain dysfunction and delirium (p=0.39). Attrition: 6% vs. 4% vs. 4% vs. 6%	
Hudetz et al. (2009)	Design: RCT Setting: Intra- operative, cardiac Country: U.S. Funding: Government	Randomized N: 58 Analyzed N: 58 Intervention 1 (N=29): Ketamine IV 0.5 mg/kg bolus Intervention 2 (N=29): Placebo; normal saline Duration: Intra-operative Follow-up (days): Up to day 5 or discharge	Inclusion: ≥55 years, U.S. veteran having elective CABG or valve replacement/repair with CPB Exclusion: Patients with previous defined cognitive difficulty	Mean (SD) age: 64 (8) Female %: 0 Race %: Caucasian: 90 Black/African American: NR Asian: NR Other: NR Delirium %: NR (0% assumed) Function: NR History of cognitive impairment %: 0 Postop %: 100 cardiac surgery Cancer %: 0	Main outcomes: The incidence of POD was lower in patients receiving ketamine compared with placebo (3% vs. 31%, p=0.01). Overall attrition: 0%	Moderate

Abbreviations. CABG=coronary artery bypass graf; CI=confidence interval; CPB=cardiopulmonary bypass; DOS=Delirium Observation Scale; ICU=intensive care unit; IQR=interquartile range;

1547 IV=intravenous; MMSE=Mini-Mental State Examination; N=number; NR=not reported; POD=post-operative delirium; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

4548

48 Forms of Reginal Anesthesia vs. Placebo/General Anesthesia/Opioid Therapy

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
Jin L. et al. (2020)	Design: RCT Setting: Intra- operative, esophageal cancer Country: China Funding: Mixed	Randomized N: 180 Analyzed N: 167 Intervention 1 (N=90): Ultrasound-guided continuous thoracic PVB Intervention 2 (N=90): PCA as usual care Intervention 1 duration: Before induction of anesthesia Intervention 2 duration: Postop Follow-up (days): 4	Inclusion: Age 65-75 years undergoing elective esophagectomy for stage III or IV esophageal cancer Exclusion: Brain injury or neurosurgery, cardiovascular or cerebrovascular disease, COPD, neurological or psychiatric disorders, hepatic and/or kidney dysfunction, or BMI >35	Mean (SD) age: 71.1 (5.4) Female %: 54 Race %: NR Delirium %: NR Function: NR Dementia %: NR (most likely excluded, but unclear) Postop %: 100 Cancer %: 100	Main outcomes: The incidence of POD was significantly lower in the PVB group than in the PCA group. Attrition: 7% vs. 8%	Moderate
Li et al. (2021)	Design: RCT Setting: Intra- operative, thoracic or abdominal Country: China Funding: University	Randomized N: 1,802 Analyzed N: 1,720 Intervention (N=901): General anesthesia plus epidural Control (N=901): General anesthesia Duration: During surgery Follow-up (days): 7	Inclusion: Age 60-90 years and scheduled for noncardiac thoracic or abdominal surgery expected to last ≥2 hours Exclusion: Severe neurologic conditions, acute MI or stroke within 3 months, any contraindication for epidural anesthesia, severe heart dysfunction, severe liver dysfunction (Child–Pugh grade C), or renal failure	Mean age: 69.5 Female %: 65.3 Race %: NR Delirium %: 0 ASA I-III %: 100 Dementia %: 0 (excluded) Postop %: 100 Cancer %: 92	Main outcomes: Delirium was less common in the general anesthesia plus epidural group than in the general anesthesia only group (1.8% vs. 5.0%, p<0.001). Attrition: 5% vs. 4%	Moderate
Mann et al. (2000)	Design: RCT Setting: Intra- operative, abdominal Country: France Funding: Unclear	Randomized N: 70 Analyzed N: 70 Intervention 1 (N=35): Sufentanil 1 µg/ml plus bupivacaine 0.25% mixture epidural anesthesia	Inclusion: >70 years undergoing major abdominal surgery for cancer with ASA status I or II and normal preop mental status, absence of contraindications to epidural anesthesia, and absence of extreme	Mean (SD) age: 76.45 (5.17) Female %: 46 Race %: NR Delirium %: 0 ASA I, II %: 100 Dementia %: 0	Main outcomes: There was no difference in POD between the treatment groups (26% vs. 24%, p>0.05).	Moderate

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		main outcomes and	Bias
name		interventions, duration, and			attrition rates	
		follow-up				
		continuous infusion intra-	malnutrition or cerebral vascular	Postop %: 100 abdominal	Attrition: 11% vs. 6%	
		operatively followed by	insufficiency	surgery		
		sufentanil 0.5 μg/ml plus	Exclusion: NR	Cancer %: 100		
		bupivacaine mixture by PCA				
		epidural pump during postop				
		Intervention 2 (N=35):				
		Sufentanil IV 0.5 µg/kg bolus				
		followed by 0.2-0.4 µg/kg				
		intra-operatively as necessary				
		followed by PCA with				
		morphine 1.5 mg per dose				
		during postop				
		Duration: Intra-operatively,				
		postop				
		Follow-up (days): Until				
		discharge				
Mouzopoulos	Design: RCT	Randomized N: 219	Inclusion: ≥70 years undergoing	Mean (SD) age: 72.71 (3.95)	Main outcomes: The	Moderate
et al. (2009)	Setting: Preop	Analyzed N: 207	surgery for hip fracture with	Female %: 74	incidence of delirium	
	and postop, hip	Intervention 1 (N=108): FICB	intermediate or high risk for POD	Race %: NR	was lower in the FICB	
	Country: Greece	Intervention 2 (N=111):	Exclusion: Patients with delirium at	Delirium %: 0	group (10.78%,	
	Funding: Unclear	Placebo	presentation, Parkinsonism, or	APACHE II: 15.3	11/102) than the	
		Duration: Preop, postop	profound dementia	MMSE: 21.2	placebo group (23.8%,	
		Follow-up (days): Discharge		Profound Dementia %: 0	25/105) (RR 0.45, 95%	
				Postop %: 100 hip	CI 0.23 to 0.87).	
				arthroplasty	Attrition: 6% vs. 5%	
				Cancer %: 0		
Papaioannou	Design: RCT	Randomized N: 50	Inclusion: ≥60 years, scheduled for	Mean age:	Main outcomes: 9	High
et al. (2005)	Setting: Intra-	Analyzed N: 47	elective surgery that could be	60-69: 62%	patients developed	
	operative, mixed	Intervention (N=25): Regional	performed under regional or	≥70: 38%	delirium, but the type	
	Country: Greece	anesthesia	general anesthesia	Female %: 36	of anesthesia did not	
	Funding:	Control (N=25): General	Exclusion: ≤23 on MMSE, indicating	Race %: NR	affect its incidence.	
	Government	anesthesia		Delirium at baseline: NR	The only important	

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		main outcomes and	Bias
name		interventions, duration, and			attrition rates	
		follow-up				
		Duration: During surgery	dementia, and those with CNS	ASA I-II %: 91	factor for the	
		Follow-up (days): Until	disorders	Dementia %: 0 (excluded)	development of	
		discharge		Postop %: 100	delirium was	
				Cancer %: NR	preexisting	
				Cardiovascular disease %: 53	cardiovascular disease	
				Orthopedic surgery %: 34	irrespective of	
					anesthesia type	
					(p<0.025).	
					Attrition at follow-up:	
					24% vs. 4%	
Strike et al.	Design: RCT	Randomized N: 50	Inclusion: Patients undergoing	Mean (SD) age: 82 (5.9)	Main outcomes:	Moderate
(2019)	Setting: Intra-	Analyzed N: 44	transcatheter aortic valve	Female %: 57	There was no	
	operative,	Intervention 1 (N=25): PVB	replacement surgery	Race %: NR	difference in the	
	cardiac	Intervention 2 (N=25): PCA	Exclusion: Patients with delirium or	Delirium %: 0	incidence of delirium	
	Country: Canada,	Intervention 1 duration:	severe dementia	Function: NR	between the groups	
	Latvia Funding:	Preop, intra-operative, postop		Severe Dementia %: 0	(PVB 23% vs. PCA	
	Unclear	Intervention 2 duration:		Postop %: 100	32%, p=0.73).	
		Postop		Cancer %: 0	Attrition: 12% vs. 12%	
		Follow-up (days): POD 7 or				
		discharge				
Unneby et al.	Design: RCT	Randomized N: 277	Inclusion: ≥70 years with	Mean (SD) age: 84.1 (6.7)	Main outcomes: The	High
(2020)	Setting: Intra-	Analyzed N: 236	radiographically verified hip	Female %: 66.1	intervention group	
	operative, mixed	Intervention (N=116): Femoral	fracture who were admitted	Race %: NR	had 20% lower	
	Country: Sweden	nerve block	consecutively to an orthopedic	Delirium %: NR	incidence of POD	
	Funding: Non-	Control (N=120): Conventional	ward	Mean (SD) Barthel Index	compared with the	
	profit	pain management	Exclusion: Infection or previous	score: 15.7 (4.6)	control group.	
		Intervention duration: Preop	vascular surgery in the inguinal area	ASA III-IV %: 61.7	However, there was	
		Control duration: During		Dementia %: 46.2	no significant	
		hospitalization		Postop %: 100	difference between	
		Follow-up (days): 5		Cancer %: NR	the groups regarding	
					the number of	
					patients suffered	

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
					preop and postop delirium or the duration of delirium. Overall attrition: 16%	
Uysal et al. (2020)	Design: RCT Setting: Preop, orthopedic Country: Turkey Funding: None	Randomized N: 110 Analyzed N: 96 Intervention 1 (N=55): Femoral nerve block with bupivacaine 0.5mL/kg 0.25% every 8 hours Intervention 2 (N=55): Paracetamol IV 15 mg/kg Duration: Preop Follow-up (days): NR	Inclusion: ≥65 years admitted to the ED with trochanteric femur fracture Exclusion: Patients with preexisting delirium and fracture due to cancer	Mean (SD) age: 81.72 (7.48) Female %: 53 Race %: NR Delirium %: 0 ASA II-IV %: 100 Dementia %: NR Postop %: 0 Cancer %: 0	Main outcomes: The incidence of delirium was similar between those who received the femoral nerve block and those who received paracetamol (20% vs. 10.9%, p=0.227). Attrition: 16% vs. 18%	Moderate
Williams- Russo et al. (1995)	Design: RCT Setting: Intra- operative, knee Country: U.S. Funding: Mixed	Randomized N: 262 Analyzed N: 262 Intervention (N=134): Epidural anesthesia Control (N=128): General anesthesia Duration: Intra-operative Follow-up (days): Until discharge	Inclusion: >40 years undergoing elective unilateral total knee replacement surgery Exclusion: History of surgery performed with either a regional or general anesthetic in the 3 months or contraindication to either epidural or general anesthesia	Median age: 69 Female %: 70 Race %: NR Delirium %: NR Comorbidity score=0 %: 46.2 Dementia %: NR Postop %: 100 knee surgery Cancer %: 0	Main outcomes: There was no difference between epidural anesthesia and general anesthesia in the incidence of delirium (12% vs. 9.4%, p=0.50). Attrition: 2% vs. 2% Attrition at 6-month postop neuropsychological testing: 12% (including 2 deaths)	Moderate

4549 4550

49 *Abbreviations*. APACHE II=Acute Physiology and Chronic Health Evaluation II; ASA=American Society of Anesthesiologists; BMI=body mass index; CI=confidence interval; CNS=central nervous system; 50 ED=emergency department; FICB=fascia iliaca compartment block; IV=intravenous; MI=myocardial infarction; MMSE=Mini-Mental State Examination; N=number; NR=not reported; PCA=patient-

4551 controlled analgesia; POD=post-operative delirium; postop=post-operative; preop=pre-operative; PVB=paravertebral block; RCT=randomized controlled trial; RR=relative risk; SD=standard deviation.

4552 Pecto-intercostal fascial plane block vs. Placebo

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		main outcomes and	Bias
name		interventions, duration, and			attrition rates	
		follow-up				
Khera et al.	Design: RCT	Randomized N: 80	Inclusion: ≥18 years requiring	Mean age: 65.8	Main outcomes:	Moderate
(2021)	Setting: Postop,	Analyzed N: 80	median sternotomy	Female %: 23.8	There was no	
	cardiac	Intervention 1 (N=40): PIFB with	Exclusion: Hemodynamic	Race %:	difference in the	
	Country: U.S.	0.25% bupivacaine	instability (left ventricular ejection	White: 81.3	incidence of POD	
	Funding: NR	Intervention 2 (N=40): PIFB with	fraction <30%, on ventricular	Asian: 2.5	between groups	
		placebo	assist device); surgical factors,	Unknown: 17.5	(p=0.45).	
		Duration: During surgery	such as emergency procedures;	Delirium %: NR	Overall attrition: 0%	
		Follow-up (days): 2	minimally invasive procedure;	Function: NR		
			aortic surgery; use of chronic pain	Dementia %: NR		
			medications or neuromodulatory	Postop %: 100		
			medications; receiving other	Isolated CABG %: 60		
			regional anesthetic modality	CABG + additional surgery %:		
				20		
				Valve surgery %: 28.5		
				Solid tumor, metastic %: 2.5		

4553 *Abbreviations.* CABG=coronary artery bypass graf; N=number; NR=not reported; PIFB=pecto-intercostal fascial plane block; POD=post-operative delirium; postop=post-operative; RCT=randomized controlled trial.

4555 Deep vs. Standard Neuromuscular Blockade

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		main outcomes and	Bias
name		interventions, duration, and			attrition rates	
		follow-up				
Oh C.S. et al.	Design: RCT	Randomized N: 82	Inclusion: >50 years having total	Mean age: 73.5	Main outcomes:	Low
(2021)	Setting: Intra-	Analyzed N: 82	hip replacement with general	Female %: 34.1	There was no	
	operative,	Intervention (N=41): Deep	anesthesia	Race %: NR	difference in the	
	orthopedic	neuromuscular blockade	Exclusion: Preexisting cognitive	Delirium %: 0 (excluded)	incidence of POD	
	Country: South	(rocuronium)	dysfunction, other concurrent	ASA I-III %: 100	between groups (17%	
	Korea	Control (N=41): Standard	surgery, underlying liver	Dementia %: 0 (excluded)	vs. 34%, p=0.129).	
	Funding: Industry	neuromuscular blockade	dysfunction, kidney dysfunction,	Postop %: 100	Overall attrition: 0%	
		Duration: During surgery	or neuromuscular disease, and	Hip replacement surgery %:		
		Follow-up (days): 7	use of any medication that could			

potentially interfere with	100	
neuromuscular transmission	Cancer %: NR	

4556 *Abbreviations.* ASA=American Society of Anesthesiologists; N=number; NR=not reported; POD=post-operative delirium; postop=post-operative; RCT=randomized controlled trial.

4557 Anaortic Off-Pump Coronary Bypass With Total Arterial Revascularization vs. Carbon Dioxide Field Flooding or Use of Vein Grafts

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		main outcomes and	Bias
name		interventions, duration, and			attrition rates	
		follow-up				
Szwed et al.	Design: RCT	Randomized N: 192	Inclusion: Patients scheduled for	Mean (SD) age: 65.8 (8.4)	Main outcomes: The	Low
(2021)	Setting: Intra-	Analyzed N: 191	elective isolated OPCAB	Female %: 26.7	incidence of POD was	
	operative,	Intervention 1 (N=64): Anaortic	Exclusion: History of neurologic or	Race %: NR	35.9% in the	
	cardiac	OPCAB with total arterial	psychiatric illness, use of	Delirium %: NR	conventional OPCAB	
	Country: Poland	revascularization	tranquilizers or antipsychotics,	New York Heart Association	arm, 32.8% in the	
	Funding:	Intervention 2 (N=64): OPCAB	previous cardiac surgery, left	class I-II %: 25.6	OPCAB with carbon	
	Government	with carbon dioxide surgical	ventricular ejection fraction	New York Heart Association	dioxide arm, and	
		field flooding	<31%, and carotid artery stenosis	class III %: 2.6	12.5% in the anaortic	
		Intervention 3 (N=64):	>70% in an obligatory preop	Dementia %: NR (most likely	OPCAB arm (p=0.006).	
		Conventional OPCAB with vein	ultrasound; scoring below age-	excluded)	Post hoc tests	
		grafts	and education-adjusted MMSE	Postop %: 100	revealed that the	
		Duration: During surgery	cutoffs; HADS >7	Cancer %: NR	incidence of POD In	
		Follow-up (days): 7			the anaortic OPCAB	
					arm differed from	
					that in the OPCAB arm	
					(OR 0.26, 95% CI 0.09	
					to 0.68, p=0.002).	
					Attrition: 2% vs. 5%	
					vs. 5%	

4558 4559

Abbreviations. Cl=confidence interval; HADS=Hospital Anxiety and Depression Scale; MMSE=Mini-Mental State Examination; N=number; NR=not reported; OPCAB=off-pump coronary artery bypass;
 OR=odds ratio; POD=post-operative delirium; postop=post-operative; preop=pre-operative; RCT=randomized controlled trial; SD=standard deviation.

4560 Unilateral Spinal Anesthesia vs. Combined Lumbar-Sacral Plexus Block Plus General Anesthesia

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		main outcomes and	Bias
name		interventions, duration, and			attrition rates	
		follow-up				

Tang et al.	Design: RCT	Randomized N: 124	Inclusion: >65 years, ASA I-IV,	Mean (SD) age: 77.3 (6.72)	Main outcomes:	Moderate
(2021)	Setting: Intra-	Analyzed N: 110	undergoing elective unilateral hip	Female %: 67	There were no	
	operative,	Intervention 1 (N=62):	fracture surgeries	Race %: NR	significant differences	
	orthopedic	Unilateral spinal anesthesia	Exclusion: Dementia or severe	Delirium %: 0 (excluded)	in incidence of POD,	
	Country: China	Intervention 2 (N=62):	cognitive dysfunction, unstable	Charlson Comorbidity index	postop nausea and	
	Funding:	Combined lumbar-sacral plexus	mental state or mental disease,	score of ≤2 %: 90	vomiting, and other	
	Government	block plus general anesthesia	use of psychotropic drugs or	Dementia %: 0 (excluded)	complications.	
		Duration: During surgery	abuse of narcotic sedation	Postop %: 100	Attrition at follow-up:	
		Follow-up (days): 7	analgesics, being delirious or	Cancer %: NR	11% vs. 11%	
			history of delirium, anesthesia			
			and surgery within 6 months,			
			other surgeries at the same time,			
			cerebrovascular accidents within			
			3 months, and prosthesis fracture			
			repair surgery			

4561 *Abbreviations.* ASA=American Society of Anesthesiologists; N=number; NR=not reported; POD=post-operative delirium; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

4563 High vs. Low Mean Arterial Pressure/Pressure Perfusion

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		main outcomes and	Bias
name		interventions, duration, and			attrition rates	
		follow-up				
Hu et al.	Design: RCT	Randomized N: 322	Inclusion: ≥65 years, non-cardiothoracic	Mean (SD) age: 72.5	Main outcomes:	Moderate
(2021)	Setting: Intra-	Analyzed N: 298	surgery with general anesthesia of ≥2	Female %: 58.4	Fewer patients in the	
	operative, mixed	Intervention 1 (N=161): High	hours	Race %: NR	high MAP group than	
	Country: China	MAP (90-100 mmHg)	Exclusion: Preop history of	Delirium %: NR	the low MAP group	
	Funding: Unclear	Intervention 2 (N=161): Low	schizophrenia, epilepsy, parkinsonism,	ASA I-II %: 100	experienced POD	
		MAP (60-70 mmHg)	diabetes, hypertension, severe sinus	MMSE score ≥15 %: 100	(11.9% vs. 24.5%,	
		Duration: Intra-operative	bradycardia (<50 bpm), or a second-	Postop %: 100	p=0.02).	
		Follow-up (days): 7	degree or greater atrioventricular block	Cancer %: NR	Attrition: 4% vs. 11%	
			without a pacemaker; use of a			
			cholinesterase inhibitor or levodopa;			
			severe hepatic dysfunction (Child-Pugh			
			class C); severe renal dysfunction			
			(dialysis before surgery); brain injury or			
			previous neurosurgery; severe cognitive			

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		main outcomes and	Bias
name		interventions, duration, and			attrition rates	
		follow-up				
			impairment (MMSE score < 15); use of			
			haloperidol or other neuroleptics during			
			or after anesthesia; previous			
			participation in this study; or patients			
			who were unlikely to survive for >24			
			hours.			
Siepe et al.	Design: RCT	Randomized N: 105	Inclusion: Undergoing elective or urgent	Mean (SD) age: 66.87	Main outcomes:	Moderate
(2011)	Setting: Intra-	Analyzed N: 92	CABG surgery	(9.0)	Significantly fewer	
	operative, cardiac	Intervention 1 (N=44	Exclusion: Patients with psychiatric	Female %: 20	patients in the high-	
	Country:	analyzed): High-pressure	disorders	Race %: NR	pressure group	
	Germany	perfusion (80-90 mmHg)		Delirium %: NR	developed POD than	
	Funding: Unclear	Intervention 2 (N=48		Function: NR	in the low-pressure	
		analyzed): Low-pressure		Dementia %: NR	group (0% vs. 13%,	
		perfusion (60-70 mmHg)		Postop %: 100 cardiac	p=0.017).	
		Duration: Intra-operative		surgery	Overall attrition: 12%	
		Follow-up (days): POD 2		Cancer %: NR		

4564 *Abbreviations*. ASA=American Society of Anesthesiologists; CABG=coronary artery bypass graf; MAP=mean arterial pressure; MMSE=Mini-Mental State Examination; N=number; POD=post-operative delirium; postop=post-operative; preop=pre-operative; RCT=randomized controlled trial; SD=standard deviation.

4566 *GABAergic Anticonvulsant Medications*

4567 Gabapentin vs. Placebo

Author	Study characteristics	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year);		numbers of participants,	main inclusion and		outcomes and attrition	Bias
trial name		interventions, duration, and	exclusion criteria		rates	
		follow-up				
Clarke et	Design: RCT	Randomized N: 179	Inclusion: Ages 18-75 years	Mean (SD) age: 63 (6.84)	Main outcomes: No	Moderate
al. (2014);	Setting: Postop,	Analyzed N: 150 (Day 4), 157 (6	with an ASA physical status	Female %: 50	difference was found	
Dighe et	orthopedic	weeks), 155 (3 months)	score of I, II, or III	Race %: NR	between gabapentin and	
al. (2014)	Country: Canada	Intervention 1 (N=95):	undergoing total knee	Delirium %: NR	placebo regarding the	
	Funding:	Gabapentin 600 mg orally 2	arthroplasty	TUG seconds: 12.3	incidence or duration of POD	
	University/Government	hours pre-operatively x 1 dose	Exclusion: Diabetes with	6MWT meters: 357	among elective total knee	
		(in addition to celecoxib 400	impaired renal function or	WOMAC physical	arthroplasty patients.	

Author	Study characteristics	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year);		numbers of participants,	main inclusion and		outcomes and attrition	Bias
trial name		interventions, duration, and	exclusion criteria		rates	
		follow-up				
		mg), then 200 mg three times	unable or unwilling to use	function (0-68): 33.6	Attrition at POD 4: 16% vs.	
		daily for 4 days	PCA devise	Dementia %: NR	17%	
		Intervention 2 (N=84): Placebo 2		Postop %: 96		
		hours pre-operatively (in		Cancer %: NR		
		addition to celecoxib 400 mg),				
		then three times daily for 4 days				
		Duration: Preop, postop				
		Follow-up (days): 1, 4, 42, 90				
Leung et	Design: RCT	Randomized N: 21	Inclusion: ≥45 years,	Mean (SD) age: 59.6	Main outcomes: POD	Moderate
al. (2006)	Setting: Postop,	Analyzed N: 21 (Days 0, 1), 20	undergoing surgery	(10.88)	occurred in 5/12 patients	
	orthopedic	(Day 2), 17 (Day 3)	involving the spine,	Female %: 48	(42%) who received placebo	
	Country: U.S.	Intervention 1 (N=9):	requiring general	Race %:	vs. 0/9 patients who	
	Funding:	Gabapentin 900 mg orally 1-2	anesthesia, and expected	Caucasian: 90	received gabapentin	
	University/Government	hours pre-operatively then daily	to remain in the hospital	Black/African American:	(p=0.045). The reduction in	
		for 3 days	for 72 hours	NR	delirium appears to be	
		Intervention 2 (N=12): Placebo	Exclusion: Couldn't	Asian: NR	secondary to the opioid-	
		orally 1-2 hours pre-operatively,	complete the delirium	Other: 10	sparing effect of gabapentin.	
		then daily for 3 days	testing, already taking	Delirium %: NR	Attrition: NR	
		Duration: Preop and 3 days	gabapentin, or sensitive to	ASA I-II %: 52		
		postop	gabapentin	Dementia %: NR		
		Follow-up (days): 3		Postop %: 100		
				Cancer %: NR		
Leung et	Design: RCT	Randomized N: 750	Inclusion: >65 years	Mean (SD) age: 73 (6)	Main outcomes: The overall	Moderate
al. (2017)	Setting: Postop,	Analyzed N: 697	undergoing surgery	Female %: 50	incidence of POD in any of	
	orthopedic	Intervention 1 (N=376):	involving the spine or	Race %:	the first 3 days was 22.4%	
	Country: U.S.	Gabapentin 900 mg orally 1-2	arthroplasty of hips or	Caucasian: 92	(24.0% in the gabapentin	
	Funding: Government	hours pre-operatively then daily	knees with an anticipated	Black/African American:	and 20.8% in the placebo	
		for 3 days	hospital LOS of at least 3	NR	groups; the difference was	
		Intervention 2 (N=374): Placebo	days	Asian: NR	3.20%, 95% Cl 3.22 to 9.72,	
		orally 1-2 hours pre-operatively,	Exclusion: Known	Other: 8	p=0.30). The incidence of	
		then daily for 3 days	sensitivity to gabapentin,	Delirium %: NR	delirium did not differ	
			use of preop gabapentin,	ASA I-II %: 52	between the 2 groups when	

Author	Study characteristics	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year);		numbers of participants,	main inclusion and		outcomes and attrition	Bias
trial name		interventions, duration, and	exclusion criteria		rates	
		follow-up				
		Duration: Preop and 3 days	pregabalin, or other anti-	Dementia %: NR	stratified by surgery type,	
		Postop	epileptics, spinal surgery	Postop %: 99	anesthesia type, or preop	
		Follow-up (days): 3	that involved more than 1	Cancer %: NR	risk status.	
			surgical procedure to be		Attrition: 6% vs. 8%	
			performed within the same			
			hospitalization period,			
			emergency surgery, preop			
			renal dialysis, or opioid			
			tolerance			

4568 *Abbreviations.* ASA=American Society of Anesthesiologists; CI=confidence interval; LOS=length of stay; 6MWT=six-minute walk test; N=number; NR=not reported; PCA=patient-controlled analgesia; POD=post-operative delirium; postop=post-operative; preop=pre-operative; RCT=randomized controlled trial; SD=standard deviation; TUG=timed up and go; WOMAC=Western Ontario and McMaster

4570 Universities Osteoarthritis Index.

4571 Pregabalin vs. Placebo

Author	Study characteristics	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year);		numbers of participants,	main inclusion and		outcomes and attrition	Bias
trial name		interventions, duration, and	exclusion criteria		rates	
		follow-up				
Farlinger	Design: RCT	Randomized N: 184	Inclusion: Ages 18-75 years,	Mean (SD) age: 60 (9.15)	Main outcomes: No effect of	Moderate
et al.	Setting: Postop,	Analyzed N: 163 (4 days), 162 (6	ASA physical status score of	Female %: 43	pregabalin was found on	
(2018);	orthopedic	weeks, 130 (3 months)	I, II, or III undergoing total	Race %: NR	POD following elective total	
Clarke et	Country: Canada	Intervention 1 (N=84 analyzed):	knee arthroplasty	Delirium %: NR	hip arthroplasty.	
al. (2015)	Funding:	Pregabalin 150 mg orally 2 hours	Exclusion: DM with	WOMAC physical	Overall attrition: 11%	
	University/Government	pre-operatively x 1 dose (in	impaired renal function or	function (0 to 68): 33.85		
		addition to celecoxib 400 mg),	unable or unwilling to use	(10.98)		
		then 75 mg twice daily	patient-controlled	Dementia %: NR		
		Intervention 2 (N=79 analyzed):	analgesia devise	Postop %: 100		
		Placebo 2 hours pre-operatively		Cancer %: NR		
		(in addition to celecoxib 400				
		mg), then twice daily for 4 days				
		Duration: In hospital and 7 days				
		after discharge				
		Follow-up (days): 1, 7, 42, 90				

- 4572 4573 Abbreviations. ASA=American Society of Anesthesiologists; CI=confidence interval; LOS=length of stay; 6MWT=six-minute walk test; N=number; NR=not reported; PCA=patient-controlled analgesia;
- POD=post-operative delirium; postop=post-operative; preop=pre-operative; RCT=randomized controlled trial; SD=standard deviation; TUG=timed up and go; WOMAC=Western Ontario and McMaster 4574 Universities Osteoarthritis Index.

Cholinesterase Inhibitors 4575

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
name		interventions, duration, and			rates	
		follow-up				
Gamberini	Design: RCT	Randomized N: 120	Inclusion: ≥65 years, elective	Mean (SD) age: 74.3 (5.6)	Main outcomes: Trial does	Moderate
et al.	Setting:	Analyzed N: 113	cardiac surgery with CPB	Female %: 32	not support short-term oral	
(2009)	Postop,	Intervention 1 (N=59):	Exclusion: Urgent or emergency	Race %: NR	rivastigmine to prevent POD	
	cardiac	Rivastigmine 1.5 mg 3 times	surgery, previous cardiac surgery,	Delirium %: NR	in elderly patients	
	Country:	daily	cardiac surgery combined with	SAPS II: NR overall	undergoing elective cardiac	
-	Switzerland	Intervention 2 (N=61): Placebo	noncardiac procedures, sensory	Dementia %: NR	surgery (RR 1.08, 95% CI	
	Funding:	3 times daily	impairment interfering with	Postop %: 100	0.62 to 1.90).	
	Industry and	Duration: From the evening	neuropsychological testing, preop	Cancer %: NR	Attrition at follow-up: 24%	
	University	before surgery to the evening	MMSE <15, preexisting		vs. 25%	
		of POD 6	neurologic deficits, or previous or			
		Follow-up (days): NR	ongoing treatment with			
			cholinesterase inhibitor			
Sampson	Design: RCT	Randomized N: 50	Inclusion: All patients undergoing	Mean (SD) age: 67.7 (9.6)	Main outcomes: Donepezil	Moderate
et al.	Setting:	Analyzed N: 33	elective total hip replacement	Female %: 48.5	did not significantly reduce	
(2007)	Postop, hip	Intervention 1 (N=19 analyzed):	Exclusion: MMSE <26, patients	Race %: NR	the incidence of delirium	
	Country: U.K.	Donepezil 5mg	with sensory impairment who	Delirium %: NR	compared to placebo	
	Funding:	Intervention 2 (N=14 analyzed):	could not undertake	Baseline scale of function:	(unadjusted RR 0.29, 95% CI	
	Industry	Placebo	neuropsychological testing	NR	0.06 to 1.30).	
		Duration: Immediately		Dementia %: NR (MMSE <26	Attrition at follow-up: 34%	
		following surgery and daily for		excluded)		
		3 more days		Postop %: 100		
		Follow-up (days): POD 5 for		Cancer %: NR		
		delirium				
Youn et al.	Design: RCT	Randomized N: 62	Inclusion: Older patients	Mean (SD) age: 79.3 (6.1)	Main outcomes: POD	Moderate
(2017)	Setting:	Analyzed N: 62	undergoing hip fracture surgery,	Female %: 58	occurred in 5 patients in the	
	Postop, hip	Intervention 1 (N=31):	with cognitive impairment	Race %: NR	rivastigmine group vs. 14	
	Country: South	Rivastigmine patch, 4.6 mg	(MMSE score 10-26 and GDS	Delirium %: 0 (excluded)	patients in the control group	
	Korea		score 3-5)	Baseline scale of function:	(p=0.013). The mean	

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
name		interventions, duration, and			rates	
		follow-up				
	Funding: None	Intervention 2 (N=31): No	Exclusion: Delirium or depression	NR	severity of delirium in the 2	
		rivastigmine patch	at baseline	Dementia %: NR	groups as determined by	
		Duration: From 2 or 3 days		Postop %: 100	DRS was 2.2 and 6.2,	
		before surgery to 7 days after		Cancer %: NR	respectively (p=0.033).	
		Follow-up (days): POD 7			Adjusted OR for POD was	
					0.259 (95% CI 0.074 to	
					0.905, p=0.034).	
					Attrition: NR	

Abbreviations. CI=confidence interval; CPB=cardiopulmonary bypass; DRS=Delirium Rating Scale; GDS=Global Deterioration Scale; MMSE=Mini-Mental State Examination; N=number; NR=not reported; OR=odds ratio; POD=post-operative delirium; postop=post-operative; preop=pre-operative; RCT=randomized controlled trial; RR=relative risk; SAPS III=Simplified Acute Physiology Score III; SD=standard deviation.

4578

4579 **Opioid Medications**

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		main outcomes and	Bias
name		interventions, duration, and			attrition rates	
		follow-up				
Beaussier	Design: RCT	Randomized N: 59	Inclusion: >70 years undergoing	Mean (SD) age: 77.5 (5.00)	Main outcomes:	Low
et al.	Setting: Preop,	Analyzed N:52	major colorectal surgery for colon	Female %: 48	Episodes of POD	
(2006)	colorectal	Intervention (N=29): Intrathecal	cancer	Race %: NR	occurred similarly in	
	Country:	morphine 300 μg	Exclusion: ASA physical status III	Delirium %: 0	the morphine and	
	Switzerland	Control (N=30): Subcutaneous	and IV, BMI >30 kg/m ² ,	ASA I and II %: 100	control groups (35%	
	Funding: Mixed	saline	inflammatory bowel disease,	Preop mental dysfunction %:	vs. 38%, p>0.05).	
		Duration: Preop	contraindications to intrathecal	0	Attrition: 10% vs. 13%	
		Follow-up (days): NR	morphine administration, preop	Postop %: 100 colorectal		
			mental dysfunction, chronic pain,	surgery		
			preop opioid consumption,	Cancer %: 100		
			psychiatric disorders, and inability			
			to use the PCA device			
Liu et al.	Design: RCT	Randomized N: 105	Inclusion: Age 18-85 years,	Mean (SD) age: 64.2 (10.7)	Main outcomes:	Moderate
(2017)	Setting: Postop,	Analyzed N: 105	admitted to the surgical ICU,	Female %: 47.6	Remifentanil has a	
	mixed	Intervention 1 (N=35): Fentanyl	required MV for an anticipated	Race %: NR	significant effect on	
	Country: China	1 μg/kg/hour and midazolam	time >24 hours, and required	Delirium %: 0 (excluded)	reducing the	

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up loading dose of 0.05 mg/kg	Study population including main inclusion and exclusion criteria midazolam sedation	Sample demographics	Results including main outcomes and attrition rates occurrence of delirium	Risk of Bias
	Funding: Government	followed by 0.02-0.1 mg/kg/hour Intervention 2 (N=35): Remifentanil 1 µg/kg/hour and midazolam loading dose of 0.05 mg/kg followed by 0.02-0.1 mg/kg/hour Intervention 3 (N=35): Normal saline and midazolam loading dose of 0.05 mg/kg followed by 0.02-0.1 mg/kg/hour Duration: During ventilation Follow-up (days): Until discharge, 28	Exclusion: Intracranial lesions, neurosurgical intervention, mental disabilities or coma, alcohol abuse, or history of delirium or antipsychotic use at home	Mean (SD) APACHE II: 20.2 (5.4) Dementia %: NR, mental disabilities excluded Postop %: 100 Cancer %: NR	 occurrence of delirium (p=0.007). The logistic regression analysis of delirium demonstrated that remifentanil (OR 0.230, 95% Cl 0.074 to 0.711, p=0.011) is independent protective factors for delirium, and high APACHE II score (OR 1.103, 95% Cl 1.007 to 1.208, p=0.036) is the independent risk factor for delirium. Overall attrition: 0% 	
Mann et al. (2000)	Design: RCT Setting: Intra- operative, abdominal Country: France Funding: Unclear	Randomized N: 70 Analyzed N: 70 Intervention 1 (N=35): Sufentanil 1 µg/ml plus bupivacaine 0.25% mixture epidural anesthesia continuous infusion intra-operatively followed by sufentanil 0.5 µg/ml plus bupivacaine mixture by PCA epidural pump during postop Intervention 2 (N=35): Sufentanil IV 0.5 µg/kg bolus followed by 0.2-0.4 µg/kg intra- operatively as necessary	Inclusion: >70 years undergoing major abdominal surgery for cancer with ASA status I or II and normal preop mental status; absence of contraindications to epidural anesthesia and absence of extreme malnutrition or cerebral vascular insufficiency Exclusion: NR	Mean (SD) age: 76.45 (5.17) Female %: 46 Race %: NR Delirium %: 0 ASA I, II %: 100 Dementia %: 0 Postop %: 100 abdominal surgery Cancer %: 100	Main outcomes: There was no difference in POD between treatment groups (26% vs. 24%, p>0.05). Attrition: 11% vs. 6%	Moderate

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		main outcomes and	Bias
name		interventions, duration, and			attrition rates	
		follow-up				
		followed by PCA with morphine				
		1.5 mg per dose during postop				
		Duration: Intra-operatively,				
		postop				
		Follow-up (days): Until discharge				
Park et al.	Design: RCT	Randomized N: 142	Inclusion: Age 18-90 years	Mean (SD) age: 52.8 (15)	Main outcomes:	Moderate
(2014)	Setting: Postop,	Analyzed N: 142	undergoing cardiac surgery on CPB	Female %: 44	Delirium incidence	
	cardiac	Intervention 1 (N=67):	Exclusion: Re-do and emergency	Race %: NR	was significantly less	
	Country: South	Dexmedetomidine loading dose,	surgery, severe pulmonary, or	Delirium %: NR	in dexmedetomidine	
	Korea	0.5 μg/kg; maintenance dose,	systemic disease, left ventricular	ASA III-IV %: 17	group (6/67 patients,	
	Funding: None	0.2-0.8 μg/kg/hour	ejection fraction <40%, pre-	Dementia %: 0 (excluded)	8.96%) vs.	
		Intervention 2 (N=75):	existing renal dysfunction, surgery	Postop %: 100	remifentanil group	
		Remifentanil range, 1,000-2,500	requiring deep hypothermic	Cancer %: NR	(17/75 patients,	
		μg/hour	circulatory arrest involving	Mean (SD) length of	22.67%) (p<0.05).	
		Duration: Daily	thoracic aorta, and documented	operation, minutes: 344.7	Attrition: NR	
		Follow-up (days): 3	preop dementia, Parkinson	(107)		
			disease, or recent stroke			
Shehabi et	Design: RCT	Randomized N: 306	Inclusion: ≥60 years undergoing	Median age: 71.3	Main outcomes:	Low
al. (2009)	Setting: Postop,	Analyzed N: 299	pump cardiac surgery (e.g., CABG,	Female %: 25	Delirium incidence	
	cardiac	Intervention 1 (N=154):	valve surgery)	Race %: NR	was comparable	
	Country:	Dexmedetomidine IV 0.1-0.7	Exclusion: Documented preop	Delirium %: NR	between	
	Australia	μg/kg/hour	dementia and Parkinson disease	Function: NR	dexmedetomidine and	
	Funding: Mixed	Intervention 2 (N=152):		Dementia %: 0	morphine (8.6% vs.	
		Morphine IV 10-70 μg/kg/hour		Postop %: 100	15.0%, p=0.088).	
		Duration: Postop		Cancer %: 0	Attrition: 1% vs. 3%	
		Follow-up (days): Discharge				
Tang C. et	Design: RCT	Randomized N: 60	Inclusion: Age 18-80 years with	Mean (SD) age: 61.5 (7.7)	Main outcomes: The	Moderate
al. (2020)	Setting: Postop,	Analyzed N: 53	ASA status I-III and undergoing	Female %: 47.2	simultaneous	
	esophageal	Intervention 1 (N=30):	thoracoscopic-laparoscopic	Race %: NR	administration of	
	cancer	Dexmedetomidine 2.5 μg/mL	esophagectomy	Delirium %: NR	dexmedetomidine and	
	Country: China	plus sufentanil 1 μg/mL PCA	Exclusion: Obstructive or	ASA I %: 32.1	sufentanil significantly	
			restrictive lung disease with	ASA II %: 62.3	reduced plasma	

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
	Funding: Government	Intervention 2 (N=30): Sufentanil 1 µg/mL PCA Duration: During post anesthesia care unit stay Follow-up (days): 1, 2	FEV1/FVC% < 70% and 50% predict FEV1 < 80% predict, asthma and sleep apnea syndrome, liver or urinary bladder disorders, regular use of pain perception-modifying drugs and opioids or sedative medications in the week prior to surgery, known history of second- or third-degree heart block and ischemic heart diseases, difficulties with the use of PCA, known cognitive dysfunction/dementia, and BMI >35 kg/m ²	ASA III %: 5.7 Dementia %: 0 (excluded) Postop %: 100 Cancer %: 100	interleukin-6 and tumor necrosis factor- α concentrations and increased interleukin- 10 level (p<0.0001, p=0.0003, and p=0.0345, respectively), accompanied by better POD categories and health statuses of patients (p=0.024 and p<0.05, respectively). There was no hypotension, bradycardia, respiratory depression, or over sedation in the dexmedetomidine group. Attrition: 10% vs. 13%	
Wang et al. (2019)	Design: RCT Setting: Postop, noncardiac Country: China Funding: Government, university	Randomized N: 142 Analyzed N: 140 Intervention 1 (N=71): PCA pump with 0.5 µg/ ml sufentanil + 1 mg/ml flurbiprofen axetil (150 µg sufentanil + 300 mg flurbiprofen axetil in 300 ml of 0.9% saline); continuous infusion dose of 4 ml/hour plus bolus dose of 3 ml if needed	Inclusion: >65 years, ASA I to III, undergoing major noncardiac surgeries (thoracic, general, genitourinary, gynecologic, and orthopedic) Exclusion: Regular use of opioids or NSAIDs, severe visual and hearing disorders, history of myasthenia gravis, coma or profound dementia, brain injury or	Mean (SD) age: 69.4 (4.4) Female %: Unclear (n and % for control group inconsistent) Race %: NR Delirium %: NR ASA I, II %: 95 Dementia %: NR Postop %: 100 Cancer %: NR	Main outcomes: Incidence of POD was not significantly different between groups (12.9% with flurbiprofen vs. 18.6% without). Attrition at follow-up: 1% vs. 1%	Moderate

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		main outcomes and	Bias
name		interventions, duration, and			attrition rates	
		follow-up				
		Intervention 2 (N=71): PCA	history of neurosurgery, serious			
		pump with 0.5 μg/ml sufentanil	hepatic or renal dysfunction, and			
		(150 µg sufentanil in 300 ml of	preop MMSE below thresholds			
		0.9% saline); continuous	varying by education level			
		infusion dose of 4 ml/hour plus				
		bolus dose of 3 ml if needed				
		Duration: PCA pump used for				
		≤72 hours after surgery, until				
		solution ran out, and was not				
		refilled				
		Follow-up (days): POD 7				
Zhao et al.	Design: RCT	Randomized N: 432	Inclusion: >65 years scheduled to	Mean (SD) age: 69.5 (4.2)	Main outcomes:	Moderate
(2020)	Setting: Intra-	Analyzed N: 416	undergo non-cardiac major	Female %: 44	Incidence rates of POD	
	operative,	Intervention 1 (N=111):	surgery with ASA I-III	Race %: NR	and early postop	
	noncardiac	Dexmedetomidine 1 μ /kg then	Exclusion: Regular use of opioids,	Delirium %: NR	cognitive dysfunction	
	Country: China	dexmedetomidine 100 µg plus	sedatives, antidepressants, or	ASA II %: 97	7 days after surgery	
	Funding:	sufentanil 150 μg in PCA pump	anxiolytic drugs prior to the	Median (IQR) MMSE score: 27	were lower in the	
	Government	Intervention 2 (N=107):	surgery; drug addiction; preop	(24-30)	dexmedetomidine 200	
		Dexmedetomidine 1 μ /kg then	history of schizophrenia, epilepsy,	Postop %: 100	mg and 400 mg groups	
		dexmedetomidine 200 µg plus	Parkinsonism, or myasthenia	-Thoracic: 15.9	than in the	
		sufentanil 150 μg in PCA pump	gravis; brain injury or a history of	-Abdominal: 83.9	dexmedetomidine 0	
		Intervention 3 (N=108):	neurosurgery; serious hepatic	-Orthopedic: 0.2	mg and 100 mg groups	
		Dexmedetomidine 1 μ /kg then	dysfunction (Child-Pugh class C);	Cancer %: NR	(p<0.05). Compared	
		dexmedetomidine 400 µg plus	serious renal dysfunction		with	
		sufentanil 150 μg in PCA pump	(undergoing dialysis before		dexmedetomidine 200	
		Intervention 4 (N=106):	surgery); a preop left ventricular		mg, dexmedetomidine	
		Sufentanil 150 µg in PCA pump	ejection fraction <50%; sick sinus		400 mg reduced early	
		Intervention 1, Intervention 2,	syndrome, severe sinus		postop cognitive	
		Intervention 3 duration: 10	bradycardia (<50/minute), or a		dysfunction in patients	
		minutes before anesthesia	≥second-degree atrioventricular		who underwent open	
		induction, then post-operatively	block without a pacemaker; and a		surgery (p<0.05).	
		Intervention 4 duration: Postop	preop MMSE scores <17 in		There were no	

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
		Follow-up (days): 1, 2, 3, 7	uneducated patients, <20 for patients with education of ≤6 years, and <24 for patients with education of >6 years		intergroup differences in the postop sedation level, pain intensity, and side effects. Attrition: 3% vs. 1% vs. 6% vs. 4%	

4580

80 *Abbreviations.* APACHE II=Acute Physiology and Chronic Health Evaluation II; ASA=American Society of Anesthesiologists; BMI=body mass index; CABG=coronary artery bypass graf; CI=confidence

4581 interval; CPB=cardiopulmonary bypass; ICU=intensive care unit; IQR=interquartile range; IV=intravenous; MMSE=Mini-Mental State Examination; MV=medical ventilation; N=number; NR=not

reported; NSAIDs=nonsteroidal anti-inflammatory drugs; OR=odds ratio; PCA=patient-controlled analgesia; POD=post-operative delirium; postop=post-operative; preop=pre-operative;

4582reported; NSAIDs=nonsteroidal anti-inflammatory drugs; 04583RCT=randomized controlled trial; SD=standard deviation.

4584 Steroid Medications

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition	Bias
name		interventions, duration, and	criteria		rates	
		follow-up				
Clemmesen	Design: RCT	Randomized N: 120	Inclusion: ≥65 years and	Mean (SD) age: 80 (9)	Main outcomes: POD	Low
et al.	Setting: Preop,	Analyzed N: 117	admitted for acute hip fracture	Female %: 64	(single-day CAM-S ≥5)	
(2018)	orthopedic	Intervention 1 (N=60):	Exclusion: Severe dementia,	Race %: NR	between the placebo and	
	Country:	Methylprednisolone IV 125 mg	peptic ulcer disease, cancer,	Delirium %: NR	drug groups was: OR 2.39,	
	Denmark	Intervention 2 (N=60): Placebo	glaucoma, insulin-dependent	ASA physical status ≥3 (severe	95% CI 1.00 to 5.72,	
	Funding: None	Duration: Single preop dose on	diabetes, positive for HIV, HBV,	systemic disease) %: 37	p=0.048.	
		admission	or HCV, immunoinflammatory	Dementia %: NR (severe	Attrition: 2% vs. 3%	
		Follow-up (days): 90	disease, or currently receiving	dementia excluded)		
			systemic glucocorticoids or	Postop %: 100		
			immunosuppressive therapy	Cancer %: 0 (excluded)		
Dieleman	Design: RCT	Randomized N: 4,494	Inclusion: ≥18 years	Mean (SD) age: 66.1 (10.9)	Main outcomes: Incidence	Low
et al.	Setting: Postop,	Analyzed N: 4,482	undergoing cardiac surgery	Female %: 27	of POD (need for	
(2012);	cardiac	Intervention 1 (N=2,239):	requiring CPB	Race %: NR	neuroleptics) was RR 0.79	
Sauer et al.	Country: The	Dexamethasone IV 1 mg/kg;	Exclusion: Emergency or off-	Delirium %: NR	(95% CI 0.66 to 0.94).	
(2014);	Netherlands	maximum 100 mg	pump procedure or life	Baseline scale of function: NR	Attrition: 4/2,239 vs.	
DECS	Funding:	Intervention 2 (N=2,255):	expectancy <6 months	Dementia %: NR	8/2,255	
		Placebo; normal saline IV				

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition	Bias
name		interventions, duration, and	criteria		rates	
		follow-up				
	Government	Duration: Single dose at induction		Postop %: 100		
	and nonprofit	of anesthesia		Cancer %: NR		
		Follow-up (days): 30				
Kluger et	Design: RCT	Randomized N: 79	Inclusion: >65 years	Mean (SD) age: 81 (8.05)	Main outcomes: Delirium	Low
al. (2021);	Setting: Preop,	Analyzed N: 78	undergoing surgery for hip	Female %: 23	incidence did not differ	
STRIDE	orthopedic	Intervention 1 (N=40):	fracture	Race %: NR	between the groups: 6/40	
	Country: New	Dexamethasone IV 20 mg	Exclusion: Uncontrolled	Delirium %: 0 (excluded)	(15%) in the	
	Zealand	Intervention 2 (N=39): Placebo	diabetes, cognitive	ASA I-III %: 91	dexamethasone group vs.	
	Funding:	Duration: 1 dose at induction of	impairment, or delirium	Dementia %: 0 (excluded)	9/39 (23%) in the placebo	
	Government	anesthesia and one dose before		Postop %: 100 hip fracture	group (RR 0.65, 95% CI	
		bypass		surgery	0.22 to 1.65, p=0.360).	
		Follow-up (days): POD 3		Cancer %: NR	Attrition: 0% vs. 3%	
Mardani	Design: RCT	Randomized N: 110	Inclusion: ≤80 years	Mean (SD) age: 62.13 (12.03)	Main outcomes:	High
and	Setting: Postop,	Analyzed N: 93	undergoing cardiac surgery	Female %: 14	No statistically	
Bigdelian	cardiac	Intervention 1 (N=55):	Exclusion: Prolonged	Race %: NR	significant difference was	
(2012)	Country: Iran	Dexamethasone IV 8 mg	intubation, CPB of >3 hours,	Delirium %: 0 (excluded)	found between	
	Funding: None	Intervention 2 (N=55): Placebo	ejection fraction <20%,	Baseline scale of function: NR	dexamethasone and	
		Duration: Given before induction	hemodynamic instability,	Dementia %: NR	placebo in the number of	
		of anesthesia and every 8 hours	history of delirium, and	Postop %: 100	patients with delirium	
		for 3 days	emergency operation	Cancer %: NR	on POD 3 (2.3% vs. 2%,	
		Follow-up (days): NR (POD 3 for			p=1.0).	
		delirium)			Attrition: 22% vs. 9%	
Royse et al.	Design: RCT	Randomized N: 555	Inclusion: >18 years and	Mean (SD) age: 73.9 (9.9)	Main outcomes: Incidence	Moderate
(2017);	Setting: Postop,	Analyzed N: 498	EuroScOrE ≥ 6	Female %: 48.5	of delirium was 8% in the	
SIRS sub-	cardiac	Intervention 1 (N=277):	Exclusion: Known cognitive	Race %: NR	methylprednisolone	
study	Country:	Methylprednisolone, 2 x 250 mg	impairment, taking or	Delirium %: NR	group vs. 10% in the	
(companio	Australia,	doses during surgery	expected to receive systemic	Baseline scale of function: NR	control group (p=0.357).	
n to	Canada, U.S.	Intervention 2 (N=278): Placebo	steroids in the immediate	Dementia %: NR	Attrition: 10% vs. 11%	
Whitlock	Funding:	Duration: 1 dose at induction of	postop period, expected to	Postop %: 100		
(2015	Government	anesthesia and 1 dose before	receive aprotinin, or history of	Cancer %: NR		
which was		bypass	bacterial or fungal infection in			
excluded			the preceding 30 days			

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
from the		Follow-up (days): POD 3 for				
review)		delirium				
Sauer et al.	Design: RCT	Randomized N: 768	Inclusion: ≥18 years	Mean (SD) age: 66 (12)	Main outcomes: Incidence	Moderate
(2014);	Setting: Postop,	Analyzed N: 737	undergoing cardiac surgery	Female %: 35	of delirium was similar	
Dieleman	cardiac	Intervention 1 (N=367 analyzed):	requiring CPB	Race %: NR	between groups (adjusted	
et al.	Country: The	Dexamethasone IV 1 mg/kg;	Exclusion: Emergency or off-	Delirium %: NR	OR 0.85, 95% CI 0.55 to	
(2012);	Netherlands	maximum 100 mg	pump procedure or life	Baseline scale of function: NR	1.31).	
DECS sub-	Funding:	Intervention 2 (N=370 analyzed):	expectancy <6 months	Dementia %: NR	Attrition: 13% vs. 12%	
study	Government	Placebo; normal saline IV		Postop %: 100		
	and nonprofit	Duration: Single dose at induction		Cancer %: NR		
		of anesthesia				
		Follow-up (days): POD 4				

4585
 Abbreviations. ASA=American Society of Anesthesiologists; CAM-S=Confusion Assessment Method-Severity; Cl=confidence interval; CPB=cardiopulmonary bypass; EuroScOrE=European System for
 4586
 cardiac risk Evaluation; IV=intravenous; N=number; NR=not reported; OR=odds ratio; POD=post-operative delirium; postop=post-operative; RCT=randomized controlled trial; RR=relative risk;
 4587
 SD=standard deviation.

4588 Additional Medications

4589 Clonidine

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition	Bias
name		interventions, duration, and	criteria		rates	
		follow-up				
Rubino et	Design: RCT	Randomized N: 30	Inclusion: Conscious and	Mean (SD) age: 62.6 (7.71)	Main outcomes: There was	Moderate
al. (2010)	Setting: Postop,	Analyzed N: 30	hemodynamically stable	Female %: 40	no difference in incident	
	cardiothoracic	Intervention 1 (N=15):	requiring repair of an acute	Race %: NR	delirium between treatment	
	Country: Italy	Clonidine 0.5 µg/kg bolus	type-A aortic dissection	Delirium %: NR	with clonidine vs. placebo	
	Funding: Unclear	followed by 1-2 µg/kg/hour	Exclusion: NR	Function: NR	for POD (40% vs. 33.3%,	
		Intervention 2 (N=15): Placebo;		Dementia %: NR	p>0.05).	
		normal saline		Postop %: 100	Attrition: NR	
		Duration: Postop		Cancer %: 0		
		Follow-up (days): Discharge				

Author (year); trial name Shokri and Ali (2020)	Study characteristics Design: RCT Setting: Intra- and post-	Study protocol including numbers of participants, interventions, duration, and follow-up Randomized N: 294 Analyzed N: 286 Intervention 1 (N=147):	Study population including main inclusion and exclusion criteria Inclusion: Age 60-70 years with ASA status II and III, scheduled for elective isolated CABG, and	Sample demographics Mean (SD) age: 64.1 (4.1) Female %: 51.4 Race %: NR	Results including main outcomes and attrition rates Main outcomes: Dexmedetomidine was associated with lower risk	Risk of Bias
	operative, cardiac Country: Egypt Funding: None	Dexmedetomidine; initial continuous infusion of 0.7-1.2 µg/kg/hour, then adjusted based on sedation and analgesia adequacy to a maximum dose of 1-1.4 µg/kg/hour Intervention 2 (N=147): Clonidine IV 0.5 µg/kg slowly over 10-15 minutes, followed by a continuous IV infusion of 1-2 µg/kg/hour Intervention 1 duration: During surgery, then weaned off slowly after surgery Intervention 2 duration: During surgery	absence of any associated CABG, and absence of any associated comorbidities or history of MI Exclusion: History of mental illness, severe dementia, delirium, or undergoing emergency procedures, or treated with haloperidol impaired renal or hepatic functions.	Delirium %: NR, severe delirium excluded ASA II %: 62.6 ASA III %: 37.4 Dementia %: NR, severe dementia excluded Postop %: 100 Cancer %: NR	and duration of delirium, shorter MV duration and ICU stay, lower mortality rate, and lower morphine consumption than the clonidine group. Dexmedetomidine significantly decreased heart rates after ICU admission. Attrition at follow-up: 2% vs. 3%	
Sultan (2010)	Design: RCT Setting: Preop, hip Country: Egypt Funding: None	Follow-up (days): 8 Randomized N: 222 Analyzed N: 203 Intervention 1 (N=53 analyzed): Melatonin 5 mg, 2 oral doses Intervention 2 (N=50 analyzed): Midazolam 7.5 mg, 2 oral doses Intervention 3 (N=51 analyzed): Clonidine 100 µg, 2 oral doses Intervention 4 (N=49 analyzed): No sedation	Inclusion: >65 years, scheduled for hip arthroplasty under spinal anesthesia, and ASA I to III Exclusion: Sensory impairment (blindness, deafness); dementia; severe infections; severe anemia (hematocrit<30%); intracranial events (stroke, bleeding, infection); fluid or electrolyte	Mean (SD) age: 71.01 (36.8) Female %: 51 Race %: NR Delirium %: 0 (excluded) ASA I-III: inclusion criterion Dementia %: 0 (excluded) Postop %: 100 Cancer %: NR	Main outcomes: The melatonin group showed a statistically significant decrease in the percentage of POD (9.43% vs. 32.65% in controls). Overall attrition: 9%	High

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition	Bias
name		interventions, duration, and	criteria		rates	
		follow-up				
		Duration: One dose the night	disturbances; acute cardiac			
		before surgery and another 90	events; acute pulmonary			
		minutes before surgery	events; and medications			
		Follow-up (days): POD 3	including anticonvulsants,			
			antihistamines, and			
			benzodiazepines			

4590 Abbreviations. ASA=American Society of Anesthesiologists; CABG=coronary artery bypass graf; ICU=intensive care unit; IV=intravenous; MI=myocardial infarction; MV=medical ventilation; N=number;

4591 NR=not reported; POD=post-operative delirium; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

4592 Other Medications

Author (year); trial	Study characteristics	Study protocol including numbers of participants,	Study population including main inclusion and exclusion	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
name		interventions, duration,	criteria			
		and follow-up				
Bielza et al.	Design: RCT	Randomized N: 253	Inclusion: ≥70 years	Median age: 87	Main outcomes: IV iron did	Low
(2020)	Setting: Intra-	Analyzed N: 253	undergoing hip fracture	Female %: 72.7	not show significant effects in	
	operative, hip	Intervention (N=126): Iron	surgery admitted to the	Race %: NR	any of the secondary end	
	Country: Spain	IV 200 mg in 100 mL saline	orthogeriatric care share	Delirium %: 6.3	points: mortality, functional	
	Funding: Non-	Control (N=127): Normal	service	Median (IQR) Charlson	recovery at 3 months, postop	
	profit	saline	Exclusion: Asthma or severe	comorbidity index: 2 (1-3)	transfusion requirements,	
		Duration: On days 1, 3, and	atopic disease,	Dementia %: 26.9	hemoglobin levels at 3	
		5 of hospital stay	hemochromatosis, inability to	Postop %: 100	months, and proportion of	
		Follow-up (days): Discharge	walk prior to the fracture,	Cancer %: NR	nosocomial infections or	
			dependency for all basic daily		incidence of POD.	
			living activities, severe		Attrition: 21% vs. 22%	
			dementia, or known terminal			
			illness (life expectancy of <6			
			months)			
Deng et al.	Design: RCT	Randomized N: 248	Inclusion: Age 60-80 years	Median age: 67 vs. 68.5	Main outcomes: The incidence	Moderate
(2020)	Setting: Intra-	Analyzed N: 248	undergoing noncardiac and	Female %: 40.3	of POD in methylene blue	
	operative,	Intervention 1 (N=124):	non-neurosurgical major	Race %: NR	group was significantly less	
	noncardiac	Methylene blue IV	surgery	Delirium %: NR	than that in control group	
	Country: China	continuous infusion of 2	Exclusion: Preexisting	ASA I %: 13.7	(7.3% vs. 24.2%, OR 0.24, 95%	

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition rates	Bias
name		interventions, duration,	criteria			
		and follow-up				
	Funding:	mg/kg diluted with normal	dementia, major depression,	ASA II %: 83.9	CI 0.11 to 0.53, p<0.001). The	
	Government	saline into total 50 mL	or other serious mental or	ASA III %: 2.4	incidence of early POCD at	
		Control (N=124): Normal	neurological disorders; history	Dementia %: 0 (excluded)	postop 7th day in methylene	
		saline	of major head trauma;	Postop %: 100	blue group was also less than	
		Duration: Immediately after	emergency surgery; serious	Cancer %: 72.2	that in control group (16.1%	
		anesthetic induction	medical diseases; planned		vs. 40.2%, OR 0.30, 95% CI	
		Follow-up (days): Discharge	postop intubation		0.16 to 0.57, p<0.001). The	
		90			adverse events were	
					comparable in both groups.	
					Attrition at follow-up: 2% vs.	
					4%	
Kim et al.	Design: RCT	Randomized N: 127	Inclusion: cardiac surgery	Mean (SD) age: 65.9 (10.7)	Main outcomes: The incidence	Moderate
(1996)	Setting:	Analyzed N: 111	patients	Female %: 28	of delirium did not differ	
	Postop, cardiac	Intervention 1 (N=53	Exclusion: Taking an H-2	Race %: NR	according to whether patients	
	Country: U.S.	analyzed): Cimetidine IV 900	antagonist pre-operatively,	Delirium %: NR	received cimetidine or	
	Funding:	mg/day adjusted according	taking a drug that adversely	Baseline scale of function: NR	ranitidine (adjusted OR 0.72,	
	Industry and	to creatinine clearance	interacts with cimetidine	Dementia %: NR	95% CI 0.29 to 1.80).	
	nonprofit	Intervention 2 (N=58	(warfarin, lidocaine,	Postop %: 100	Overall attrition: 13%	
		analyzed): Ranitidine IV 150	phenytoin, and theophylline)	Cancer %: NR		
		mg/day adjusted according				
		to creatinine clearance				
		Duration: Postop until ICU				
		discharge				
		Follow-up (days): NR				
Li Y.N. et al.	Design: RCT	Randomized N: 60	Inclusion: Spine surgery	Mean (SD) age: 69.5 (4)	Main outcomes: Compared	High
(2017)	Setting: Intra-	Analyzed N: 30	patients	Female %: 54	with the control group, S100 β	
	operative,	Intervention (N=NR):	Exclusion: Traumatic brain	Race %: NR	and glial fibrillary acidic	
	spine	Nimodipine, calcium	injury, neurological diseases	Delirium %: 0	protein decreased, and	
	Country: China	channel blocker 7.5mg/kg/	and alcohol abuse, or no	MMSE %: 0	incidence of POD reduced at	
	Funding:	hour injected continually 30	severe hearing and visual	Dementia %: 0	T3-T4 (from 1 hour after skin	
	Government	minutes before anesthesia	impairment	Postop %:100	incision to the time the	
		induction		Cancer %: NR	surgery was completed) in the	

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition rates	Bias
name		interventions, duration,	criteria			
		and follow-up				
		Control (N=NR): Saline		Hepatic or renal	nimodipine group; the	
		7.5mg/kg/hour injected		impairment %: 0	difference was statistically	
		continually 30 minutes		Alcohol abuse %: 0	significant (p<0.05).	
		before anesthesia induction		Drug use %: 0	Attrition: NR; 7 patients were	
		Duration: Preop		Medications taken at baseline:	lost because of non-	
		Follow-up (days): 1 to 7		NR	cooperation and 4 patients by	
					not receiving operation.	
Mohammadi	Design: RCT	Randomized N: 45	Inclusion: Age 16-65 years	Mean (SD) age: 59.7 (15.6)	Main outcomes:	Moderate
et al. (2016)	Setting:	Analyzed N: 40	admitted to the ICU after	Female %: 35	Cyproheptadine co-treatment	
	Postop,	Intervention 1 (N=23):	noncardiac surgery	Race %: NR	compared with placebo	
	noncardiac	Cyproheptadine 4 mg 3	Exclusion: History of seizure,	Delirium %: NR	significantly decreased the	
	Country: Iran	times per day	Alzheimer's disease,	APACHE II: 15.1 (6.2)	incidence of delirium	
	Funding:	Intervention 2 (N=22):	schizophrenia, asthma, cardiac	Dementia %: NR	(adjusted OR 0.14, 95% CI 0.09	
	University	Placebo	arrhythmia, urinary retention,	Postop %: 100	to 0.86).	
		Duration: Duration 7 days	or active GI bleeding or	Cancer %: NR	Attrition: 13% vs. 9%	
		Follow-up (days): 7	obstruction			
Moslemi et al.	Design: RCT	Randomized N: 102	Inclusion: ≥18 years admitted	Mean (SD) age: 54 (12.1)	Main outcomes: The incidence	Moderate
(2020)	Setting: Intra-	Analyzed N: 96	to the ICU after GI surgery	Female %: 58.8	rate of delirium was	
	operative, GI	Intervention 1 (N=51):	Exclusion: History of any	Race %: NR	significantly lower in the	
	surgery	Thiamine IV 200 mg	neuropsychiatric disorder,	Delirium %: NR	thiamine group vs. placebo	
	Country: Iran	Intervention 2 (N=51):	severe renal or liver	Function: NR	group on the first day (8.3%	
	Funding: None	Saline IV	impairment, substance or	Dementia %: NR	vs. 25%, OR 0.27, 95% CI 0.08	
		Duration: 3 days in ICU	alcohol abuse, diabetic	Postop %: 100	to 0.92, p=0.026) and on the	
		Follow-up (days): 3	ketoacidosis, or delirious	Cancer %: NR	second day (4.2% vs. 20.8%,	
			patients at time of ICU		OR 0.16, 95% CI 0.03 to 0.81,	
			admission		p=0.014).	
					Attrition: 6% vs. 6%	
Nakamura et	Design: RCT	Randomized N: 64	Inclusion: >18 years, allogenic	Mean (SD) age: 54.7 (13.6)	Main outcomes: Delirium	Moderate
al. (2021)	Setting:	Analyzed N: 61	hematopoietic stem cell	Female %: 39	incidence (25% vs. 21%, Chi-	
	Postop, cancer	Intervention 1 (N=30):	transplantation	Race %:	square [df=1] 0.12, p=0.73),	
	Country: U.S.	Thiamine IV 200 mg	Exclusion: Delirium	White: 85	time to onset, duration, and	
				Black 15		

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition rates	Bias
name		interventions, duration,	criteria			
		and follow-up				
	Funding: Non-	Intervention 2 (N=34):		Delirium %: 0 (excluded)	severity were not different	
	profit	Placebo (saline)		ECOG-PS: 0-1 98%	between the study arms.	
		Duration: Three times daily		Dementia %: NR	Attrition at follow-up: 13% vs.	
		for 7 days		Postop %:100	3%	
		Follow-up (days): 30 days or		Cancer %: 100		
		discharge				
Papadopoulos	Design: RCT	Randomized N: 106	Inclusion: >40 years and	Mean (SD) age: 71	Main outcomes: Delirium %	Moderate
et al. (2014)	Setting:	Analyzed N: 106	femoral or hip fracture surgery	Female %: 56	was 36% (18/51) vs. 53%	
	Postop,	Intervention 1 (N=51):	Exclusion: Prior	Race %: NR	(29/55) (p=0.07) on POD 2	
	orthopedic	Ondansetron 8 mg IV	neuropsychiatric testing,	Delirium %: NR	(days 3 to 5: p=0.003,	
	Country:	Intervention 2 (N=55):	dementia (Alzheime''s),	ASA III %: 25	p<0.001, and p<0.001,	
	Greece	Placebo	multiple injuries, or second	Dementia %: 0 (excluded)	respectively; day 5=0 in both	
	Funding: NR	Duration: Daily starting	surgery within 30 days	Postop %: NR	groups).	
		postop for 5 days		Cancer %: NR	Attrition: NR	
		Follow-up (days): 30				
Robinson et	Design: RCT	Randomized N: 301	Inclusion: >60 years	Mean (SD) age: 69	Main outcomes: Delirium	Low
al. (2014)	Setting:	Analyzed N: 301	undergoing elective surgery	Female %: 2	occurred in 40% and 37% of	
	Postop, mixed	Intervention 1 (N=152): L-	with planned postop ICU	Race %: NR	patients with tryptophan and	
	Country: U.S.	Tryptophan 1 gm	admission (general, vascular,	Delirium %: NR	placebo, respectively (p=0.60).	
	Funding:	Intervention 2 (N=149):	urological, or thoracic surgery)	TUG: 12 seconds	Duration of delirium was 2.9	
	Mixed	Placebo	Exclusion: Drugs that increase	Dementia %: NR	to 1.8 days for tryptophan and	
		Duration: Three times daily,	serotonin	Postop %: 100	2.4 to 1.6 days for placebo	
		9 doses		Cancer %: NR	(p=0.17).	
		Follow-up (days): ICU			Overall attrition: 0%	
		discharge				
Saager et al.	Design: RCT	Randomized N: 203	Inclusion: ≥18 years	Mean (SD) age: 65.5 (13.5)	Main outcomes: Patients	Moderate
(2015)	Setting:	Analyzed N: 198	undergoing cardiac surgery	Female %: 27.3	randomized to tight glucose	
	Postop, cardiac	Intervention (N=95):	with CPB	Race %: NR	control were more likely to be	
	Country: U.S.	Hyperinsulinemic-	Exclusion: NR	Delirium %: NR	diagnosed as being delirious	
	Funding:	normoglycemic clamp; a		ASA IV-V %: 81	than those assigned to routine	
	Government	constant infusion of insulin		Dementia %: NR	glucose control (26/93 vs.	
		(5 mU/kg/minute) was		Postop %: 100		

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition rates	Bias
name		interventions, duration,	criteria			
		and follow-up				
		given with a concomitant		Cancer %: NR	15/105, RR 1.89, 95% CI 1.06	
		variable infusion of 20%		Diabetes %: 31.8	to 3.37, p=0.03).	
		dextrose titrated to target			Attrition: 2% vs. 3%	
		blood glucose				
		concentrations 80-110				
		mg/dl				
		Control (N=108): Usual care				
		Duration: During surgery				
		Follow-up (days): Until				
		discharge or POD 5				
Spies et al.	Design: RCT	Randomized N: 281	Inclusion: >18 years	Mean (SD) age: 61	Main outcomes: The incidence	Low
(2021)	Setting: Intra-	Analyzed N: 261	undergoing liver resection	Female %: 58	of POD did not differ	
	operative, liver	Intervention 1 (N=139):	surgery	Race %: NR	significantly between the	
	Country:	Physostigmine 0.02 mg/kg	Exclusion: Parkinso''s disease	Delirium %: 0	physostigmine and placebo	
	Germany	IV bolus, then 0.01 mg/kg		ASA II-III %: 92	groups (20% vs. 15, p=0.334).	
	Funding:	infusion		Median MMSE: 29 (29 to 30)	Lower mortality rates were	
	Industry	Intervention 2 (N=142):		Postop %: 100	found in the physostigmine	
		Placebo		Cancer %: 83	group compared with placebo	
		Duration: 24 hours after			at 3 months (2% [95% CI 0 to	
		start of anesthesia			4] vs. 11% [95% Cl 6 to 16],	
		Follow-up (days): 7			p=0.002) and at 6 months (7%	
					[95% CI 3 to 12] vs. 16% [95%	
					CI 10 to 23], p=0.012) after	
					surgery.	
					Attrition: 2% vs. 8%	
Xin et al.	Design: RCT	Randomized N: 120	Inclusion: >65 years who	Mean (SD) age: 76.1 (5.7)	Main outcomes: Hypertonic	Moderate
(2017)	Setting:	Analyzed N: 120	underwent hip arthroplasty	Female %: 48.3	saline had a lower risk of POD	
	Postop,	Intervention (N=60): 7.5%	for femoral neck fracture	Race %: NR	vs. normal saline (OR 0.13,	
	orthopedic	hypertonic saline; right	surgery	Delirium %: 0 (excluded)	95% CI 0.04 to 0.41, p=0.001).	
	Country: China	before anesthesia	Exclusion: Those with	ASA score of 2 %: 60.8	Attrition: NR	
	Funding:	Control (N=60): Normal	dementia or MMSE <24, preop	Dementia %: 0 (excluded)		
	Government		delirium, history of neurologic	Mean (SD) MMSE: 25.6 (1.3)		

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition rates	Bias
name		interventions, duration,	criteria			
		and follow-up				
		saline; right before	or mental illness, current use	Postop %: 100		
		anesthesia	of tranquilizers or	Cancer %: NR		
		Intervention mean (SD)	antidepressants, history of an	Mean (SD) duration of		
		duration of anesthesia: 98.5	endocrine or metabolic	anesthesia, minutes: 100.3		
		(12.3) minutes	disorder, recent use of	(12.8)		
		Control mean (SD) duration	glucocorticoids or other			
		of anesthesia: 102.2 (13.3)	hormones, suffering from			
		minutes	infections or chronic			
		Follow-up (days): 3	inflammatory conditions, or			
			intake of anti-inflammatory			
			drugs			

Abbreviations. APACHE II=Acute Physiology and Chronic Health Evaluation II; ASA=American Society of Anesthesiologists; CI=confidence interval; CPB=cardiopulmonary bypass; df=degree of freedom;
 ECOG-PS= Eastern Cooperative Oncology Group Performance Status; GI=gastrointestinal; ICU=intensive care unit; IQR=interquartile range; IV=intravenous; MMSE=Mini-Mental State Examination;
 N=number; NR=not reported; OR=odds ratio; POCD=post-operative cognitive dysfunction; POD=post-operative delirium; postop=post-operative; preop=pre-operative; RCT=randomized controlled
 trial; RR=relative risk; SD=standard deviation; TUG=timed up and go.

4597 Additional Pharmacological Interventions for Treatment of Delirium

4598 Cholinesterase Inhibitors

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition rates	Bias
name		interventions, duration,	criteria			
		and follow-up				
Overshott et	Design: RCT	Randomized N: 15	Inclusion: >65 years with	Mean (SD) age: 82.5 (9.9)	Main outcomes: All of the	Moderate
al. (2010)	Setting:	Analyzed N: Unclear	delirium by CAM	Female %: 47	rivastigmine group, but only 3 of	
	Inpatient	Intervention 1 (N=8):	Exclusion: Patients who "were	Race %: NR	the placebo group, were	
	Country: U.K.	Rivastigmine 1.5 mg once	too ill" taking a cholinesterase	Delirium %: 100	negative for delirium on the	
	Funding:	a day increasing to 1.5 mg	inhibitor, or had blood test	Baseline scale of function: NR	CAM when they left the study.	
	Government,	twice a day; higher dose	abnormalities (urea,	Dementia %: 47	There was no significant	
	university	after 7 days	creatinine, transaminases,	Postop %: 0 (medical wards)	difference in the duration of	
		Intervention 2 (N=7):	bilirubin); myocardial	Cancer %: NR	delirium between the 2 groups	
		Placebo tablets identical	infarction, unstable cardiac		(rivastigmine group 6.3 days vs.	
		to drug, increasing to 2	arrhythmia, or severe		placebo group 9.9 days, 95% CI -	
			respiratory disease		15.6 to 8.4, p=0.5).	

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition rates	Bias
name		interventions, duration,	criteria			
		and follow-up				
		tablets; higher dose after			Attrition: 13% vs. 14%	
		7 days				
		Duration: Treated until				
		delirium resolved or for				
		maximum 28 days				
		Follow-up (days): 28				
van Eijk et	Design: RCT	Randomized N: 109	Inclusion: ≥18 years; ICU	Mean (SD) age: 69.0 (11.8)	Main outcomes: Median	Moderate
al. (2010)	Setting: ICU	Analyzed N: 104	patients with delirium	Female %: 36	duration of delirium was longer	
	Country: The	Intervention 1 (N=55):	according to CAM-ICU or	Race %: NR	in the rivastigmine group than in	
	Netherlands	Rivastigmine oral solution,	clinical diagnosis by a	Delirium %: 100	the placebo group, but the	
	Funding:	increasing dose starting at	psychiatrist, geriatrician, or	Baseline scale of function,	difference between the groups	
	Industry and	0.75 mL (1.5 mg) twice	neurologist; expected to	APACHE II score: mean (SD)	was not significant (5.0 days	
	nonprofit	daily and increasing in	remain in the ICU for ≥48	20.0 (8.4)	[IQR 2.7–14.2] vs. 3.0 days [IQR	
		increments to 3 mL (6 mg)	hours	Dementia %: NR	1.0–9.3], p=0.06). Delirium was	
		twice daily as tolerated, as	Exclusion: Unable to receive	Postop %: 69	significantly higher severity in	
		an adjunct to usual care	enteric drugs, receiving renal	Cancer %: NR	the rivastigmine group than in	
		with haloperidol	replacement therapy, liver		the placebo group. Mortality in	
		Intervention 2 (N=54):	failure with hepatic		the rivastigmine group (n=12,	
		Placebo oral solution,	encephalopathy, second- or		22%) was higher than in the	
		increasing dose starting at	third-degree atrioventricular		placebo group (n=4, 8%)	
		0.75 mL twice daily and	block or bradycardia with		(p=0.07).	
		increasing in increments	hemodynamic consequences,		Attrition at follow-up: 35% vs.	
		to 3 mL twice daily as	or without a functioning		28%	
		tolerated, as an adjunct to	pacemaker			
		usual care with				
		haloperidol				
		Duration: Dose increased				
		between days 4 and 9,				
		stable from day 10				
		onwards				
		Follow-up (days): 90				

Abbreviations. APACHE II=Acute Physiology and Chronic Health Evaluation II; CAM=Confusion Assessment Method; CAM-ICU=Confusion Assessment Method for the ICU; CI=confidence interval;

600 ICU=intensive care unit; IQR=interquartile range; N=number; NR=not reported; OR=odds ratio; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

4601 Benzodiazepine Antagonist

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition rates	Bias
name		interventions, duration,	criteria			
		and follow-up				
Schomer et	Design: RCT	Randomized N: 22	Inclusion: ≥18 years; critically	Mean (SD) age: 58.1 (7.31)	Main outcomes: The median	Moderate
al. (2020)	Setting: ICU	Analyzed N: 20	ill who previously received	Female %: 31.8	number of delirium-free days	
	Country: U.S.	Intervention 1 (N=11):	benzodiazepines while in the	Race %: NR	alive without coma within 14	
	Funding:	Flumazenil 0.1 mg IV,	ICU and had hypoactive	Delirium %: 100	days of enrollment was similar	
	University	titrated up every 5	delirium associated with	Mean (SD) Charlson	between the 2 groups (12.7 vs	
		minutes by 0.1 mg	benzodiazepine exposure	Comorbidity Index: 5 (3)	9.2, p=0.19). There was no	
		increments to a maximum	Exclusion: Those with an	Dementia %: NR	difference in the probability of	
		dose of 2 mg	alternate explanation for	Postop %: 4.5 (1/22)	delirium resolution within the	
		Intervention 2 (N=11):	altered mental status, acute	Cancer %: NR	first 14 days with 90% vs. 70% in	
		Placebo	brain injury, and/or history of	Mean (SD) time since last	the flumazenil and placebo	
		Duration: During ICU stay	seizures	benzodiazepine, hours: 49	groups, respectively (p=0.2).	
		Follow-up (days): Until		(30.8)	There was no statistical	
		discharge		Benzodiazepine indication	difference (OR 0.17, 95% Cl	
				-Ventilator asynchrony %: 50	0.022 to 1.23, p=0.079) in	
				-Alcohol withdrawal	delirium- and coma-free days at	
				syndrome %: 50	the end of the study drug	
					infusion.	
					Attrition: 9% vs. 9%	

4602 *Abbreviations.* CI=confidence interval; ICU=intensive care unit; IV=intravenous; N=number; NR=not reported; OR=odds ratio; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

4604 Additional Medications

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition rates	Bias
name		interventions, duration,	criteria			
		and follow-up				
Atalan et al.	Design: RCT	Randomized N: 53	Inclusion: Cardiac surgery	Mean (SD) age: 65.87 (9.03)	Main outcomes: Target	High
(2013)	Setting: Postop,	Analyzed N: 53	patients with hyperactive-	Female %: 26	Richmond Agitation and	
	cardiac	Intervention 1 (N=27):	type delirium	Race %: NR	Sedation Scale scores	
	Country: Turkey	Morphine sulfate 5 mg	Exclusion: Patients with	Delirium %: 3.0 vs. 2.9 (RASS	percentages in the morphine	
	Funding:	intramuscularly	dementia, abnormal level of	score)	group were statistically higher	
	Unclear	Intervention 2 (N=26):	consciousness, Parkinso''s	APACHE II score: 6.33 vs. 5.69	than the haloperidol group	

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition rates	Bias
name		interventions, duration,	criteria			
		and follow-up				
		Haloperidol 5 mg	disease, recent seizures, or	Dementia %: 0	(p=0.042 and p=0.028,	
		intramuscularly	hypoactive-type delirium	Postop %: 100 cardiac	respectively). The number of	
		Patients still agitated after	patients	surgeries	patients requiring additive	
		administration of 20		Cancer %: NR	sedatives was significantly more	
		mg/day of		Hepatic or renal impairment:	in the haloperidol group when	
		morphine/haloperidol		NR	compared with the morphine	
		also received 2.5 mg of		Alcohol use %: 19 vs. 4	group (p=0.011).	
		lorazepam perorally,		Drug use %: 4 vs. 12	Attrition: NR	
		twice a day.		Medications taken at		
		Duration: Postop, up to 10		baseline %: psychotropic drugs		
		days		4 vs. 12		
		Follow-up (days): 10,				
		every 12 hours until				
		discharge or 10 days				
Bakri et al.	Design: RCT	Randomized N: 96	Inclusion: Patients who	Mean (SD) age: 31 (5.5)	Main outcomes: At the end of	Moderate
(2015)	Setting: Postop,	Analyzed N: 96	screened positive for delirium	Female %: 9	the study, the number of	
	mixed	Intervention 1 (N=32):	within the first 3 days of ICU	Race %: NR	remaining delirious patients was	
	Country: Saudi	Dexmedetomidine	admission	Delirium %: 100 (required)	3, 6, and 2 in dexmedetomidine,	
	Arabia	continuous IV infusion of	Exclusion: Severely injured,	Functioning scale: NR	ondansetron, and haloperidol	
	Funding: None	1 μg/kg	deeply comatose, moribund	Dementia %: NR	groups, respectively, without	
		Intervention 2 (N=32):	patients, underlying	Postop %: 100	statistical significance. During	
		Ondansetron continuous	neurological diseases,	Cancer %: NR	the study period, no significant	
		IV infusion 4 mg	significant hearing loss,	Mean (SD) duration of surgery,	difference was found in the	
		Intervention 3 (N=32):	intracranial injury, or	minutes: 211 (34)	number of patients who needed	
		Haloperidol continuous IV	ischemic/hemorrhagic stroke	Mean (SEM) Injury Severity	"rescue haloperidol" between	
		infusion 5 mg		Score: 25.4 (2.9)	dexmedetomidine and	
		Duration: Twice a day for		Patients on MV on ICU	haloperidol groups (5 vs. 3,	
		3 consecutive days		admission %: 27	p=0.7), but the difference was	
		Follow-up (days): POD 3			significantly higher in	
					ondansetron and haloperidol	
					groups (11 vs. 3, p=0.03). The	
					mean total "rescue haloperidol"	

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates dose was significantly higher in ondansetron group than haloperidol group (p<0.001), but there was no difference between dexmedetomidine and haloperidol groups (p=0.07). Attrition: NR	Risk of Bias
Furuya et al. (2015)	Design: Retrospective cohort Setting: Inpatient Country: Japan Funding: NR	Analyzed N: 32 Intervention 1* (N=19 analyzed): No ramelteon Intervention 2* (N=13 analyzed): Ramelteon *Both groups received antipsychotics (risperidone, quetiapine, perospirone [not available in U.S.], haloperidol, or chlorpromazine) Duration: NR Follow-up (days): NR	Inclusion: patients diagnosed with delirium using the DSM- IV-TR by psychiatric specialists Exclusion: Severe liver dysfunction or use of fluvoxamine	Mean age: 80 vs. 78 Female %: 63 vs. 46 Race: NR Delirium %: 100 Baseline scale of function: NR Dementia %: NR Postop %: 68 vs. 69 Cancer %: NR	Main outcomes: Duration of delirium in the ramelteon group was significantly less than that in the no ramelteon group: mean (SEM) 6.6 days (1.0) vs 9.9 days (1.3) (p=0.048). Dose of antipsychotics in the ramelteon group was significantly smaller than that in the no ramelteon group: mean (SEM) 444.5 mg (95.7) vs. 833.4 mg (137.9) (p=0.044). Attrition: NR	High
Hov et al. (2019); LUCID	Design: RCT Setting: Inpatient Country: Norway Funding: Mixed	Randomized N: 20 Analyzed N: 20 Intervention 1 (N=10): Clonidine 75 µg loading dose of 1 capsule every third hour up to 4 doses then twice daily until delirium-free for 2 days, discharge, or a maximum of 7 days of treatment Intervention 2 (N=10): Placebo; loading placebo	Inclusion: ≥65 years who were acutely admitted with delirium or subsyndromal delirium Exclusion: Bradycardia, bradycardia due to sick-sinus- syndrome, second- or third- degree atrioventricular block (if not treated with pacemaker), or any other reason causing heart rate <50 bpm; hypotension or	Mean (SD) age: 86.5 Female %: 65 Race %: NR Delirium or subsyndromal Delirium %: 100 ADL independent %: 25 Cognitive Impairment %: 58 (IQCODE≥3.82) Postop %: NR Cancer %: NR	Main outcomes: There was no difference in time to first day without delirium (3 days vs. 3 days, p=0.59) or in final delirium resolution (5 days vs. 8 days, p=0.40); this study was underpowered. Overall attrition: 0%	Low

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition rates	Bias
name		interventions, duration,	criteria			
		and follow-up				
		dose given but other	orthostatic hypotension or a			
		details of dosing unclear	systolic blood pressure <120			
		Duration: Until delirium-	mmHg; ischemic stroke or			
		free for 2 days, discharge,	critical peripheral ischemia;			
		or a maximum of 7 days	acute coronary syndrome,			
		Follow-up (days): Until 7	unstable or severe coronary			
		days or discharge	heart disease, and moderate			
			to severe heart failure;			
			polyneuropathy,			
			phaeochromocytoma, or			
			renal insufficiency; body			
			weight <45 kg; considered as			
			moribund on admission;			
			unstable to take oral			
			medications; use of tricyclic			
			antidepressants, monoamine			
			reuptake inhibitors, or			
			ciclosporin; previously			
			included in the study; adverse			
			reactions to clonidine or			
			excipients (lactose,			
			saccharose); no speaking or			
			reading Norwegian; other			
			conditions; admission to ICU			
Liu et al.	Design: RCT	Randomized N: 100	Inclusion: Age 20-40 years	Mean (SD) age: 30.95 (4.87)	Main outcomes:	Low
(2018)	Setting: Postop,	Analyzed N: 100	scheduled for general	Female %: 46	Dexmedetomidine and	
	mixed	Intervention 1 (N=25):	anesthesia	Race %: NR	sufentanil decreased the	
	Country: China	Dexmedetomidine IV 0.2	Exclusion: Delirium preop	Delirium %: 100	duration of POD through 8	
	Funding:	µg/kg bolus followed by		ASA I, II %: 100	hours postop, but more	
	Nonprofit	0.6 μg/kg/hour		Dementia %: NR	individuals had delirium in the	
		Intervention 2 (N=25):		Postop %: 100	dexmedetomidine group at 8	
		Sufentanil IV 0.2 µg/kg		Cancer %: NR		

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition rates	Bias
name		interventions, duration,	criteria			
		and follow-up				
		bolus followed by 0.2			hours than the other 3 groups	
		µg/kg/hour			(36% vs. 8% to 16%, p<0.05).	
		Intervention 3 (N=25):			Overall attrition: 0%	
		Sufentanil IV 0.2 μg/kg				
		bolus followed by				
		combined				
		dexmedetomidine 0.6				
		µg/kg/hour and sufentanil				
		0.2 μg/kg/hour				
		Intervention 4 (N=25):				
		Sufentanil IV 0.2 μg/kg				
		bolus followed by				
		combined				
		dexmedetomidine 0.3				
		µg/kg/hour and sufentanil				
		0.1 μg/kg/hour				
		Duration: Postop				
		Follow-up (days): Through				
		8 hours				
Tagarakis et	Design: RCT	Randomized N: 80	Inclusion: Developed delirium	Mean (SD) age: 71	Main outcomes: A statistically	High
al. (2012)	Setting: Postop,	Analyzed N: 80	post on-pump heart surgery,	Female %: 34	significant improvement was	
	cardiac	Intervention 1 (N=40):	using a 4-point scale	Race %: NR	shown after the administration	
	Country: Greece	Ondansetron 8 mg IV	(threshold for delirium NR)	Delirium %: NR	of both ondansetron	
	Funding: NR	Intervention 2 (N=40):	Exclusion: History of severe	Baseline scale of function: NR	(percentage improvement	
		Haloperidol 5 mg IV	psychiatric disease	Dementia %: NR	61.29%, p<0.01) and haloperidol	
		Duration: Once for 10		Postop %: 100	(percentage improvement	
		minutes		Cancer %: NR	58.06%, p<0.01), but no	
		Follow-up (days): 1			between group differences	
					were found.	
					Attrition: NR	

4605 4606

Abbreviations. ADL=activities of daily living; APACHE II=Acute Physiology and Chronic Health Evaluation II; ASA=American Society of Anesthesiologists; DSM-IV-TR= Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision; ICU=intensive care unit; IQCODE=Informant Questionnaire on Cognitive Decline in the Elderly; IV=intravenous; MV=medical ventilation; N=number;

4607 NR=not reported; OR=odds ratio; POD=post-operative delirium; postop=post-operative; RASS=Richmond Agitation Sedation Scale; RCT=randomized controlled trial; SD=standard deviation;
 4608 SEM=standard error of the mean.

4609 Appendix I. Considerations in Use of Guidelines to Enhance the Quality of Care

- 4610 Clinical practice guidelines can help enhance quality of care by synthesizing available research evidence
- 4611 and delineating recommendations for care on the basis of the available evidence. In some
- 4612 circumstances, practice guideline recommendations will be appropriate to use in developing quality
- 4613 measures. Guideline statements can also be used in other ways, such as educational activities or
- 4614 electronic decision support, to enhance the quality of care that patients receive. Furthermore, when
- 4615 availability of services is a major barrier to implementing guideline recommendations, improved tracking
- 4616 of service availability and program development initiatives may need to be implemented by health
- 4617 organizations, health insurance plans, federal or state agencies, or other regulatory programs.
- 4618 Typically, guideline recommendations that are chosen for development into quality measures will
- 4619 advance one or more aims of the Institute of Medicine's report on "Crossing the Quality Chasm"
- 4620 (Institute of Medicine 2001) by facilitating care that is safe, effective, patient-centered, timely, efficient,
- 4621 and equitable. To achieve these aims, guality measures (Watkins et al. 2015) are needed that span the
- 4622 continuum of care (e.g., prevention, screening, assessment, treatment, continuing care), address the
- 4623 different levels of the health system hierarchy (e.g., system-wide, organization, program/department,
- 4624 individual clinicians), and include measures of different types (e.g., process, outcome, patient-centered
- 4625 experience). Emphasis is also needed on factors that influence the dissemination and adoption of
- 4626 evidence-based practices (Drake et al. 2008; Greenhalgh et al. 2004; Horvitz-Lennon et al. 2009).
- 4627 Often, quality measures will focus on gaps in care or on care processes and outcomes that have
- 4628 significant variability across specialties, health care settings, geographic areas, or patients' demographic
- 4629 characteristics. Administrative databases, registries, and data from electronic health record (EHR)
 4630 systems can help to identify gaps in care and key domains that would benefit from performance
- 4631 improvements (Acevedo et al. 2015; Patel et al. 2015; Watkins et al. 2016). Nevertheless, for some
- 4632 guideline statements, evidence of practice gaps or variability will be based on anecdotal observations if
- 4633 the typical practices of psychiatrists and other health professionals are unknown. Variability in the use of
- 4634 guideline-recommended approaches may reflect appropriate differences that are tailored to the
- 4635 patient's preferences, treatment of co-occurring illnesses, or other clinical circumstances that may not
- have been studied in the available research. On the other hand, variability may indicate a need to
- 4637 strengthen clinician knowledge or address other barriers to adoption of best practices (Drake et al.
- 4638 2008; Greenhalgh et al. 2004; Horvitz-Lennon et al. 2009). When performance is compared among
- 4639 organizations, variability may reflect a need for quality improvement initiatives to improve overall
- 4640 outcomes but could also reflect case-mix differences such as socioeconomic factors or the prevalence of
- 4641 co-occurring illnesses.
- 4642 Conceptually, quality measures can be developed for purposes of accountability, for internal or health
- 4643 system–based quality improvement, or both. Accountability measures require clinicians to report their
- 4644 rate of performance of a specified process, intermediate outcome, or outcome in a specified group of
- 4645 patients. Because these data are used to determine financial incentives or penalties based on
- 4646 performance, accountability measures must be scientifically validated, have a strong evidence base, fill
- 4647 gaps in care, and be broadly relevant and meaningful to patients, clinicians, and policy makers.

- 4648 Development of such measures is complex and requires detailed development of specification and pilot
- testing (Center for Health Policy/Center for Primary Care and Outcomes Research and Battelle Memorial
- 4650 Institute 2011; Fernandes-Taylor and Harris 2012; Iyer et al. 2016; Pincus et al. 2016; Watkins et al.
- 4651 2011). In contrast, internal or health system–based quality improvement measures are typically
- designed by and for individual providers, health systems, or payers. They typically focus on
 measurements that can suggest ways for clinicians or administrators to improve efficiency and de
- 4653 measurements that can suggest ways for clinicians or administrators to improve efficiency and delivery 4654 of services within a particular setting. Internal or health system–based quality improvement programs
- 4655 may or may not link performance with payment, and, in general, these measures are not subject to strict
- 4656 testing and validation requirements.
- 4657 Regardless of the purpose of the quality measure, it must be possible to define the applicable patient
- 4658 group (i.e., the denominator) and the clinical action or outcome of interest that is measured (i.e., the
- 4659 numerator) in validated, clear, and quantifiable terms. The measure also needs to be feasible. More
- specifically, the health system's or clinician's performance on the measure must be readily ascertained
- 4661 from chart review, patient-reported outcome measures, registries, or administrative data. In addition,
- use of the measure should yield improvements in quality of care to justify any clinician burden (e.g.,
- documentation burden) or related administrative costs (e.g., for manual extraction of data from charts,
- 4664 for modifications of EHRs to capture required data elements).
- 4665 Documentation of quality measures can be challenging, and, depending on the practice setting, can pose
 4666 practical barriers to meaningful interpretation of quality measures based on guideline
- 4667 recommendations. For example, when recommendations relate to patient assessment or treatment
- 4668 selection, clinical judgment may need to be used to determine whether the clinician has addressed the
- 4669 factors that merit emphasis for an individual patient. In other circumstances, standardized instruments
- 4670 can facilitate quality measurement reporting, but it is difficult to assess the appropriateness of clinical
- 4671 judgment in a validated, standardized manner. Furthermore, utilization of standardized assessments
- 4672 remains low (Fortney et al. 2017), and clinical findings are not routinely documented in a standardized
- 4673 format. Many clinicians appropriately use free text prose to describe symptoms, response to treatment,
- 4674 discussions with family, plans of treatment, and other aspects of care and clinical decision-making.
- 4675 Reviewing these free text records for measurement purposes would be impractical, and it would be
- 4676 difficult to hold clinicians accountable to such measures without advances in natural language
- 4677 processing technology and further increases in EHR use among mental health professionals.
- 4678 Possible unintended consequences of any derived measures would also need to be addressed in testing 4679 of a fully specified measure in a variety of practice settings. For example, in many health care systems, 4680 multiple clinicians are involved in the care of a patient and attributing measure performance to one 4681 clinician, or one group of clinicians, can be misleading. As another challenge, fully specified measures 4682 may lead to overuse of standardized language that does not accurately reflect what has occurred in 4683 practice. If multiple discrete fields are used to capture information, data will be easily retrievable and 4684 reportable, but oversimplification is a possible unintended consequence of measurement and 4685 documentation burden is likely to be high (Johnson et al. 2021). Just as guideline developers must 4686 balance the benefits and harms of a particular guideline recommendation, developers of performance

- 4687 measures must weigh the potential benefits, burdens, and unintended consequences in optimizing4688 quality measure design and testing.
- 4689 Assessment and Treatment Planning
- **4690** Statement 1 Structured Assessments for Delirium

APA recommends (1C) that patients with delirium or who are at risk for delirium undergo regular

4692 structured assessments for the presence or persistence of delirium using valid and reliable measures.

4693 Use of structured assessments for delirium could be incorporated into performance-based measures or 4694 quality improvement activities as well as being incorporated into EHR decision support. Such measures 4695 would not need to specify use of a particular structured assessment because there are many available 4696 options (see Statement 1, Implementation). However, most organizations choose one or two 4697 assessments for incorporation into their documentation. Performance-based measures or quality 4698 improvement activities could determine the proportion of high-risk patients who had been assessed for 4699 delirium. Categories of individuals at high-risk could be based on a number of factors including 4700 situational context (e.g., post-operative patients, ICU patients), demographic factors (e.g., age), and co-4701 occurring diagnoses (e.g., dementia). For performance-based measures, assessment could be specified 4702 at easily defined transitions or time points (e.g., admission, discharge, admission to or discharge from 4703 intensive care, specified number of post-operative days). If more frequent assessments are being done, 4704 such as for patients in intensive care, quality improvement activities could also examine the proportion 4705 of days with a delirium assessment. EHR decision support could prompt clinicians to determine the 4706 patient's neurocognitive status (Statement 2) or conduct a thorough assessment for delirium risk factors 4707 (Statement 3) based on a structured assessment finding that suggests the presence of delirium. EHR 4708 decision support could include passive alerts, suggestions to use delirium-specific order sets,

- documentation templates that are specific to delirium, or easy access to detailed reference informationon delirium.
- **4711** Statement 2 Determination of Baseline Neurocognitive Status

4712 APA recommends **(1C)** that a patient's baseline neurocognitive status be determined to permit accurate 4713 interpretation of delirium assessments.

- 4714 This statement would be difficult to incorporate into a performance-based measure or quality
- 4715 improvement activity because determining and documenting the patient's baseline neurocognitive
- 4716 status may include administration of a structured cognitive assessment that could be identified
- 4717 electronically, but could also involve obtaining historical and collateral information, which would be
- 4718 documented in free text. However, as natural language processing evolves, neurocognitive status may
- be more readily identified through analysis of free-text format. In addition, reminders to obtain and
- 4720 document the patient's baseline neurocognitive status could be incorporated into EHR decision support
- 4721 such as passive alerts, linked reference materials, or documentation templates that are specific to4722 delirium.

4723 Statement 3 – Review for Predisposing or Contributing Factors

4724 APA recommends **(1C)** that patients with delirium or who are at risk for delirium undergo a detailed 4725 review of possible predisposing or contributing factors.

4726 Although a detailed review of possible predisposing or contributing factors is important to the 4727 evaluation of patients with delirium or who are at risk for delirium, it would be challenging to 4728 incorporate this recommendation into a performance-based measure. Given the breadth of possible 4729 predisposing or contributing factors and the various ways in which they are documented, it would be 4730 difficult to ascertain details on specific factors from chart or administrative data. However, with 4731 advances in natural language processing and predictive algorithms, such information may be able to be 4732 ascertained more easily and used in quality improvement. In addition, quality-related efforts at the local 4733 level could assess whether EHR templates include prompts for documenting co-occurring conditions and 4734 whether such aspects of the evaluation are typically completed, while still allowing flexibility in the 4735 documentation of findings. Use of delirium-specific order sets could also suggest laboratory tests, 4736 imaging studies, or other evaluations aimed at identifying predisposing or contributing factors for

- 4737 delirium. Passive alerts or easily accessed links to reference materials can also be used to provide
- 4738 decision support to clinicians within the EHR workflow.

4739 *Statement 4 – Review of Medications*

4740 APA recommends **(1C)** that a detailed medication review be conducted in patients with delirium or who 4741 are at risk for delirium, especially those with pre-existing cognitive impairment.

4742 Key elements of this guideline recommendation are already incorporated into a number of 4743 performance-based measures, quality improvement activities, and aspects of EHR decision support. For 4744 example, obtaining an accurate medication list and reviewing medications as part of medication 4745 reconciliation are part of The Joint Commission's requirements at the time of hospital admission (The Joint Commission 2023). A measure for "Documentation of Current Medications in the Medical Record" 4746 4747 is also part of the Merit-Based Incentive Payment System Program, among other programs (Centers for 4748 Medicare and Medicaid Services 2022). Other available measures include a process measure for "Use of 4749 High-Risk Medications in Older Adults" (Centers for Medicare and Medicaid Services 2021b). Many EHRs 4750 also incorporate decision support alerts related to prescriptions that confer increased risk in older 4751 individuals (e.g., using the Beers criteria; American Geriatrics Society Beers Criteria® Update Expert 4752 Panel 2023). In addition to these performance-based measures, guality improvement activities, and EHR 4753 decision support tools, organizations could also assess whether gaps are occurring with medication 4754 review and reconciliation in patients with a diagnosis of delirium, pre-existing cognitive impairment, or 4755 significant risk factors for delirium (see Appendix I, Statement 1). In addition to EHR alerts, decision 4756 support could also include easily accessed links to reference materials on medications that may 4757 predispose someone to or exacerbate delirium.

4758 *Statement 5 – Use of Restraints*

4759 APA recommends **(1C)** that physical restraints not be used in patients with delirium, except in situations

4760 where injury to self or others is imminent and only:

- 4761 after review of factors that can contribute to racial/ethnic and other biases in decisions
 4762 about restraint;
- with frequent monitoring; and
- with repeated reassessment of the continued risks and benefits of restraint use as
 compared to less restrictive interventions.
- 4766 Regulatory policy and hospital conditions of participation already include requirements for monitoring
- and reporting related to use of physical restraints (Code of Federal Regulations 2019). Additional
- 4768 performance-based measures, quality improvement activities, or EHR decision support are not likely to4769 be indicated.
- **4770** Statement 6 Person-Centered Treatment Planning
- 4771 APA recommends (1C) that patients with delirium have a documented, comprehensive, and person-4772 centered treatment plan.
- 4773 An overarching performance-based measure derived from this recommendation is not recommended
- 4774 because of the associated burdens and practical challenges. Clinical judgment would be needed to
- 4775 determine whether a documented treatment plan was comprehensive and person-centered. If a
- 4776 performance measure assessed for the presence or absence of specific text related to treatment
- 4777 planning in the medical record, increased documentation burden could result. Such an approach could
- also foster overuse of standardized language that would not accurately reflect what has occurred in
- 4779 practice. Use of this statement as part of a quality improvement activity would face many of the same
- 4780 challenges as a performance-based measure, given the individualized focus of this recommendation.
- 4781 However, with advances in natural language processing and predictive algorithms, information on
- treatment planning and health-related needs, including social determinants of health, may be able to be
- identified more easily from electronic records and used in quality improvement and decision support.
- 4784 EHR decision support could also be provided through easily accessed links to reference materials or
- 4785 delirium-specific documentation templates or order sets.
- 4786 Non-Pharmacological Interventions
- 4787 Statement 7 Multi-Component Non-Pharmacological Interventions
- 4788 APA recommends (1B) that patients with delirium or who are at risk for delirium receive multi-
- 4789 component non-pharmacological interventions to manage and prevent delirium.
- 4790 Multi-component non-pharmacological interventions are key elements in the care of patients with
- 4791 delirium yet are challenging to measure as part of quality measurement initiatives due to many
- 4792 elements in typical multi-component bundles and variations in fidelity and consistency in providing
- 4793 individual bundle components. However, performance improvement activities within organizations
- 4794 could implement rounding checklists, EHR orders sets, EHR documentation templates to assess bundle
- 4795 adherence, and easily accessed EHR links to reference materials on non-pharmacological interventions
- 4796 (King et al. 2023a, 2023b; Stollings et al. 2020). Quality improvement activities could also be developed
- to assess adherence with individual aspects of the multi-component bundle such as early mobility and
- 4798 use of both spontaneous awakening and spontaneous breathing trials.

- 4799 Pharmacological Interventions
- 4800 Statement 8 Principles of Medication Use
- 4801 APA recommends **(1C)** that antipsychotic agents and other medications to address neuropsychiatric 4802 disturbances of delirium be used only when all the following criteria are met:
- verbal and non-verbal de-escalation strategies have been ineffective;
- contributing factors have been assessed and, insofar as possible, addressed; and
- 4805
 4806
 the disturbances cause the patient significant distress and/or present a risk of physical harm to the patient or others.
- 4807 Although it is important to determine whether the criteria in this recommendation are met prior to
- 4808 using antipsychotic agents and other medications to address neuropsychiatric disturbances of delirium,
- 4809 it would be challenging to incorporate this recommendation into a performance-based measure or
- 4810 quality improvement activity because this information is typically documented in free text. In addition,
- 4811 some of the information such as assessment of contributing factors may be based on multiple prior
- 4812 assessments rather than being documented in a single location. However, as natural language
- 4813 processing evolves, this information may be able to be extracted from the EHR more readily. In addition,
- 4814 delirium-specific documentation templates and links to reference materials might be incorporated into
- 4815 EHRs to prompt clinicians to consider these criteria prior to the ordering of medication to address
- 4816 neuropsychiatric disturbances of delirium.
- 4817 Statement 9 Antipsychotic Agents
- 4818 APA recommends (1C) that antipsychotic agents not be used to prevent delirium or hasten its
- 4819 resolution.
- 4820 Because antipsychotic agents could be used for reasons other than prevention or treatment of delirium,
- 4821 incorporation into performance-based measures, quality improvement activities, or EHR decision
- 4822 support would be challenging. However, many EHRs already incorporate decision support alerts related
- 4823 to prescriptions, such as antipsychotic medications, that confer increased risk in older individuals (e.g.,
- 4824 using the Beers criteria; American Geriatrics Society Beers Criteria[®] Update Expert Panel 2023).
- **4825** *Statement 10 Benzodiazepines*
- APA recommends (1C) that benzodiazepines not be used in patients with delirium or who are at risk for
 delirium, including those with pre-existing cognitive impairment, unless there is a specific indication for
 their use.
- 4829 Because benzodiazepines could be used for reasons other than prevention or treatment of delirium,
- 4830 incorporation into performance-based measures, quality improvement activities, or EHR decision
- 4831 support would be challenging. However, many EHRs already incorporate decision support alerts related
- 4832 to prescriptions, such as benzodiazepines, that confer increased risk in older individuals (e.g., using the
- 4833 Beers criteria; American Geriatrics Society Beers Criteria[®] Update Expert Panel 2023).

4834 Statement 11 – Dexmedetomidine to Prevent Delirium

- APA suggests (2B) that dexmedetomidine be used rather than other sedating agents to prevent delirium
 in patients who are undergoing major surgery or receiving mechanical ventilation in a critical care
 setting.
- 4838 As a suggestion, this guideline statement is not appropriate for use as a performance-based measure or 4839 quality improvement activity or incorporation into EHR decision support.
- 4840 Statement 12 Dexmedetomidine in Patients with Delirium
- 4841 APA suggests (2C) that when patients with delirium are sedated for mechanical ventilation in a critical
- 4842 care setting, dexmedetomidine be used rather than other sedating agents.
- 4843 As a suggestion, this guideline statement is not appropriate for use as a performance-based measure or
- 4844 quality improvement activity or incorporation into EHR decision support.
- 4845 Statement 13 Melatonin and Ramelteon
- 4846 APA suggests (2C) that melatonin and ramelteon not be used to prevent or treat delirium.
- 4847 As a suggestion, this guideline statement is not appropriate for use as a performance-based quality
- 4848 measure. Because melatonin and ramelteon could be used for reasons other than prevention or
- 4849 treatment of delirium, incorporation into quality improvement activities or EHR decision support would
- 4850 be challenging and not warranted.
- 4851 Statement 14 Medication Review at Transitions of Care
- 4852 APA recommends (1C) that, in patients with delirium or who are at risk for delirium, a detailed
- 4853 medication review, medication reconciliation, and reassessment of the indications for medications,
- 4854 including psychotropic medications, be conducted at transitions of care within the hospital.
- 4855 As described in Appendix I, Statement 4, key elements of this guideline recommendation are already
- 4856 incorporated into a number of performance-based measures, quality improvement activities, and
- 4857 aspects of EHR decision support. These include, but are not limited to, The Joint Commission's
- 4858 requirements for medication reconciliation (The Joint Commission 2023) and EHR decision support
- 4859 related to prescriptions that confer increased risk in older individuals (e.g., using the Beers criteria;
- 4860 American Geriatrics Society Beers Criteria[®] Update Expert Panel 2023). In addition, organizations could
- 4861 assess whether gaps are occurring with medication review and reconciliation in patients with a diagnosis
- 4862 of delirium, pre-existing cognitive impairment, or significant risk factors for delirium at transitions of
- 4863 care within the hospital.
- **4864** Statement 15 Follow-up Planning at Transitions of Care
- APA recommends (1C) that, when patients with delirium are transferred to another setting of care, plans
 for follow-up include:
- continued assessments for persistence of delirium;
- 4868
 detailed medication review, medication reconciliation, and reassessment of the
 4869
 indications for medications, including psychotropic medications;

- 4870 assessment of consequences of delirium (e.g., post-traumatic symptoms, cognitive
 4871 impairment); and
- psychoeducation about delirium for patients and their care partners.

4873 As described in Appendix I, Statement 4, key elements of this guideline recommendation related to 4874 medication review are already incorporated into a number of performance-based measures, quality 4875 improvement activities, and aspects of EHR decision support. These include, but are not limited to, The 4876 Joint Commission's requirements for medication reconciliation (The Joint Commission 2023) and EHR 4877 decision support related to prescriptions that confer increased risk in older individuals (e.g., using the 4878 Beers criteria; American Geriatrics Society Beers Criteria® Update Expert Panel 2023). A performance-4879 based process measure also exists for "Medication Reconciliation Post-Discharge" (Centers for Medicare 4880 and Medicaid Services 2021a). Performance-based measures, guality improvement activities, and 4881 aspects of EHR decision support could also be developed to address post-transfer assessment for 4882 persistence of delirium. Information for patients and their care partners can be included in EHRs to 4883 assist with psychoeducation and can leverage existing EHR features that suggest patient education 4884 materials based on diagnosis. EHR related decision support could also be provided through easily 4885 accessed links to reference materials or rating scales for assessing persistence of delirium or 4886 consequences of delirium (e.g., post-traumatic symptoms, cognitive impairment).

4887 References

- Abbasi S, Farsaei S, Ghasemi D, et al: Potential role of exogenous melatonin supplement in delirium
 prevention in critically ill patients: A double-blind randomized pilot study. Iran. 17(4):1571-1580, 2018
 30568713
- Abbasinia M, Babaii A, Nadali Z, et al: The effects of a tailored postoperative delirium prevention
 intervention after coronary artery bypass graft: A randomized controlled trial. Nursing Practice Today
 8(3):226-233, 2021
- Abdelgalel EF: Dexmedetomidine versus haloperidol for prevention of delirium during non-invasive
 mechanical ventilation. Egyptian Journal of Anaesthesia 32(4):473-481, 2016
- Abraham MP, Hinds M, Tayidi I, et al: Quetiapine for delirium prophylaxis in high-risk critically ill
 patients. Surgeon 19(2):65-71, 2021 32213291
- Abraham J, Hirt J, Richter C, et al: Interventions for preventing and reducing the use of physical
 restraints of older people in general hospital settings. Cochrane Database Syst Rev 8(8):CD012476, 2022
 36004796
- Acevedo A, Garnick DW, Dunigan R, et al: Performance measures and racial/ethnic disparities in the
 treatment of substance use disorders. J Stud Alcohol Drugs 76(1):57–67, 2015 25486394
- Adeola M, Azad R, Kassie GM, et al: Multicomponent interventions reduce high-risk medications for
 delirium in hospitalized older adults. J Am Geriatr Soc 66:1638-1645, 2018 30035315
- Agar MR, Lawlor PG, Quinn S, et al: Efficacy of oral risperidone, haloperidol, or placebo for symptoms of
 delirium among patients in palliative care: A randomized clinical trial. JAMA Intern Med 177(1):34-42,
 2017 27918778
- Aizawa K, Kanai T, Saikawa Y, et al: A novel approach to the prevention of postoperative delirium in the
 elderly after gastrointestinal surgery. Surg Today 32(4):310-314, 2002 12027195
- Aldecoa C, Bettelli G, Bilotta F, et al: European Society of Anaesthesiology evidence-based and
 consensus-based guideline on postoperative delirium. Eur J Anaesthesiol 34(4):192-214, 2017 28187050
- 4912 Al Tmimi L, Verbrugghe P, Van de Velde M, et al: Intraoperative xenon for prevention of delirium after
- 4913 on-pump cardiac surgery: a randomised, observer-blind, controlled clinical trial. Br J Anaesth 28:28,
 4914 2020 32005514
- Aloisi G, Marengoni A, Morandi A, et al: Drug prescription and delirium in older inpatients: Results from
 the nationwide multicenter Italian Delirium Day 2015-2016. J Clin Psychiatry 80(2):18m12430, 2019
 30901165
- Al-Qadheeb NS, Skrobik Y, Schumaker G, et al: Preventing ICU subsyndromal delirium conversion to
 delirium with low-dose IV haloperidol: a double-blind, placebo-controlled pilot study. Crit Care Med
 44(3):583-591, 2016 26540397

- 4921 Alvarez EA, Garrido MA, Tobar EA, et al: Occupational therapy for delirium management in elderly
- 4922 patients without mechanical ventilation in an intensive care unit: a pilot randomized clinical trial. J Crit
- 4923 Care 37:85-90, 2017 27660922
- 4924 American College of Emergency Physicians: Geriatric emergency department guidelines. Ann Emerg Med
 4925 63(5):e7-25, 2014 24746437
- 4926 American Geriatrics Society Beers Criteria[®] Update Expert Panel: American Geriatrics Society 2023
- 4927 updated AGS Beers Criteria[®] for potentially inappropriate medication use in older adults. J Am Geriatr
 4928 Soc, 2023 37139824<<Epub ahead of print>>
- American Geriatrics Society Expert Panel on Postoperative Delirium in Older Adults: American Geriatrics
 Society abstracted clinical practice guideline for postoperative delirium in older adults. J Am Geriatr Soc
 63(1):142-150, 2015 25495432
- Am^{er}ican Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders, 5th Edition, Text
 Revision. Washington, DC, American Psychiatric Association, 2022
- Andersen-Ranberg NC, Poulsen LM, Perner A, et al: Haloperidol for the treatment of delirium in ICU
 patients. N Engl J Med 387(26):2425-2435, 2022 36286254
- 4936 Arttawejkul P, Reutrakul S, Muntham D, et al: Effect of nighttime earplugs and eye masks on sleep
 4937 quality in intensive care unit patients. Indian J 24(1):6-10, 2020 32148342
- Atalan N, Efe Sevim M, Akgun S, et al: Morphine is a reasonable alternative to haloperidol in the
 treatment of postoperative hyperactive-type delirium after cardiac surgery. J Cardiothorac Vasc Anesth
- 4940 27(5):933-938, 2013 23791495
- Avendano-Cespedes A, Garcia-Cantos N, Gonzalez-Teruel Mdel M, et al: Pilot study of a preventive
 multicomponent nurse intervention to reduce the incidence and severity of delirium in hospitalized
- 4943 older adults: MID-Nurse-P. Maturitas 86:86-94, 2016 26921934
- 4944 Avidan MS, Maybrier HR, Abdallah AB, et al: Intraoperative ketamine for prevention of postoperative
- delirium or pain after major surgery in older adults: an international, multicentre, double-blind,
- 4946 randomised clinical trial. Lancet 390(10091):267-275, 2017 28576285
- Azuma K, Takaesu Y, Soeda H, et al: Ability of suvorexant to prevent delirium in patients in the intensive
 care unit: a randomized controlled trial. Acute Med Surg 5(4):362-368, 2018 30338083
- 4949 Bakri MH, Ismail EA, Ibrahim A: Comparison of dexmedetomidine or ondansetron with haloperidol for
- 4950 treatment of postoperative delirium in trauma patients admitted to intensive care unit: randomized
- 4951 controlled trial. Anaesthesia, Pain and Intensive Care 19(2):118-123, 2015
- Balas MC, Tan A, Pun BT, et al: Effects of a national quality improvement collaborative on ABCDEF
 bundle implementation. Am J Crit Care 31(1):54-64, 2022 34972842

- 4954 Barnes-Daly MA, Phillips G, Ely EW: Improving hospital survival and reducing brain dysfunction at seven
- California community hospitals: implementing PAD guidelines via the ABCDEF bundle in 6,064 patients.
 Crit Care Med 45(2):171-178, 2017 27861180
- 4957 Battle CE, James K, Bromfield T, Temblett P: Predictors of post-traumatic stress disorder following 4958 critical illness: a mixed methods study. J Intensive Care Soc 18(4):289-293, 2017 29123558
- 4959 BC Centre for Palliative Care: B.C. Inter-professional Palliative Symptom Management Guidelines. 2017a.
- 4960 Available at: https://bc-cpc.ca/wp-content/uploads/2018/09/SMGs-interactive-final-Nov-30-
- 4961 compressed.pdf. Accessed December 5, 2023.
- BC Centre for Palliative Care: Palliative Care for the Patient with Incurable Cancer or Advanced DiseasePart 2: Pain and Symptom Management. 2017b. Available at:
- 4964 https://www2.gov.bc.ca/assets/gov/health/practitioner-pro/bc-guidelines/palliative2.pdf. Accessed
 4965 December 5, 2023.
- Beaucage-Charron J, Rinfret J, Coveney R, Williamson D: Melatonin and ramelteon for the treatment of
 delirium: A systematic review and meta-analysis. J Psychosom Res 170:111345, 2023 37150157
- 4968 Beaussier M, Weickmans H, Parc Y, et al: Postoperative analgesia and recovery course after major
- 4969 colorectal surgery in elderly patients: a randomized comparison between intrathecal morphine and
 4970 intravenous PCA morphine. Reg Anesth Pain Med 31(6):531-538, 2006 17138196
- 4971 Bellapart J, Appadurai V, Lassig-Smith M, et al: Effect of exogenous melatonin administration in critically
 4972 ill patients on delirium and sleep: a randomized controlled trial. Crit Care Res Pract 2020:3951828, 2020
 4973 33029397
- 4974 Berkman ND, Lohr KN, Ansari MT, et al: Grading the strength of a body of evidence when assessing
 4975 health care interventions: an EPC update. J Clin Epidemiol 68(11):1312-1324, 2015 25721570
- 4976 Bielza R, Llorente J, Thuissard IJ, et al: Effect of intravenous iron on functional outcomes in hip fracture:
 4977 a randomised controlled trial. Age Ageing 15:15, 2020 32542370
- 4978 Blandfort S, Gregersen M, Borris LC, et al: Blood transfusion strategy and risk of postoperative delirium
- 4979 in nursing homes residents with hip fracture. a post hoc analysis based on the TRIFE randomized
- 4980 controlled trial. Aging-Clinical & Experimental Research 29(3):459-466, 2017 27251666
- 4981 Boettger S, Breitbart W, Passik S: Haloperidol and risperidone in the treatment of delirium and its
 4982 subtypes. European Journal of Psychiatry 25(2):59-67, 2011
- Boettger S, Jenewein J, Breitbart W: Haloperidol, risperidone, olanzapine and aripiprazole in the
 management of delirium: a comparison of efficacy, safety, and side effects. Palliat Support Care
 13(4):1079-1085, 2015 25191793
- Bolton C, Thilges S, Lane C, et al: Post-traumatic stress disorder following acute delirium. J Clin Psychol
 Med Settings 28(1):31-39, 2021 31823162

- Boncyk CS, Farrin E, Stollings JL, et al: Pharmacologic management of intensive care unit delirium:
 clinical prescribing practices and outcomes in more than 8500 patient encounters. Anesth Analg
 133:713-722, 2021 33433117
- 4991 Boockvar KS, Judon KM, Eimicke JP, et al: Hospital Elder Life Program in Long-Term Care (HELP-LTC): a 4992 cluster randomized controlled trial. J Am Geriatr Soc 68(10):2329-2335, 2020 32710658
- 4993 Boustani MA, Campbell NL, Khan BA, et al: Enhancing care for hospitalized older adults with cognitive 4994 impairment: a randomized controlled trial. J Gen Intern Med 27(5):561-567, 2012 22302355
- Breitbart W, Marotta R, Platt MM, et al: A double-blind trial of haloperidol, chlorpromazine, and
 lorazepam in the treatment of deliriu^m in hospitalized AIDS patients. Am J Psychiatry 153(2):231-237,
 1996 8561204
- 4998 Brown CH 4th, Neufeld KJ, Tian J, et al: Effect of targeting mean arterial pressure during
- 4999 cardiopulmonary bypass by monitoring cerebral autoregulation on postsurgical delirium among older
- patients: a nested randomized clinical trial. JAMA Surg 154(9):819-826, 2019 31116358
- 5001 Browning SG, Watters R, Thomson-Smith C: Impact of therapeutic music listening on intensive care unit 5002 patients: a pilot study. Nurs Clin North Am 55(4):557-569, 2020 33131632
- 5003 Bruera E, Hui D, Dalal S, et al: Parenteral hydration in patients with advanced cancer: a multicenter, 5004 double-blind, placebo-controlled randomized trial. J Clin Oncol 31(1):111-118, 2013 23169523
- 5005 Brummel NE, Girard TD, Ely EW, et al: Feasibility and safety of early combined cognitive and physical
- 5006 therapy for critically ill medical and surgical patients: the Activity and Cognitive Therapy in ICU (ACT-ICU)
- 5007 trial. Intensive Care Med 40(3):370-379, 2014 24257969
- Bulic D, Bennett M, Georgousopoulou EN, et al: Cognitive and psychosocial outcomes of mechanically
 ventilated intensive care patients with and without delirium. Ann Intensive Care 10(1):104, 2020
 32748298
- Burton JK, Craig L, Yong SQ, et al: Non-pharmacological interventions for preventing delirium in
 hospitalised non-ICU patients. Cochrane Database Syst Rev 11:Cd013307, 2021 34826144
- 5013Bush SH, Tierney S, Lawlor PG: Clinical assessment and management of delirium in the palliative care5014setting. Drugs 77(15):1623-1643, 2017 28864877
- Bush SH, Lawlor PG, Ryan K, et al: Delirium in adult cancer patients: ESMO Clinical Practice Guidelines.
 Ann Oncol 29(Suppl 4):iv143-iv165, 2018 29992308
- 5017 Campbell NL, Perkins AJ, Khan BA, et al: Deprescribing in the pharmacologic management of delirium: a
 5018 randomized trial in the intensive care unit. J Am Geriatr Soc 67(4):695-702, 2019 30664239

- 5019 Cancer Care Ontario: Symptom Management Guide-to-Practice: Delirium. Ontario, Cancer Care Ontario
- 5020 (CCO). 2010. Available at: https://www.cancercareontario.ca/en/symptom-management/3136.
- 5021 Accessed December 5, 2023.
- 5022 Caplan GA, Coconis J, Board N, et al: Does home treatment affect delirium? a randomised controlled trial
- 5023of rehabilitation of elderly and care at home or usual treatment (The REACH-OUT trial). Age Ageing502435(1):53-60, 2006 16239239
- 5025 Carpenter CR, Hammouda N, Linton EA, et al: Delirium prevention, detection, and treatment in
- 5026 emergency medicine settings: a geriatric emergency care applied research (GEAR) network scoping
- review and consensus statement. Acad Emerg Med 28(1):19-35, 2021 33135274
- 5028 Carreras Tartak JA, Brisbon N, Wilkie S, et al: Racial and ethnic disparities in emergency department 5029 restraint use: a multicenter retrospective analysis. Acad Emerg Med 28(9):957-965, 2021 34533261
- 5030 Center for Health Policy/Center for Primary Care and Outcomes Research and Battelle Memorial
- 5031 Institute: Quality Indicator Measure Development, Implementation, Maintenance, and Retirement.
- 5032 Contract No 290-04-0020. Rockville, MD, Agency for Healthcare Research and Quality, May 2011.
- 5033 Available at:
- 5034 https://qualityindicators.ahrq.gov/downloads/resources/publications/2011/qi_measure_development_i
- 5035 mplementation_maintenance_retirement_full_5-3-11.pdf. Accessed December 31, 2023.
- 5036 Centers for Medicare and Medicaid Services: Measures In<u>ventory Tool</u>: Medication Reconciliation Post-
- 5037 Discharge. January 29, 2021a Available at:
- 5038https://cmit.cms.gov/cmit/#/MeasureView?variantId=245§ionNumber=1. Accessed on December503928, 2023.
- 5040 Centers for Medicare and Medicaid Services: Measures Inven<u>tory Tool: U</u>se of High-Risk Medications in
- 5041 Older Adults. October 8, 2021b Available at:
- 5042 https://cmit.cms.gov/cmit/#/MeasureView?variantId=4782§ionNumber=1. Accessed on December
 5043 28, 2023.
- 5044 Centers for Medicare and Medicaid Services: Measures Inventory Tool: Documentation of Current
- 5045 Medications in the Medical Record. December 12, 2022 Available at:
- 5046https://cmit.cms.gov/cmit/#/MeasureView?variantId=410§ionNumber=1. Accessed on December504728, 2023.
- 5048 Chaiwat O, Chanidnuan M, Pancharoen W, et al: Postoperative delirium in critically ill surgical patients:
- 5049 incidence, risk factors, and predictive scores. BMC Anesthesiol 19:39, 2019 30894129
- 5050 Chan MT, Cheng BC, Lee TM, et al: BIS-guided anesthesia decreases postoperative delirium and cognitive 5051 decline. J Neurosurg Anesthesiol 25(1):33-42, 2013 23027226

- 5052 Chan MT, Gin T: Delirium and cognitive decline after surgery: a randomised controlled trial of
- anaesthetic management to improve postoperative mental health outcome. Hong Kong Med 20 Suppl7:28-29, 2014 25647822
- 5055 Chang YF, Chao A, Shih PY, et al: Comparison of dexmedetomidine versus propofol on hemodynamics in 5056 surgical critically ill patients. J Surg Res 228:194-200, 2018 29907211
- 5057 Chen ZF: Clinical studies on the relationship of the short duration of use of midazolam with the 5058 occurrence of delirium in ICU patients with mechanical ventilation. Farmacia 68(1):164-169, 2020
- 5059 Chen CC, Lin MT, Tien YW, et al: Modified hospital elder life program: effects on abdominal surgery
 5060 patients. J Am Coll Surg 213(2):245-252, 2011 21641835
- 5061 Chen CC, Li HC, Liang JT, et al: Effect of a modified Hospital Elder Life Program on delirium and length of
- 5062 hospital stay in patients undergoing abdominal surgery: a cluster randomized clinical trial. JAMA Surg
- 5063 152(9):827-834, 2017 28538964
- 5064 Chen PH, Tsuang FY, Lee CT, et al: Neuroprotective effects of intraoperative dexmedetomidine versus 5065 saline infusion combined with goal-directed haemodynamic therapy for patients undergoing cranial 5066 surgery: A randomised controlled trial. Eur J Anaesthesiol 38(12):1262-1271, 2021 34101714
- 5067 Chevillon C, Hellyar M, Madani C, et al: Preoperative education on postoperative delirium, anxiety, and
 5068 knowledge in pulmonary thromboendarterectomy patients. Am J Crit Care 24(2):164-171, 2015
 5069 25727277
- 5070 Choosing Wisely: American Geriatrics Society: Ten Things Clinicians and Patients Should Question, 2021.
 5071 Available at: https://www.choosingwisely.org/societies/american-geriatrics-society/ Accessed on May
 5072 10, 2023.
- 5073 Chow WB, Rosenthal RA, Merkow RP, et al: Optimal preoperative assessment of the geriatric surgical
 5074 patient: a best practices guideline from the American College of Surgeons National Surgical Quality
 5075 Improvement Program and the American Geriatrics Society. J Am Coll Surg 215(4):453-466, 2012
 5076 22917646
- 5077 Chuen VL, Chan ACH, Ma J, et al: The frequency and quality of delirium documentation in discharge5078 summaries. BMC Geriatr 21:307, 2021 33980170
- 5079 Clarke HA, Katz J, McCartney CJ, et al: Perioperative gabapentin reduces 24 h opioid consumption and
 5080 improves in-hospital rehabilitation but not post-discharge outcomes after total knee arthroplasty with
 5081 peripheral nerve block. Br J Anaesth 113(5):855-864, 2014 24980426
- 5082 Clarke H, Pagé GM, McCartney CJ, et al: Pregabalin reduces postoperative opioid consumption and pain
 5083 for 1 week after hospital discharge, but does not affect function at 6 weeks or 3 months after total hip
 5084 arthroplasty. Br J Anaesth 115(6):903-911, 2015 26582851

- 5085 Clemmesen CG, Lunn TH, Kristensen MT, et al: Effect of a single pre-operative 125 mg dose of
- 5086 methylprednisolone on postoperative delirium in hip fracture patients: a randomised, double-blind, 5087 placebo-controlled trial. Anaesthesia 73(11):1353-1360, 2018 30151823
- 5088 Coburn M, Sanders RD, Maze M, et al: The hip fracture surgery in elderly patients (HIPELD) study to 5089 evaluate xenon anaesthesia for the prevention of postoperative delirium: a multicentre, randomized 5090 clinical trial. Br J Anaesth 120(1):127-137, 2018 29397119
- 5091 Code of Federal Regulations: Part 482-Conditions Of Participation for Hospitals. As amended Sept. 30,
- 5092 2019. Available at: https://www.ecfr.gov/current/title-42/chapter-IV/subchapter-G/part-482. Accessed 5093 on December 22, 2023.
- 5094 Cole MG, McCusker J: Delirium in older adults: a chronic cognitive disorder? Int Psychogeriatr 28:1229-5095 1233, 2016 27246118
- Cole MG, Primeau FJ, Bailey RF, et al: Systematic intervention for elderly inpatients with delirium: a
 randomized trial. CMAJ 151(7):965-970, 1994 7922932
- 5098 Cole MG, McCusker J, Bellavance F, et al: Systematic detection and multidisciplinary care of delirium in 5099 older medical inpatients: a randomized trial. CMAJ 167(7):753-759, 2002 12389836
- 5100 Cole MG, McCusker J, Bailey R, et al: Partial and no recovery from delirium after hospital discharge
 5101 predict increased adverse events. Age Ageing 46(1):90-95, 2017 28181649
- 5102 Cotae AM, Tiglis M, Cobilinschi C, et al: The impact of monitoring depth of anesthesia and nociception
 5103 on postoperative cognitive function in adult multiple trauma patients. Medicina 57(5):23, 2021
 5104 33922552
- 5105 Conteh E, Alorda A, Lebowitz D, MacIntosh T: Disparities in the use of chemical and physical restraints in 5106 the emergency department by race/ethnicity. J Racial Ethn Health Disparities, 2023 36622570 <<Epub 5107 ahead of print>>
- 5108 Ćurković M, Dodig-Ćurković K, Erić AP, Kralik K, Pivac N. Psychotropic medications in older adults: a 5109 review. Psychiatr Danub 28(1):13-24, 2016 26938816
- 5110 Dai H, Liu X, Feng D, et al: Evidence-based nursing combined with cognitive function training can reduce
- the incidence of delirium in ICU patients and improve their cognitive function. Am J Transl Res5112 13(4):3262-3269, 2021 34017497
- 5113 Dang V, Mansukhani MP, Wang Z, et al: Prophylactic use of ramelteon for delirium in hospitalized
 5114 patients: a systematic review and meta-analyses. J Acad Consult Liaison Psychiatry 64(1):65-72, 2023
 5115 35718086
- 5116 D'Angelo RG, Rincavage M, Tata AL, et al: Impact of an antipsychotic discontinuation bundle during 5117 transitions of care in critically ill patients. J Intensive Care Med 34:40-47, 2019 28049388

- 5118 Danish Health Authority: National clinical guideline for the prevention and treatment of organic delirium
- 5119 Quick Guide. 2021. Available at: https://www.sst.dk/-/media/Udgivelser/2021/NKR-delirium/Eng-quick-
- 5120 guide_Forebyggelse-og-behandling-af-organisk-delirium.ashx. Accessed December 5, 2023.
- 5121 Davis DHJ, Skelly DT, Murray C, et al: Worsening cognitive impairment and neurodegenerative pathology
 5122 progressively increase risk for delirium. Am J Geriatr Psychiatry 23(4):403-415, 2015 25239680
- 5123 de Jonghe A, van Munster BC, van Oosten HE, et al: The effects of melatonin versus placebo on delirium
- 5124 in hip fracture patients: study protocol of a randomised, placebo-controlled, double blind trial. BMC
- 5125 Geriatr 11:34, 2011 21729284
- 5126 de Jonghe A, van Munster BC, Goslings JC, et al: Effect of melatonin on incidence of delirium among
- 5127 patients with hip fracture: a multicentre, double-blind randomized controlled trial. CMAJ 186(14):E547-5128 E556, 2014 25183726
- 5129 Deng Y, Wang R, Li S, et al: Methylene blue reduces incidence of early postoperative cognitive disorders
- 5130 in elderly patients undergoing major non-cardiac surgery: an open-label randomized controlled clinical
- 5131 trial. J Clin Anesth 68:110108, 2020 33091706
- 5132 Devlin JW, Fong JJ, Schumaker G, et al: Use of a validated delirium assessment tool improves the ability
- of physicians to identify delirium in medical intensive care unit patients. Crit Care Med 35(12):27212724, 2007 18074477
- 5135 Devlin JW, Roberts RJ, Fong JJ, et al: Efficacy and safety of quetiapine in critically ill patients with
- delirium: a prospective, multicenter, randomized, double-blind, placebo-controlled pilot study. Crit Care
 Med 38(2):419-427, 2010 19915454
- 5138 Devlin JW, Skrobik Y, Gélinas C, et al: Clinical practice guidelines for the prevention and management of 5139 pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit Care
- 5140 Med 46(9):e825-e873, 2018 30113379
- 5141 Dieleman JM, Nierich AP, Rosseel PM, et al: Intraoperative high-dose dexamethasone for cardiac
 5142 surgery: a randomized controlled trial. JAMA 308(17):1761-1767, 2012 23117776
- 5143 Dighe K, Clarke H, McCartney CJ, et al: Perioperative gabapentin and delirium following total knee
- arthroplasty: a post-hoc analysis of a double-blind randomized placebo-controlled trial. Can J Anaesth
 61(12):1136-1137, 2014 25216631
- 5146 Dixit D, Barbarello Andrews L, Radparvar S, et al: Descriptive analysis of the unwarranted continuation of
- antipsychotics for the management of ICU delirium during transitions of care: a multicenter evaluation
- 5148 across New Jersey. Am J Health Syst Pharm 78:1385-1394, 2021 33895793
- 5149 Djaiani G, Silverton N, Fedorko L, et al: Dexmedetomidine versus propofol sedation reduces delirium 5150 after cardiac surgery: a randomized controlled trial. Anesthesiology 124(2):362-368, 2016 26575144

- 5151 Dong Z, Song J, Ge M, et al: Effectiveness of a multidisciplinary comprehensive intervention model based
- 5152 on the Hospital Elderly Life Program to prevent delirium in patients with severe acute pancreatitis. Ann 5153 Palliat Med 9(4):2221-2228, 2020 32692240
- 5154 Drake R, Skinner J, Goldman HH: What explains the diffusion of treatments for mental illness? Am J 5155 Psychiatry 165(11):1385-1392, 2008 18981070
- 5156 Drewas L, Ghadir H, Neef R, et al: Individual Pharmacotherapy Management (IPM) I: a group-matched
- 5157 retrospective controlled clinical study on prevention of complicating delirium in the elderly trauma
- 5158 patients and identification of associated factors. BMC Geriatr 22:29, 2022 34991474
- 5159 Duggan MC, Van J, Ely EW: Delirium assessment in critically ill older adults: considerations during the
 5160 COVID-19 pandemic. Crit Care Clin 37(1):175-190, 2021 33190768
- 5161 Duprey MS, Dijkstra-Kersten SMA, Zaal IJ, et al: Opioid use increases the risk of delirium in critically ill 5162 adults independently of pain. Am J Respir Crit Care Med 204(5):566-572, 2021 33835902
- 5163 Duprey MS, Devlin JW, Griffith JL, et al: Association between perioperative medication use and

5164 postoperative delirium and cognition in older adults undergoing elective noncardiac surgery. Anesth

- 5165 Analg 134(6):1154-1163, 2022 35202006
- Eghbali-Babadi M, Shokrollahi N, Mehrabi T: Effect of family-patient communication on the incidence of
 delirium in hospitalized patients in cardiovascular surgery ICU. Iran J Nurs Midwifery Res 22(4):327-331,
 2017 28904548
- 5169 Ertuğrul B, Özden D: The effect of physical restraint on neurovascular complications in intensive care5170 units. Aust Crit Care 33:30-38, 2020 31079994
- 5171 Evrard P, Pétein C, Beuscart JB, Spinewine A: Barriers and enablers for deprescribing benzodiazepine
- receptor agonists in older adults: a systematic review of qualitative and quantitative studies using the
 theoretical domains framework. Implement Sci 17(1):41, 2022 35804428
- 5174 Fahimi K, Abbasi A, Zahedi M, et al: The effects of multimedia education on postoperative delirium in
- patients undergoing coronary artery bypass graft: a randomized clinical trial. Nurs Crit Care 25(6):346352, 2020 31532055
- 5177 Farlinger C, Clarke H, Wong CL: Perioperative pregabalin and delirium following total hip arthroplasty: a
 5178 post hoc analysis of a double-blind randomized placebo-controlled trial. Can J Anaesth 65(11):12695179 1270, 2018 30084031
- 5180 Fazlollah A, Babatabar Darzi H, Heidaranlu E, et al: The effect of foot reflexology massage on delirium
- and sleep quality following cardiac surgery: a randomized clinical trial. Complement Ther Med
- 5182 60:102738, 2021 34029674
- 5183 Featherstone I, Sheldon T, Johnson M, et al: Risk factors for delirium in adult patients receiving specialist
- palliative care: a systematic review and meta-analysis. Palliat Med 36:254-267, 2022 34930056

- 5185 Fernandes-Taylor S, Harris AH: Comparing alternative specifications of quality measures: access to 5186 pharmacotherapy for alcohol use disorders. J Subst Abuse Treat 42(1):102–107, 2012 21839604
- 5187 Flaherty JH, Little MO: Matching the environment to patients with delirium: lessons learned from the
- 5188 delirium room, a restraint-free environment for older hospitalized adults with delirium. J Am Geriatr Soc
- 5189 59 Suppl 2:S295-300, 2011 22091576
- 5190 Flurie RW, Gonzales JP, Tata AL, et al: Hospital delirium treatment: continuation of antipsychotic therapy
- from the intensive care unit to discharge. Am J Health Syst Pharm 72:S133-139, 2015 26582298
- 5192 Fong TG, Inouye SK: The inter-relationship between delirium and dementia: the importance of delirium
 5193 prevention. Nat Rev Neurol 18(10):579-596, 2022 36028563
- Ford AH, Flicker L, Kelly R, et al: The Healthy Heart-Mind Trial: randomized controlled trial of melatonin
 for prevention of delirium. J Am Geriatr Soc 68(1):112-119, 2020 31595489
- Fortney JC, Unützer J, Wrenn G, et al: A tipping point for measurement-based care. Psychiatr Serv68(2):179-188, 2017 27582237
- Fox MA, Elefritz JL, Huang BM, Hunley C: Comparison of lurasidone versus quetiapine for the treatment
 of delirium in critically ill patients. J Intensive Care Med 35(4):394-399, 2020 29357776
- Francis-Coad J, Hill AM, Jacques A, et al: Association between characteristics of injurious falls and fall
 preventive interventions in acute medical and surgical units. J Gerontol A Biol Sci Med Sci 75(10):e152 e158, 2020 31996903
- Franks ZM, Alcock JA, Lam T, et al: Physical restraints and post-traumatic stress disorder in survivors of
 critical illness: a systematic review and meta-analysis. Ann Am Thorac Soc 18(4):689-697, 2021
 33075240
- 5206 Friberg K, Hofsø K, Ræder J, et al: Prevalence of and predictive factors associated with high levels of
- post-traumatic stress symptoms 3 months after intensive care unit admission: a prospective study. Aust
 Crit Care 2023 37455211<<<Epub ahead of print>>
- Fu R, Zou L, Song XC, et al: Therapeutic effect of perioperative mild hypothermia on postoperative
 neurological outcomes in patients with acute Stanford type A aortic dissection. Heart Surg Forum
 23(6):815-820, 2020 33234219
- Fukata S, Kawabata Y, Fujisiro K, et al: Haloperidol prophylaxis does not prevent postoperative delirium
 in elderly patients: a randomized, open-label prospective trial. Surg Today 44(12):2305-2313, 2014
 24532143
- 5215 Fukata S, Kawabata Y, Fujishiro K, et al: Haloperidol prophylaxis for preventing aggravation of
- postoperative delirium in elderly patients: a randomized, open-label prospective trial. Surg Today47(7):815-826, 2017 27830365

- 5218 Furlan AD, Malmivaara A, Chou R, et al. 2015 updated method guideline for systematic reviews in the
- 5219 Cochrane Back and Neck Group. Spine (Phila Pa 1976) 40(21):1660-1673, 2015 26208232
- 5220 Furuya M, Miyaoka T, Yasuda H, et al: Ramelteon as adjunctive therapy for delirium referred to a
- 5221 consultation-liaison psychiatry service: a retrospective analysis. Int J Geriatr Psychiatry 30(9):994-995, 5222 2015 26220878
- 5222 2015 26220878
- 5223 Gage L, Hogan DB: 2014 CCSMH Guideline Update: The Assessment and Treatment of Delirium. Toronto,
- 5224 Canada, Canadian Coalition for Seniors' Mental Health (CCSMH), 2014. Available at: www.ccsmh.ca.
 5225 Accessed December 5, 2023.
- Gamberini M, Bolliger D, Lurati Buse GA, et al: Rivastigmine for the prevention of postoperative delirium
 in elderly patients undergoing elective cardiac surgery--a randomized controlled trial. Crit Care Med
 37(5):1762-1768, 2009 19325490
- 5229 Gandolfi JV, Di Bernardo APA, Chanes DAV, et al: The effects of melatonin supplementation on sleep
- 5230 quality and assessment of the serum melatonin in ICU Patients: a randomized controlled trial. Crit Care
- 5231 Med 13:13, 2020 33048904
- 5232 Gao F, Zhang Q, Li Y, et al: Transcutaneous electrical acupoint stimulation for prevention of
- postoperative delirium in geriatric patients with silent lacunar infarction: a preliminary study. Clin Interv
 Aging 13:2127-2134, 2018 30425466
- 5235 Geriatric Medicine Research Collaborative: Delirium is prevalent in older hospital inpatients and
- associated with adverse outcomes: results of a prospective multi-centre study on World Delirium
 Awareness Day. BMC medicine 17: 1-11, 2019
- 5238 Girard TD, Kress JP, Fuchs BD, et al: Efficacy and safety of a paired sedation and ventilator weaning
- 5239 protocol for mechanically ventilated patients in intensive care (Awakening and Breathing Controlled
- 5240 trial): a randomised controlled trial. Lancet 371(9607):126-134, 2008 18191684
- 5241 Girard TD, Exline MC, Carson SS, et al: Haloperidol and ziprasidone for treatment of delirium in critical 5242 illness. N Engl J Med 379(26):2506-2516, 2018 30346242
- 5243 Giraud K, Pontin M, Sharples LD, et al: Use of a structured mirrors intervention does not reduce delirium 5244 incidence but may improve factual memory encoding in cardiac surgical ICU patients aged over 70 years:
- 5245 a pilot time-cluster randomized controlled trial. Front Aging Neurosci 8:228, 2016 27733826
- 5246 Goldberg TE, Chen C, Wang Y, et al: Association of delirium with long-term cognitive decline: a meta-5247 analysis. JAMA Neurol 77(11):1373-1381, 2020 32658246
- 5248 Greenhalgh T, Robert G, Macfarlane F, et al: Diffusion of innovations in service organizations: systematic 5249 review and recommendations. Milbank Q 82(4):581-629, ,2004 15595944

- 5250 Gregersen M, Damsgaard EM, Borris LC: Blood transfusion and risk of infection in frail elderly after hip
- fracture surgery: the TRIFE randomized controlled trial. Eur J Orthop Surg Traumatol 25(6):1031-1038,
 2015 25690514
- 5253 Griffin TT, Bhave V, McNulty J, et al: Delirium and previous psychiatric history independently predict 5254 poststroke posttraumatic stress disorder. Neurologist 28(6):362-366, 2023 37083500
- 5255 Grossmann FF, Hasemann W, Graber A, et al: Screening, detection and management of delirium in the
- 5256 emergency department a pilot study on the feasibility of a new algorithm for use in older emergency
- 5257 department patients: the modified Confusion Assessment Method for the Emergency Department
- 5258 (mCAM-ED). Scand J Trauma Resusc Emerg Med 22:19, 2014 24625212
- 5259 Grover S, Kate N: Assessment scales for delirium: a review. World J Psychiatry 2(4):58-70, 2012 5260 24175169
- 5261 Grover S, Kumar V, Chakrabarti S: Comparative efficacy study of haloperidol, olanzapine and risperidone 5262 in delirium. J Psychosom Res 71(4):277-281, 2011 21911107
- 5263 Grover S, Mahajan S, Chakrabarti S, Avasthi A: Comparative effectiveness of quetiapine and haloperidol 5264 in delirium: A single blind randomized controlled study. World J Psychiatry 6(3):365-371, 2016 27679777
- 5265 Gruber-Baldini AL, Marcantonio E, Orwig D, et al: Delirium outcomes in a randomized trial of blood
 5266 transfusion thresholds in hospitalized older adults with hip fracture. J Am Geriatr Soc 61(8):1286-1295,
 5267 2013 23898894
- 5268 Guo Y, Sun L, Li L, et al: Impact of multicomponent, nonpharmacologic interventions on perioperative 5269 cortisol and melatonin levels and postoperative delirium in elderly oral cancer patients. Arch Gerontol
- 5270 Geriatr 62:112-117, 2016 26547518
- 5271 Gupta PK, Verma R, Kohli M, et al: The effect of ramelteon on postoperative delirium in elderly patients: 5272 a randomised double-blind study. J Clin Diagn Res 13(12):UC15-UC19, 2019
- 5273 Guthrie PF, Rayborn S, Butcher HK: Evidence-based practice guideline: delirium. J Gerontol Nurs 44:14-5274 24, 2018 29378075
- 5275 Hamzehpour H, Valiee S, Majedi MA, et al: The effect of care plan based on roy adaptation model on the 5276 incidence and severity of delirium in intensive care unit patients: a randomised controlled trial. Journal 5277 of Clinical and Diagnostic Research 12(11): LC21-LC25, 2018
- Han CS, Kim YK: A double-blind trial of risperidone and haloperidol for the treatment of delirium.
 Psychosomatics 45(4):297-301, 2004 15232043
- Hardy RJ, Thompson SG: A likelihood approach to meta-analysis with random effects. Stat Med
 15(6):619-629, 1996 8731004

- 5282 Harris RP, Helfand M, Woolf SH, et al: Current methods of the US Preventive Services Task Force: a
- 5283 review of the process. Am J Prev Med 20(3 Suppl):21-35, 2001 11306229
- Hatchett C, Langley G, Schmollgruber S: Psychological sequelae following ICU admission at a level 1
 academic South African hospital. South Afr J Crit Care 26:52–58, 2010
- Hassan S, Hasnain Z, Awan K, et al. Effect of peri-operative dexmedetomidine on incidence of delirium in
 elderly patients after cardiac surgery. Med Forum 32(2):142-146, 2021
- Hatta K, Kishi Y, Wada K, et al: Antipsychotics for delirium in the general hospital setting in consecutive
 2453 inpatients: a prospective observational study. Int J Geriatr Psychiatry 29(3):253-262, 2014a
 23801358
- 5291 Hatta K, Kishi Y, Wada K, et al: Preventive effects of ramelteon on delirium: a randomized placebo-5292 controlled trial. JAMA Psychiatry 71(4):397-403, 2014b 24554232
- 5293 Hatta K, Kishi Y, Wada K, et al: Preventive effects of suvorexant on delirium: A randomized placebo-5294 controlled trial. J Clin Psychiatry 78(8):e970-e979, 2017 28767209
- He F, Shen L, Zhong J: A study of dexmedetomidine in the prevention of postoperative delirium in elderly
 patients after vertebral osteotomy. Int J Clin Exp Med11(5):4984-4990, 2018
- 5297 Hempenius L, Slaets JP, van Asselt D, et al: Outcomes of a geriatric liaison intervention to prevent the
- 5298 development of postoperative delirium in frail elderly cancer patients: report on a multicentre,
- 5299 randomized, controlled trial. PLoS ONE 8(6):e64834, 2013 23840308
- Hempenius L, Slaets JP, van Asselt D, et al: Long term outcomes of a geriatric liaison intervention in frail
 elderly cancer patients. PLoS ONE 11(2):e0143364, 2016 26901417
- Higgins JP, Thompson SG: Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539-1558,
 2002 12111919
- Higgins JPT, Savović J, Page MJ, et al: Chapter 8: Assessing risk of bias in a randomized trial. In: Higgins
- 5305 JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for
- 5306 Systematic Reviews of Interventions version 6.4 (updated August 2023). Cochrane, 2023. Available from
- 5307 www.training.cochrane.org/handbook. Accessed on January 4, 2024.
- Holdstock L, de Wit H: Individual differences in the biphasic effects of ethanol. Alcohol Clin Exp Res22(9):1903-1911, 1998 9884132
- 5310 Hollinger A, Rüst CA, Riegger H, et al: Ketamine vs. haloperidol for prevention of cognitive dysfunction
- and postoperative delirium: a phase IV multicentre randomised placebo-controlled double-blind clinical
 trial. J Clin Anesth 68:110099, 2021 33120302
- 5313 Horvitz-Lennon M, Donohue JM, Domino ME, Normand SL: Improving quality and diffusing best
- practices: the case of schizophrenia. Health Aff (Millwood) 28(3):701–712, 2009 19414878

- Hosie A, Phillips J, Lam L, et al: A multicomponent nonpharmacological intervention to prevent delirium
- for hospitalized people with advanced cancer: a phase ii cluster randomized waitlist controlled trial (The
- 5317 PRESERVE Pilot Study). Journal of Palliative Medicine 23(10):1314-1322, 2020 32343634
- 5318 Hov KR, Neerland BE, Undseth Ø, et al: The Oslo Study of Clonidine in Elderly Patients with Delirium; 5319 LUCID: a randomised placebo-controlled trial. Int J Geriatr Psychiatry 34(7):974-981, 2019 30901487
- Hshieh TT, Yang T, Gartaganis SL, et al: Hospital Elder Life Program: systematic review and meta-analysis
 of effectiveness. Am J Geriatr Psychiatry 26(10):1015-1033, 2018 30076080
- Hu J, Zhu M, Gao Z, et al: Dexmedetomidine for prevention of postoperative delirium in older adults
 undergoing oesophagectomy with total intravenous anaesthesia: a double-blind, randomised clinical
 trial. Eur J Anaesthesiol 28:28, 2020 33122571
- 5325 Hu AM, Qiu Y, Zhang P, et al: Higher versus lower mean arterial pressure target management in older
- patients having non-cardiothoracic surgery: a prospective randomized controlled trial. J Clin Anesth69:110150, 2021 33418429
- 5328 Hudetz JA, Patterson KM, Iqbal Z, et al: Ketamine attenuates delirium after cardiac surgery with 5329 cardiopulmonary bypass. J Cardiothorac Vasc Anesth 23(5):651-657, 2009 19231245
- Hui D, Frisbee-Hume S, Wilson A, et al: Effect of lorazepam with haloperidol vs haloperidol alone on
 agitated delirium in patients with advanced cancer receiving palliative care: a randomized clinical trial.
- 5332 JAMA 318(11):1047-1056, 2017 28975307
- 5333 Humeidan ML, Reyes JC, Mavarez-Martinez A, et al: Effect of cognitive prehabilitation on the incidence
- 5334 of postoperative delirium among older adults undergoing major noncardiac surgery: the neurobics
- 5335 randomized clinical trial. JAMA Surg 156(2):148-156, 2021 33175114
- Huyan T, Hu X, Peng H, et al: Perioperative dexmedetomidine reduces delirium in elderly patients after
 lung cancer surgery. Psychiatria Danubina 31(1):95-101, 2019
- Iamaroon A, Wongviriyawong T, Sura-Arunsumrit P, et al: Incidence of and risk factors for postoperative
 delirium in older adult patients undergoing noncardiac surgery: a prospective study. BMC Geriatr 20:40,
 2020 32013872
- Inouye SK, Bogardus ST Jr, Baker DI, et al: The Hospital Elder Life Program: a model of care to prevent
 cognitive and functional decline in older hospitalized patients. Hospital Elder Life Program. J Am Geriatr
 Soc 48(12):1697-1706, 2000 11129764
- Institute of Medicine; Committee on Quality of Health Care in America: Crossing the Quality Chasm: A
 New Health System for the 21st Century. Washington, DC, National Academies Press, 2001
- 5346 Ishii K, Makita T, Yamashita H, et al: Total intravenous anesthesia with propofol is associated with a
- 5347 lower rate of postoperative delirium in comparison with sevoflurane anesthesia in elderly patients. J Clin
- 5348 Anesth 33:428-431, 2016 27555205

- Iyer SP, Spaeth-Rublee B, Pincus HA: Challenges in the operationalization of mental health quality
 measures: an assessment of alternatives. Psychiatr Serv 67(10):1057–1059, 2016
- Jain R, Arun P, Sidana A, et al: Comparison of efficacy of haloperidol and olanzapine in the treatment of delirium. Indian J Psychiatry 59(4):451-456, 2017 29497187
- Jaiswal SJ, McCarthy TJ, Wineinger NE, et al: Melatonin and sleep in preventing hospitalized delirium: a
 randomized clinical trial. Am J Med 131(9):1110-1117, 2018 29729237
- Jaiswal SJ, Vyas AD, Heisel AJ, et al: Ramelteon for prevention of postoperative delirium: a randomized
 controlled trial in patients undergoing elective pulmonary thromboendarterectomy. Crit Care Med
 47(12):1751-1758, 2019 31567351
- Jakob SM, Ruokonen E, Grounds R, et al: Dexmedetomidine vs midazolam or propofol for sedation
 during prolonged mechanical ventilation: two randomized controlled trials. JAMA 307(11):1151-1160,
 2012 22436955
- Javaherforoosh Zadeh F, Janatmakan F, Shafaeebejestan E, Jorairahmadi S: Effect of melatonin on
 delirium after on-pump coronary artery bypass graft surgery: a randomized clinical trial. Iran J Med Sci
 46(2):120-127, 2021 33753956
- Jaworksa N, Moss SJ, Krewulak KD, et al: A scoping review of perceptions from healthcare professionals
 on antipsychotic prescribing practices in acute care settings. BMC Health Serv Res 22:1272, 2022
 366 36271347
- Jeffs KJ, Berlowitz DJ, Grant S, et al: An enhanced exercise and cognitive programme does not appear to
 reduce incident delirium in hospitalised patients: a randomised controlled trial. BMJ Open 3(6):20, 2013
 23794558
- Jia Y, Jin G, Guo S, et al: Fast-track surgery decreases the incidence of postoperative delirium and other
 complications in elderly patients with colorectal carcinoma. Langenbecks Arch Surg 399(1):77-84, 2014
 24337734
- 5373 Jin L, Yao R, Heng L, et al: Ultrasound-guided continuous thoracic paravertebral block alleviates
- 5374 postoperative delirium in elderly patients undergoing esophagectomy: a randomized controlled trial.
- 5375 Medicine (Baltimore) 99(17):e19896, 2020 32332664
- Jin Z, Hu J, Ma D: Postoperative delirium: perioperative assessment, risk reduction, and management. Br
 J Anaesth 125(4):492-504, 2020 32798069
- 5378 Johnson KG, Fashoyin A, Madden-Fuentes R, et al: Discharge plans for geriatric inpatients with delirium:
- 5379 A plan to stop antipsychotics? J Am Geriatr Soc 65(10):2278-2281, 2017 28856665
- 5380 Johnson K, Fleury J, McClain D: Music intervention to prevent delirium among older patients admitted to
- 5381 a trauma intensive care unit and a trauma orthopaedic unit. Intensive Crit Care Nurs 47:7-14, 2018
- 5382 29735284

- Johnson KB, Neuss MJ, Detmer DE: Electronic health records and clinician burnout: a story of three eras.
 J Am Med Inform Assoc 28(5):967–973, 2021
- 5385 Jones C, Bäckman C, Capuzzo M, et al: Precipitants of post-traumatic stress disorder following intensive 5386 care: a hypothesis generating study of diversity in care. Intensive Care Med 33:978-985, 2007 17384929
- Kalisvaart KJ, de Jonghe JF, Bogaards MJ, et al: Haloperidol prophylaxis for elderly hip-surgery patients at
 risk for delirium: a randomized placebo-controlled study. J Am Geriatr Soc 53(10):1658-1666, 2005
 16181163
- Kang SY, Seo SW, Kim JY: Comprehensive risk factor evaluation of postoperative delirium following
 major surgery: clinical data warehouse analysis. Neurol Sci 40:793-800, 2019 30675675
- Karadas C, Ozdemir L: The effect of range of motion exercises on delirium prevention among patients
 aged 65 and over in intensive care units. Geriatr Nurs 37(3):180-185, 2016 26763172
- Kassie GM, Nguyen TA, Kalisch Ellett LM, et al: Preoperative medication use and postoperative delirium:
 a systematic review. BMC Geriatr 17(1):298, 2017 29284416
- Kennedy M, Koehl J, Gao J, et al:Use of antipsychotic and sedative medications in older patients in the
 emergency department. J Am Geriatr Soc 70(3):731-742, 2022 34820831
- Khalifezadeh A, Safazadeh S, Mehrabi T, et al: Reviewing the effect of nursing interventions on delirious
 patients admitted to intensive care unit of neurosurgery ward in Al-Zahra Hospital, Isfahan University of
 Medical Sciences. Iran J Nurs Midwifery Res 16(1):106-112, 2011 22039387
- Khan BA, Calvo-Ayala E, Campbell N, et al: Clinical decision support system and incidence of delirium in
 cognitively impaired older adults transferred to intensive care. Am J Crit Care 22(3):257-262, 2013
 23635936
- 5404 Khan BA, Perkins AJ, Campbell NL, et al: Preventing postoperative delirium after major noncardiac 5405 thoracic surgery-a randomized clinical trial. J Am Geriatr Soc 66(12):2289-2297, 2018 30460981
- 5406 Khan BA, Perkins AJ, Campbell NL, et al: Pharmacological management of delirium in the intensive care 5407 unit: a randomized pragmatic clinical trial. J Am Geriatr Soc 67(5):1057-1065, 2019 30681720
- 5408 Khan SH, Xu C, Purpura R, et al: Decreasing delirium through music: a randomized pilot trial. Am J Crit
 5409 Care 29(2):e31-e38, 2020 32114612
- 5410 Khan A, Uribe-Cano D, Klumph M, et al: An innovative post-hospital model of care (DDEFY Delirium): a 5411 pilot randomized trial. J Am Geriatr Soc. 70(5):1570-1573, 2022 35084044
- 5412 Khera T, Murugappan KR, Leibowitz A, et al: Ultrasound-guided pecto-intercostal fascial block for
- 5413 postoperative pain management in cardiac surgery: a prospective, randomized, placebo-controlled trial.
- 5414 J Cardiothorac Vasc Anesth 35(3):896-903, 2021 32798172

- 5415 Kim KY, McCartney JR, Kaye W, et al: The effect of cimetidine and ranitidine on cognitive function in 5416 postoperative cardiac surgical patients. Int J Psychiatry Med 26(3):295-307, 1996 8976470
- 5417 Kim SW, Yoo JA, Lee SY, et al: Risperidone versus olanzapine for the treatment of delirium. Hum 5418 Psychopharmacol 25(4):298-302, 2010 20521319
- 5419 Kim JA, Ahn HJ, Yang M, et al: Intraoperative use of dexmedetomidine for the prevention of emergence
- agitation and postoperative delirium in thoracic surgery: a randomized-controlled trial. Can JAnaesth66(4):371-379, 2019 30710258
- 5422 Kim Y, Kim HS, Park JS, et al: Efficacy of low-dose prophylactic quetiapine on delirium prevention in 5423 critically ill patients: a prospective, randomized, double-blind, placebo-controlled study. J Clin Med 5424 9(1):27, 2019 31892105
- 5425 King AJ, Angus DC, Cooper GF, et al: A voice-based digital assistant for intelligent prompting of evidence-5426 based practices during ICU rounds. J Biomed Inform 146:104483, 2023a 37657712
- 5427 King AJ, Potter KM, Seaman JB, et al: Measuring performance on the ABCDEF bundle during
 5428 interprofessional rounds via a nurse-based assessment tool. Am J Crit Care 32(2):92-99, 2023b 36854912
- 5429 Kinouchi M, Mihara T, Taguri M, Ogura M: The efficacy of ramelteon to prevent postoperative delirium
- 5430 after general anesthesia in the elderly: a double-blind, randomized, placebo-controlled trial. Am J
- 5431 Geriatr Psychiatry 31(12):1178-1189, 2023 37567839
- 5432 Kluger MT, Skarin M, Collier J, et al: Steroids to reduce the impact on delirium (STRIDE): a double-blind,
- randomised, placebo-controlled feasibility trial of pre-operative dexamethasone in people with hip
 fracture. Anaesthesia 76(8):1031-1041, 2021 33899214
- Kolanowski AM, Fick DM, Clare L, et al: Pilot study of a nonpharmacological intervention for delirium
 superimposed on dementia. Res Gerontol Nurs 4(3):161-167, 2011 21053841
- 5437 Kolanowski A, Fick D, Litaker M, et al: Effect of cognitively stimulating activities on symptom
- 5438 management of delirium superimposed on dementia: a randomized controlled trial. J Am Geriatr Soc
 5439 64(12):2424-2432, 2016 27861718
- 5440 Kotfis K, Marra A, Ely EW. ICU delirium a diagnostic and therapeutic challenge in the intensive care
 5441 unit. Anaesthesiol Intensive Ther 50(2):160-167, 2018 29882581
- 5442 Kram BL, Schultheis JM, Kram SJ, Cox CE: a pharmacy-based electronic handoff tool to reduce discharge
 5443 prescribing of atypical antipsychotics initiated in the intensive care unit: a quality improvement
 5444 initiative. J Pharm Pract 32:434-441, 2019 29486664
- 5445 Kukreja D, Günther U, Popp J: Delirium in the elderly: current problems with increasing geriatric age. 5446 Indian J Med Res 142(6):655-662, 2015 26831414

- 5447 Kunst G, Gauge N, Salaunkey K, et al: Intraoperative optimization of both depth of anesthesia and
- cerebral oxygenation in elderly patients undergoing coronary artery bypass graft surgery-a randomized
 controlled pilot trial. J Cardiothorac Vasc Anesth 34(5):1172-1181, 2020 31882381
- 5445 controlled plot that 3 cardiothorac vasc Allesti 54(5).1172-1161, 2020 51882581
- 5450Kurhekar P, Vinod K, Rajarathinam B, et al: Randomized comparison between dexmedetomidine and5451midazolam for prevention of emergence agitation after nasal surgeries. Saudi J Anaesth 12(1):61-66,
- 5452 2018 29416458
- Lambert J, Vermassen J, Fierens J, et al: Discharge from hospital with newly administered antipsychotics
 after intensive care unit delirium Incidence and contributing factors. J Crit Care 61:162-167, 2021
 33171333
- Lange PW, Clayton-Chubb DI, Watson R, Maier AB: Results from a double blinded, randomised, placebo-
- 5457 controlled, feasibility trial of melatonin for the treatment of delirium in older medical inpatients. Intern
- 5458 Med J 51(1):33-41, 2021 31985112
- 5459 Lapane KL, Hughes CM, Daiello LA, et al: Effect of a pharmacist-led multicomponent intervention
- 5460 focusing on the medication monitoring phase to prevent potential adverse drug events in nursing
- 5461 homes. J Am Geriatr Soc 59(7):1238-1245, 2011 21649623
- Larsen KA, Kelly SE, Stern TA, et al: Administration of olanzapine to prevent postoperative delirium in
 elderly joint-replacement patients: a randomized, controlled trial. Psychosomatics 51(5):409-418, 2010
 20833940
- Lawlor PG, McNamara-Kilian MT, MacDonald AR, et al: Melatonin to prevent delirium in patients with
 advanced cancer: a double blind, parallel, randomized, controlled, feasibility trial. BMC Palliat Care
 19(1):163, 2020 33087111
- Lee KU, Won WY, Lee HK, et al: Amisulpride versus quetiapine for the treatment of delirium: a
 randomized, open prospective study. Int Clin Psychopharmacol 20(6):311-314, 2005 16192839
- Lee C, Lee CH, Lee G, et al: The effect of the timing and dose of dexmedetomidine on postoperative
 delirium in elderly patients after laparoscopic major non-cardiac surgery: a double blind randomized
 controlled study. J Clin Anesth 47:27-32, 2018 29549829
- Lee H, Yang SM, Chung J, et al: Effect of perioperative low-dose dexmedetomidine on postoperative
 delirium after living-donor liver transplantation: a randomized controlled trial. Transplant Proc 26:26,
 2019 31883766
- 5476 Lee S, Chen H, Hibino S, et al: Can we improve delirium prevention and treatment in the emergency
- 5477 department? a systematic review. J Am Geriatr Soc 70(6):1838-1849, 2022 35274738
- Lei L, Katznelson R, Fedorko L, et al: Cerebral oximetry and postoperative delirium after cardiac surgery:
 a randomised, controlled trial. Anaesthesia 72(12):1456-1466, 2017 28940368

- 5480 Leinert C, Brefka S, Braisch U, et al: A complex intervention to promote prevention of delirium in older
- adults by targeting caregiver's participation during and after hospital discharge study protocol of the
- 5482 TRAnsport and DElirium in older people (TRADE) project. BMC Geriatr 21(1):646, 2021 34784883
- Leong RW, Davies LJ, Fook-Chong S, et al: Effect of the use of earplugs and eye masks on the quality of
 sleep after major abdominal surgery: a randomised controlled trial. Anaesthesia 76(11):1482-1491, 2021
 33881774
- Leung JM, Sands LP, Rico M, et al: Pilot clinical trial of gabapentin to decrease postoperative delirium in
 older patients. Neurology 67(7):1251-1253, 2006 16914695
- Leung JM, Sands LP, Chen N, et al: Perioperative gabapentin does not reduce postoperative delirium in
 older surgical patients: a randomized clinical trial. Anesthesiology 127(4):633-644, 2017 28727581
- 5490 Levy I, Gavrieli S, Hefer T, et al: Acupuncture treatment of delirium in older adults hospitalized in
- 5491 internal medicine departments: an open-label pragmatic randomized-controlled trial. J Geriatr
- 5492 Psychiatry Neurol 35(3):333-343, 2022 33685268
- Li X, Yang J, Nie XL, et al: Impact of dexmedetomidine on the incidence of delirium in elderly patients after cardiac surgery: a randomized controlled trial. PLoS ONE 12(2):e0170757, 2017 28182690
- Li YN, Zhang Q, Yin CP, et al: Effects of nimodipine on postoperative delirium in elderly under general
 anesthesia: A prospective, randomized, controlled clinical trial. Medicine (Baltimore) 96(19):e6849, 2017
 28489775
- Li Y, Yu ZX, Ji MS, et al: A pilot study of the use of dexmedetomidine for the control of delirium by
 reducing the serum concentrations of brain-derived neurotrophic factor, neuron-specific enolase, and
 S100B in polytrauma patients. J Intensive Care Med 34(8):674-681, 2019 28569132
- Li CJ, Wang BJ, Mu DL, et al: Randomized clinical trial of intraoperative dexmedetomidine to prevent
 delirium in the elderly undergoing major non-cardiac surgery. Br J Surg 107(2):e123-e132, 2020
 31903588
- Li YW, Li HJ, Li HJ, et al: Delirium in older patients after combined epidural-general anesthesia or general
 anesthesia for major surgery: a randomized trial. Anesthesiology 135(2):218-232, 2021 34195765
- 5506 Likhvantsev VV, Landoni G, Grebenchikov OA, et al. Perioperative dexmedetomidine supplement
- decreases delirium incidence after adult cardiac surgery: a randomized, double-blind, controlled study. J
 Cardiothorac Vasc Anesth 35(2):449-457, 2021 32265083
- Lin CJ, Sun FJ, Fang CK, et al: An open trial comparing haloperidol with olanzapine for the treatment of
 delirium in palliative and hospice center cancer patients. Journal of Internal Medicine of Taiwan
 19(4):346-354, 2008
- Liu CY, Juang YY, Liang HY, et al: Efficacy of risperidone in treating the hyperactive symptoms of delirium.
 Int Clin Psychopharmacol 19(3):165-168, 2004 15107660

- Liu X, Zhang K, Wang W, et al: Dexmedetomidine versus propofol sedation improves sublingual
- 5515 microcirculation after cardiac surgery: a randomized controlled trial. J Cardiothorac Vasc Anesth
- 5516 30(6):1509-1515, 2016 27590460
- Liu Y, Ma L, Gao M, et al: Dexmedetomidine reduces postoperative delirium after joint replacement in
 elderly patients with mild cognitive impairment. Aging Clin Exp Res 28(4):729-736, 2016 26559412
- Liu D, Lyu J, Zhao H, et al: The influence of analgesic-based sedation protocols on delirium and outcomes in critically ill patients: a randomized controlled trial. PLoS ONE 12(9):e0184310, 2017 28910303
- Liu L, Yuan Q, Wang Y, et al: Effects of dexmedetomidine combined with sufentanil on postoperative delirium in young patients after general anesthesia. Med Sci Monit 24:8925-8932, 2018 30531676
- Liu S, Zhao R, Yang R, et al: Are dexmedetomidine and olanzapine suitable to control delirium in critically ill elderly patients? A retrospective cohort study. Biomed Pharmacother 139:111617, 2021 33915500
- 5525 Luccarelli J, Sacks CA, Snydeman C, et al: Coding for physical restraint status among hospitalized
- 5526 patients: a 2019 national inpatient sample analysis. J Gen Intern Med 31:1-9, 2023 37002459<<Epub 5527 ahead of print.>>
- Lundström M, Edlund A, Karlsson S, et al: A multifactorial intervention program reduces the duration of
 delirium, length of hospitalization, and mortality in delirious patients. J Am Geriatr Soc 53(4):622-8, 2005
 15817008
- 5531 Lundström M, Olofsson B, Stenvall M, Karlsson S, Nyberg L, Englund U, Borssén B, Svensson O, Gustafson
- 5532 Y. Postoperative delirium in old patients with femoral neck fracture: a randomized intervention study.
- 5533
 Aging Clin Exp Res 19(3):178-186, 2007 17607084
- Luo J, Wang MY, Liang BM, et al: Initial synchronized intermittent mandatory ventilation versus
- 5535assist/control ventilation in treatment of moderate acute respiratory distress syndrome: a prospective5536randomized controlled trial. J Thorac Dis 7(12):2262-2273, 2015 26793348
- 5537 Lurati Buse GA, Schumacher P, Seeberger E, et al: Randomized comparison of sevoflurane versus
- 5538 propofol to reduce perioperative myocardial ischemia in patients undergoing noncardiac surgery.
- 5539 Circulation 126(23):2696-2704, 2012 23136158
- 5540 MacLaren R, Preslaski CR, Mueller SW, et al: A randomized, double-blind pilot study of
- 5541 dexmedetomidine versus midazolam for intensive care unit sedation: patient recall of their experiences
- and short-term psychological outcomes. J Intensive Care Med 30(3):167-75, 2015 24227448
- 5543 Mahrose R, ElSerwi H, Maurice A, et al. Postoperative delirium after coronary artery bypass graft
- 5544 surgery: dexmedetomidine infusion alone or with the addition of oral melatonin. Egyptian Journal of 5545 Anaesthesia 37(1):62-68, 2021
- 5546 Mailhot T, Cossette S, Côté J, et al: A post cardiac surgery intervention to manage delirium involving 5547 families: a randomized pilot study. Nurs Crit Care 22(4):221-228, 2017 28371230
 - REF20

- 5548 Makinian M, Mirzaei T, Ravari A: The effects of head and face massage on delirium among elderly
- women hospitalized in coronary care units. Iran J Crit Care Nurs 8(3):125-132, 2015
- Maldonado JR: Acute brain failure: pathophysiology, diagnosis, management, and sequelae of delirium.
 Crit Care Clin 33(3):461-519, 2017 28601132
- 5552 Maldonado JR, Wysong A, van der Starre PJ, et al: Dexmedetomidine and the reduction of postoperative 5553 delirium after cardiac surgery. Psychosomatics 50(3):206-217, 2009 19567759
- Maneeton B, Maneeton N, Srisurapanont M, et al: Quetiapine versus haloperidol in the treatment of
 delirium: a double-blind, randomized, controlled trial. Drug Des Devel Ther 7:657-667, 2013 23926422
- Mann C, Pouzeratte Y, Boccara G, et al: Comparison of intravenous or epidural patient-controlled
 analgesia in the elderly after major abdominal surgery. Anesthesiology 92(2):433-441, 2000 10691230
- 5558 Marcantonio ER, Flacker JM, Wright RJ, Resnick NM: Reducing delirium after hip fracture: a randomized 5559 trial. J Am Geriatr Soc 49(5):516-522, 2001 11380742
- 5560 Marcantonio ER, Bergmann MA, Kiely DK, et al: Randomized trial of a delirium abatement program for 5561 postacute skilled nursing facilities. J Am Geriatr Soc 58(6):1019-1026, 2010 20487083
- 5562 Mardani D, Bigdelian H: The effect of dexamethasone prophylaxis on postoperative delirium after 5563 cardiac surgery: a randomized trial. Journal of Research in Medical Sciences 17(1 SPL.1):S113-S119, 2012
- 5564 Markota M, Rummans TA, Bostwick JM, Lapid MI: Benzodiazepine use in older adults: dangers, 5565 management, and alternative therapies. Mayo Clin Proc 91(11):1632-1639, 2016 27814838
- 5566 Marquetand J, Gehrke S, Bode L, et al: Delirium in trauma patients: a 1-year prospective cohort study of 5567 2026 patients. Eur J Trauma Emerg Surg 48:1017-1024, 2022 33538844
- Marra A, Ely EW, Pandharipande PP, Patel MB: The ABCDEF bundle in critical care. Crit Care Clin 33:225243, 2017 28284292
- 5570 Mart MF, Brummel NE, Ely EW: The ABCDEF bundle for the respiratory therapist. Respir Care 5571 64(12):1561-1573, 2019 31690615
- 5572 Mart MF, Williams Roberson S, Salas B, et al: Prevention and management of delirium in the intensive 5573 care unit. Semin Respir Crit Care Med 42(1):112-126, 2021 32746469
- 5574 Martin J, Heymann A, Bäsell K, et al: Evidence and consensus-based German guidelines for the
- management of analgesia, sedation and delirium in intensive care--short version. Ger Med Sci 8:Doc02,
 2010 20200655
- 5577 Martinez FT, Tobar C, Beddings CI, et al: Preventing delirium in an acute hospital using a non-
- 5578 pharmacological intervention. Age Ageing 41(5):629-634, 2012 22589080

- 5579 Martinez-Velilla N, Casas-Herrero A, Zambom-Ferraresi F, et al: Effect of exercise intervention on
- 5580 functional decline in very elderly patients during acute hospitalization: a randomized clinical trial. JAMA
- 5581 Intern Med 179(1):28-36, 2019 30419096
- 5582 Massoumi G, Mansouri M, Khamesipour S: Comparison of the incidence and severity of delirium and
- biochemical factors after coronary artery bypass grafting with dexmedetomidine: a randomized double-
- blind placebo-controlled clinical trial study. ARYA Atheroscler 15(1):14-21, 2019 31440280
- 5585 Mattison MLP: Delirium. Ann Intern Med 173:Itc49-itc64, 2020 33017552
- McDonald EG, Wu PE, Rashidi B, et al: The MedSafer study-electronic decision support for deprescribing
 in hospitalized older adults: a cluster randomized clinical trial. JAMA Intern Med 182(3):265-273, 2022
 35040926
- 5589 McKenzie J, Joy A: Family intervention improves outcomes for patients with delirium: systematic review 5590 and meta-analysis. Australas J Ageing 39(1):21-30, 2020 31250961
- 5591 McPherson JA, Wagner CE, Boehm LM, et al: Delirium in the cardiovascular ICU: exploring modifiable 5592 risk factors. Crit Care Med 41(2):405-413, 2013 23263581
- Meagher D, Leonard M: The active management of delirium: improving detection and treatment.
 Advances in Psychiatric Treatment 14(4):292-301, 2008
- 5595 Mehta S, Burry L, Cook D, et al: Daily sedation interruption in mechanically ventilated critically ill
- patients cared for with a sedation protocol: a randomized controlled trial. JAMA 308(19):1985-1992,2012 23180503
- 5598 Mehta S, Cook D, Devlin JW, et al: Prevalence, risk factors, and outcomes of delirium in mechanically 5599 ventilated adults. Crit Care Med 43(3):557-566, 2015 25493968
- Mei B, Meng G, Xu G, et al: Intraoperative sedation with dexmedetomidine is superior to propofol for
 elderly patients undergoing hip arthroplasty: a prospective randomized controlled study. Clin J Pain
 34(9):811-817, 2018 29528863
- Mei B, Xu G, Han W, et al: The benefit of dexmedetomidine on postoperative cognitive function is
 unrelated to the modulation on peripheral inflammation: a single-center, prospective, randomized
 study. Clin J Pain36(2):88-95, 2020 31714323
- Mei X, Zheng HL, Li C, et al: The effects of propofol and sevoflurane on postoperative delirium in older
 patients: a randomized clinical trial study. J Alzheimers Dis 76(4):1627-1636, 2020 32651322
- 5608 Mikkelsen ME, Still M, Anderson BJ, et al: Society of Critical Care Medicine's international consensus
 5609 conference on prediction and identification of long-term impairments after critical illness. Crit Care Med
 5610 48(11):1670-1679, 2020 32947467

- 5611 Mitchell ML, Kean S, Rattray JE, et al: A family intervention to reduce delirium in hospitalised ICU
- 5612 patients: A feasibility randomised controlled trial. Intensive Crit Care Nurs 40:77-84, 2017 28254205
- 5613 Mohammadi M, Ahmadi M, Khalili H, et al: Cyproheptadine for the prevention of postoperative delirium: 5614 a pilot study. Ann Pharmacother 50(3):180-187, 2016 26706862
- 5615 Mohanty S, Rosenthal RA, Russell MM, et al: Optimal perioperative management of the geriatric patient:
- a best practices guideline from the American College of Surgeons NSQIP and the American Geriatrics
- 5617 Society. J Am Coll Surg 222(5):930-947, 2016 27049783
- Mokhtari M, Farasatinasab M, Jafarpour Machian M, et al: Aripiprazole for prevention of delirium in the
 neurosurgical intensive care unit: a double-blind, randomized, placebo-controlled study. Eur J Clin
 Pharmacol 76(4):491-499, 2020 31900543
- 5621 Momeni M, Khalifa C, Lemaire G, et al: Propofol plus low-dose dexmedetomidine infusion and
- postoperative delirium in older patients undergoing cardiac surgery. Br J Anaesth126(3):665-673, 2021
 33358336
- 5624 Moon KJ, Lee SM: The effects of a tailored intensive care unit delirium prevention protocol: a 5625 randomized controlled trial. Int J Nurs Stud 52(9):1423-432, 2015 26032729
- Morris PE, Berry MJ, Files DC, et al: Standardized rehabilitation and hospital length of stay among
 patients with acute respiratory failure: a randomized clinical trial. JAMA 315(24):2694-702, 2016
 27367766
- Moslemi R, Khalili H, Mohammadi M, et al: Thiamine for prevention of postoperative delirium in patients
 undergoing gastrointestinal surgery: a randomized clinical trial. J Res Pharm Pract 9(1):30-35, 2020
 32489958
- Mouzopoulos G, Vasiliadis G, Lasanianos N, et al: Fascia iliaca block prophylaxis for hip fracture patients
 at risk for delirium: a randomized placebo-controlled study. J Orthop Traumatol 10(3):127-133, 2009
 19690943
- 5635 Munro CL, Cairns P, Ji M, et al: Delirium prevention in critically ill adults through an automated 5636 reorientation intervention - a pilot randomized controlled trial. Heart Lung 46(4):234-238, 2017
- 5637 28606450
- Nadler JW, Evans JL, Fang E, et al: A randomised trial of peri-operative positive airway pressure for
 postoperative delirium in patients at risk for obstructive sleep apnoea after regional anaesthesia with
- sedation or general anaesthesia for joint arthroplasty. Anaesthesia 72(6):729-736, 2017 28251606
- 5641 Nakamura ZM, Deal AM, Park EM, et al: A randomized double-blind placebo-controlled trial of
- 5642 intravenous thiamine for prevention of delirium following allogeneic hematopoietic stem cell
- 5643 transplantation. J Psychosom Res 146:110503, 2021 33945982

- 5644Nassar Junior AP, Park M: Daily sedative interruption versus intermittent sedation in mechanically
- ventilated critically ill patients: a randomized trial. Ann Intensive Care 4:14, 2014 24900938
- 5646 National Institute for Health and Care Excellence: Delirium: prevention, diagnosis and management in
- 5647 hospital and long-term care. 2023. Available at:
- 5648 https://www.nice.org.uk/guidance/cg103/resources/delirium-prevention-diagnosis-and-management-
- in-hospital-and-longterm-care-pdf-35109327290821. Accessed December 5, 2023.
- 5650 Neufeld KJ, Yue J, Robinson TN, et al: Antipsychotic medication for prevention and treatment of delirium
- in hospitalized adults: a systematic review and meta-analysis. J Am Geriatr Soc 64(4):705-714, 2016
 27004732
- 5653 Nikooie R, Neufeld KJ, Oh ES, et al: Antipsychotics for treating delirium in hospitalized adults: a 5654 systematic review. Ann Intern Med 171(7):485-495, 2019 31476770
- 5655 Nishikawa K, Nakayama M, Omote K, et al: Recovery characteristics and post-operative delirium after
- 5656 long-duration laparoscope-assisted surgery in elderly patients: propofol-based vs. sevoflurane-based
- anesthesia. Acta Anaesthesiol Scand 48(2):162-168, 2004 14995937
- 5658 Nishikimi M, Numaguchi A, Takahashi K, et al: Effect of administration of ramelteon, a melatonin
- receptor agonist, on the duration of stay in the ICU: a single-center randomized placebo-controlled trial.
 Crit Care Med 46(7):1099-1105, 2018 29595562
- Nydahl P, Günther U, Diers A, et al: PROtocol-based MObilizaTION on intensive care units: steppedwedge, cluster-randomized pilot study (Pro-Motion). Nurs Crit Care 25(6):368-375, 2020 31125163
- Nydahl P, McWilliams D, Weiler N, et al: Mobilization in the evening to prevent delirium: A pilot
 randomized trial. Nurs Crit Care 27(4):519-527, 2022 33946128
- 5665 Obanor OO, McBroom MM, Elia JM, et al: The impact of earplugs and eye masks on sleep quality in 5666 surgical ICU patients at risk for frequent awakenings. Crit Care Med 49(2):822-832, 2021 33870919
- O'Gara BP, Mueller A, Gasangwa DVI, et al: Prevention of early postoperative decline: a randomized,
 controlled feasibility trial of perioperative cognitive training. Anesth Analg 130(3):586-595, 2020
 31569161
- 5670 Oh ST, Park JY: Postoperative delirium. Korean J Anesthesiol 72:4-12, 2019 30139213
- 5671 Oh ES, Fong TG, Hshieh TT, Inouye SK: Delirium in older persons: advances in diagnosis and treatment.
 5672 JAMA 318:1161-1174, 2017 28973626
- 5673 Oh CS, Lim HY, Jeon HJ, et al: Effect of deep neuromuscular blockade on serum cytokines and
- 5674 postoperative delirium in elderly patients undergoing total hip replacement: a prospective single-blind
- randomised controlled trial. Eur J Anaesthesiol 38(Suppl 1):58-66, 2021 33399376

- 5676 Oh ES, Leoutsakos JM, Rosenberg PB, et al: Effects of ramelteon on the prevention of postoperative
- delirium in older patients undergoing orthopedic surgery: the RECOVER randomized controlled trial. AmJ Geriatr Psychiatry 29(1):90-100, 2021 32532654
- 5679 O'Hanlon S, O'Regan N, Maclullich AM, et al: Improving delirium care through early intervention: from 5680 bench to bedside to boardroom. J Neurol Neurosurg Psychiatry 85(2):207-213, 2014 23355807
- Olsen HT, Nedergaard HK, Strom T, et al: Nonsedation or light sedation in critically ill, mechanically
 ventilated patients. N Engl J Med 382(12):1103-1111, 2020 32068366
- O'Neal J, Dighe S, Gray K, et al: The use of dexmedetomidine and intravenous acetaminophen for the
 prevention of postoperative delirium in cardiac surgery patients over 60 years of age: a pilot study.
 Anesthesia and Analgesia 120(3):S411, 2015
- 5686 Ono H, Taguchi T, Kido Y, et al: The usefulness of bright light therapy for patients after oesophagectomy.
 5687 Intensive Crit Care Nurs 27(3):158-166, 2011 21511473
- 5688 Ormseth CH, LaHue SC, Oldham MA, et al: Predisposing and precipitating factors associated with 5689 delirium: a systematic review. JAMA Netw Open 6(1):e2249950, 2023 36607634
- 5690 O'Rourke G, Parker D, Anderson R, et al: Interventions to support recovery following an episode of
 5691 delirium: a realist synthesis. Aging Ment Health 25:1769-1785, 2021 32734773
- 5692 Ospina JP, King IV F, Madva E, Celano CM: Epidemiology, mechanisms, diagnosis, and treatment of
 5693 delirium: a narrative review. Clinical Medicine and Therapeutics (CMT) 1(1):3, 2018
- 5694 Overshott R, Vernon M, Morris J, Burns A: Rivastigmine in the treatment of delirium in older people: a
 5695 pilot study. Int Psychogeriatr 22(5):812-818, 2010 20353624
- Pan Y, Jiang Z, Yuan C, et al: Influence of physical restraint on delirium of adult patients in ICU: a nested
 case-control study. J Clin Nurs 27(9-10):1950-1957, 2018 29495083
- Pandhal JK, Van Der Wardt V: Exploring perceptions regarding family-based delirium management in the
 intensive care unit. J Intensive Care Soc 23(4):447-452, 2022 36751350
- 5700 Pandharipande PP, Girard TD, Jackson JC, et al: Long-term cognitive impairment after critical illness. N
 5701 Engl J Med 369(14):1306-1316, 2013 24088092
- Papadopoulos G, Pouangare M, Papathanakos G, et al: The effect of ondansetron on postoperative
 delirium and cognitive function in aged orthopedic patients. Minerva Anestesiol 80(4):444-451, 2014
 24193238
- 5705 Papaioannou A, Fraidakis O, Michaloudis D, et al: The impact of the type of anaesthesia on cognitive
 5706 status and delirium during the first postoperative days in elderly patients. Eur J Anaesthesiol 22(7):4925707 499, 2005 16045136

- 5708 Park JB, Bang SH, Chee HK, et al: Efficacy and safety of dexmedetomidine for postoperative delirium in
- adult cardiac surgery on cardiopulmonary bypass. Korean J Thorac Cardiovasc Surg 47(3):249-254, 2014
 25207222
- 5711 Patel MM, Brown JD, Croake S, et al: The current state of behavioral health quality measures: where are 5712 the gaps? Psychiatr Serv 66(8):865–871, 2015 26073415
- 5713 Patel BK, Wolfe KS, Patel SB, et al: Effect of early mobilisation on long-term cognitive impairment in
- 5714 critical illness in the USA: a randomised controlled trial. Lancet Respir Med 11(6):563-572, 20235715 36693400
- 5716 Pereira JV, Aung Thein MZ, Nitchingham A, Caplan GA: Delirium in older adults is associated with
- development of new dementia: a systematic review and meta-analysis. Int J Geriatr Psychiatry36(7):993-1003, 2021 33638566
- 5719 Perez D, Peters K, Wilkes L, Murphy G: Physical restraints in intensive care-an integrative review. Aust
 5720 Crit Care 32:165-174, 2019 29559190
- 5721 Picton JD, Marino AB, Nealy KL: Benzodiazepine use and cognitive decline in the elderly. Am J Health5722 Syst Pharm 75(1):e6-e12, 2018 29273607
- 5723 Pincus HA, Scholle SH, Spaeth-Rublee B, et al: Quality measures for mental health and substance use:
 5724 gaps, opportunities, and challenges. Health Aff (Millwood) 35(6):1000–1008, 2016 27269015
- 5725 Pitkälä KH, Laurila JV, Strandberg TE, Tilvis RS: Multicomponent geriatric intervention for elderly
 5726 inpatients with delirium: a randomized, controlled trial. J Gerontol A Biol Sci Med Sci 61(2):176-181,
- 5727 2006 16510862
- 5728 Pitkälä KH, Laurila JV, Strandberg TE, et al: Multicomponent geriatric intervention for elderly inpatients
 5729 with delirium: effects on costs and health-related quality of life. J Gerontol A Biol Sci Med Sci 63(1):565730 61, 2008 18245761
- 5731 Potharajaroen S, Tangwongchai S, Tayjasanant T, et al: Bright light and oxygen therapies decrease
- delirium risk in critically ill surgical patients by targeting sleep and acid-base disturbances. Psychiatry Res
 261:21-27, 2018 29276990
- 5734 Potter J, George J, Guideline Development Group: The prevention, diagnosis and management of 5735 delirium in older people: concise guidelines. Clin Med (Lond) 6(3):303-308, 2006 16826866
- 5736 Prakanrattana U, Prapaitrakool S: Efficacy of risperidone for prevention of postoperative delirium in 5737 cardiac surgery. Anaesth Intensive Care 35(5):714-719, 2007 17933157

5738 Prendergast NT, Tiberio PJ, Girard TD: Treatment of delirium during critical illness. Annu Rev Med5739 73:407-421, 2022 34752706

- 5740 Pun BT, Balas MC, Barnes-Daly MA, et al: Caring for critically ill patients with the ABCDEF bundle: results
- of the ICU Liberation Collaborative in over 15,000 adults. Crit Care Med 47:3-14, 2019 30339549
- Pun BT, Badenes R, Heras La Calle G, et al: Prevalence and risk factors for delirium in critically ill patients
 with COVID-19 (COVID-D): a multicentre cohort study. Lancet Respir Med 9(3):239-250, 2021 33428871
- Radtke FM, Franck M, Lendner J, et al: Monitoring depth of anaesthesia in a randomized trial decreases
 the rate of postoperative delirium but not postoperative cognitive dysfunction. Br J Anaesth 110 Suppl
- 5746 1:i98-105, 2013 23539235
- Ramnarain D, Pouwels S, Fernández-Gonzalo S, et al: Delirium-related psychiatric and neurocognitive
 impairment and the association with post-intensive care syndrome-a narrative review. Acta Psychiatr
 Scand 147(5):460-474, 2023 36744298
- 5750 Reade MC, Eastwood GM, Bellomo R, et al: Effect of dexmedetomidine added to standard care on
- ventilator-free time in patients with agitated delirium: a randomized clinical trial. JAMA 315(14):14601468, 2016 26975647
- 5753 Redmond P, Grimes TC, McDonnell R, et al: Impact of medication reconciliation for improving transitions 5754 of care. Cochrane Database Syst Rev 8(8):CD010791, 2018 30136718
- 5755 Registered Nurses' Association of Ontario: Delirium, Dementia, and Depression in Older Adults:
- 5756 Assessment and Care, 2nd Edition. Toronto, ON, Canada, Registered Nurses' Association of Ontario,
- 5757 2016. Available at: https://rnao.ca/bpg/guidelines/assessment-and-care-older-adults-delirium-
- 5758 dementia-and-depression. Accessed December 5, 2023.
- 5759Reisinger M, Reininghaus EZ, Biasi J, et al: Delirium-associated medication in people at risk: a systematic5760update review, meta-analyses, and GRADE-profiles. Acta Psychiatr Scand 147(1):16-42, 2023 36168988
- 5761 Rengel KF, Hayhurst CJ, Jackson JC, et al: Motoric subtypes of delirium and long-term functional and
 5762 mental health outcomes in adults after critical illness. Crit Care Med 49(5):e521-e532, 2021 33729717
- 5763 Reppas-Rindlisbacher C, Shin S, Purohit U, et al: Association between non-English language and use of
- 5764 physical and chemical restraints among medical inpatients with delirium. J Am Geriatr Soc 70(12):3640-5765 3643, 2022 35932190
- 5766 Rice KL, Bennett MJ, Berger L, et al: A pilot randomized controlled trial of the feasibility of a
 5767 multicomponent delirium prevention intervention versus usual care in acute stroke. J Cardiovasc Nurs
 5768 32(1):E1-E10, 2017 27306854
- 5769 Rigor J, Rueff Rato I, Ferreira PM, et al: Prehospital anticholinergic burden is associated with delirium but
 5770 not with mortality in a population of acutely ill medical patients. J Am Med Dir Assoc 21(4):481-485,
 5771 2020 31983551
- 5772 Robinson TN, Dunn CL, Adams JC, et al: Tryptophan supplementation and postoperative delirium--a 5773 randomized controlled trial. J Am Geriatr Soc 62(9):1764-1771, 2014 25112175

- 5774 Rood PJT, Zegers M, Slooter AJC, et al: Prophylactic haloperidol effects on long-term quality of life in
- 5775 critically ill patients at high risk for delirium: results of the REDUCE study. Anesthesiology 131(2):328-5776 335, 2019 31246603
- Rood PJT, Zegers M, Ramnarain D, et al: The impact of nursing delirium preventive interventions in the
 icu: a multicenter cluster-randomized controlled clinical trial. Am J Respir Crit Care Med 204(6):682-691,
 2021 34170798
- 5780 Rosa RG, Falavigna M, da Silva DB, et al: Effect of flexible family visitation on delirium among patients in
 5781 the intensive care unit: the ICU visits randomized clinical trial. JAMA 322(3):216-228, 2019 31310297
- Rose L, Burry L, Mallick R, et al: Prevalence, risk factors, and outcomes associated with physical restraint
 use in mechanically ventilated adults. J Crit Care 31:31-35, 2016 26489482
- 5784 Royse CF, Saager L, Whitlock R, et al: Impact of methylprednisolone on postoperative quality of recovery
- and delirium in the steroids in cardiac surgery trial: a randomized, double-blind, placebo-controlled
- 5786 substudy. Anesthesiology 126(2):223-233, 2017 27775998
- 5787 Rubino AS, Onorati F, Caroleo S, et al: Impact of clonidine administration on delirium and related 5788 respiratory weaning after surgical correction of acute type-A aortic dissection: results of a pilot study.
- 5789 Interact Cardiovasc Thorac Surg 10(1):58-62, 2010 19854793.
- 5790 Ruokonen E, Parviainen I, Jakob SM, et al: Dexmedetomidine versus propofol/midazolam for long-term
 5791 sedation during mechanical ventilation. Intensive Care Med 35(2):282-290, 2009 18795253
- Saager L, Duncan AE, Yared JP, et al: Intraoperative tight glucose control using hyperinsulinemic
 normoglycemia increases delirium after cardiac surgery. Anesthesiology 122(6):1214-1223, 2015
 25992877
- 5795 Saljuqi AT, Hanna K, Asmar S, et al: Prospective evaluation of delirium in geriatric patients undergoing 5796 emergency general surgery. J Am Coll Surg 230:758-765, 2020 32088308
- 5797 Sampson EL, Raven PR, Ndhlovu PN, et al: A randomized, double-blind, placebo-controlled trial of
- 5798 donepezil hydrochloride (Aricept) for reducing the incidence of postoperative delirium after elective
- total hip replacement. Int J Geriatr Psychiatry 22(4):343-349, 2007 17006875
- Sauer AM, Slooter AJ, Veldhuijzen DS, et al: Intraoperative dexamethasone and delirium after cardiac
 surgery: a randomized clinical trial. Anesth Analg 119(5):1046-1052, 2014 24810262
- Schnitzer K, Merideth F, Macias-Konstantopoulos W, et al: Disparities in care: the role of race on the
 utilization of physical restraints in the emergency setting. Acad Emerg Med 27(10):943-950, 2020
 32691509
- 5805 Schofield-Robinson OJ, Lewis SR, Smith AF, et al: Follow-up services for improving long-term outcomes 5806 in intensive care unit (ICU) survivors. Cochrane Database Syst Rev 11(11):CD012701, 2018 30388297

- 5807 Schomer KJ, Duby JJ, Firestone RL, et al: Effect of flumazenil on hypoactive delirium in the icu: a double-5808 blind, placebo-controlled pilot study. Crit Care Explor 2(3):e0085, 2020 32259108
- 5809 Schrijver EJM, de Vries OJ, van de Ven PM, et al: Haloperidol versus placebo for delirium prevention in
- acutely hospitalised older at risk patients: a multi-centre double-blind randomised controlled clinical
- 5811 trial. Age Ageing 47(1):48-55, 2018 28985255
- 5812 Schweickert WD, Pohlman MC, Pohlman AS, et al: Early physical and occupational therapy in
- 5813 mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet 373(9678):1874-5814 1882 2009 19446324
- 5814 1882, 2009 19446324
- 5815 Scottish Intercollegiate Guidelines Network: The Scottish Intercollegiate Guidelines Network (SIGN) 157:
- 5816 Guidelines on Risk Reduction and Management of Delirium. 2019. Available at:
- 5817 https://www.sign.ac.uk/media/1423/sign157.pdf. Accessed December 5, 2023.
- 5818 Sharaf SI, Nasr El-Din DA, Mahran MG, et al: A study of the prophylactic and curative effect of melatonin

5819 on postoperative delirium after coronary artery bypass grafting surgery in elderly patients. The Egyptian

- 5820 Journal of Hospital Medicine 72(7):4919-4926, 2018
- 5821 Sharifi A, Arsalani N, Fallahi-Khoshknab M, Mohammadi-Shahbolaghi F: The principles of physical
- restraint use for hospitalized elderly people: an integrated literature review. Syst Rev 10:129, 202133931096
- 5824 Shehabi Y, Grant P, Wolfenden H, et al: Prevalence of delirium with dexmedetomidine compared with
- 5825 morphine based therapy after cardiac surgery: a randomized controlled trial (DEXmedetomidine 5826 COmpared to Morphine-DEXCOM Study). Anesthesiology 111(5):1075-1084, 2009 19786862
- Sheikh TA, Dar BA, Akhter N, Ahmad N: A comparative study evaluating effects of intravenous sedation
 by dexmedetomidine and propofol on patient hemodynamics and postoperative outcomes in cardiac
 surgery. Anesth Essays Res 12(2):555-560, 2018 29962634
- Shi C, Jin J, Qiao L, et al: Effect of perioperative administration of dexmedetomidine on delirium after
 cardiac surgery in elderly patients: a double-blinded, multi-center, randomized study. Clin Interv Aging
 14:571-575, 2019 30936687
- Shi H, Du X, Wu F, et al: Dexmedetomidine improves early postoperative neurocognitive disorder in
 elderly male patients undergoing thoracoscopic lobectomy. Exp Ther Med 20(4):3868-3877, 2020
 32855737
- 5836 Shi HJ, Yuan RX, Zhang JZ, et al: Effect of midazolam on delirium in critically ill patients: a propensity 5837 score analysis. J Int Med Res 50(4):3000605221088695, 2022 35466751
- 5838 Shirvani F, Naji SA, Davari E, Sedighi M: Early mobilization reduces delirium after coronary artery bypass 5839 graft surgery. Asian Cardiovasc Thorac Ann 28(9):566-571, 2020 32757652

- 5840 Shokri H, Ali I: A randomized control trial comparing prophylactic dexmedetomidine versus clonidine on
- rates and duration of delirium in older adult patients undergoing coronary artery bypass grafting. J Clin
- 5842
 Anesth 61:109622, 2020 31668468
- 5843 Shorr RI, Guillen MK, Rosenblatt LC, et al: Restraint use, restraint orders, and the risk of falls in 5844 hospitalized patients. J Am Geriatr Soc 50(3):526-529, 2002 11943051
- 5845 Shrestha P, Fick DM: Family caregiver's experience of caring for an older adult with delirium: a 5846 systematic review. Int J Older People Nurs 15:e12321, 2020 32374518
- Shu A, Liu X, Wang Q, et al: Study on cerebral protective effect of dexmedetomidine during anesthesia in
 cardiac valve replacement surgery. Int J Clin Exp Med 10(1):1066-1072, 2017
- 5849 Shu A, Fu Y, Luo Y, et al. An investigation on delirium and hemodynamics influenced by
- 5850 dexmedetomidine for sedating elderly patients in mechanical ventilation. Int J Clin Exp Med 12(2):1942-
- 5851 1946, 2019
- 5852 Siddiqi N, Cheater F, Collinson M, et al: The PiTSTOP study: a feasibility cluster randomized trial of 5853 delirium prevention in care homes for older people. Age Ageing 45(5):652-661, 2016 27207749
- Sieber FE, Zakriya KJ, Gottschalk A, et al: Sedation depth during spinal anesthesia and the development
 of postoperative delirium in elderly patients undergoing hip fracture repair. Mayo Clin Proc 85(1):18-26,
 2010 20042557
- Sieber FE, Neufeld KJ, Gottschalk A, et al: Effect of depth of sedation in older patients undergoing hip
 fracture repair on postoperative delirium: the STRIDE randomized clinical trial. JAMA Surg 153(11):987995, 2018 30090923
- Sieber F, Neufeld KJ, Gottschalk A, et al: Depth of sedation as an interventional target to reduce
 postoperative delirium: mortality and functional outcomes of the Strategy to Reduce the Incidence of
 Postoperative Delirium in Elderly Patients randomised clinical trial. Br J Anaesth 122(4):480-489, 2019
 30857604
- Siegrist-Dreier S, Thomann S, Barbezat I, et al: Experience of patients with restraints in acute care
 hospitals and the view of their relatives: A qualitative study. Nurs Open 10(11):7224-7232, 2023
 37612841
- Siepe M, Pfeiffer T, Gieringer A, et al: Increased systemic perfusion pressure during cardiopulmonary
 bypass is associated with less early postoperative cognitive dysfunction and delirium. Eur J Cardiothorac
 Surg 40(1):200-207, 2011 21168339
- 5870 Silva LOJE, Berning MJ, Stanich JA, et al: Risk factors for delirium in older adults in the emergency 5871 department: a systematic review and meta-analysis. Ann Emerg Med 78(4):549-565, 2021 34127307

DRAFT January 25, 2024 NOT FOR CITATION

- 5872 Silva-Jr JM, Katayama HT, Nogueira FAM, et al: Comparison of dexmedetomidine and benzodiazepine for
- intraoperative sedation in elderly patients: a randomized clinical trial. Reg Anesth Pain Med 44(3):319324, 2019 30777901
- 5875 Singh A, Gupta I, Wright SM, Harris CM: Outcomes among hospitalized patients with dementia and
- 5876 behavioral disturbances when physical restraints are introduced. J Am Geriatr Soc May 26, 2023
 5877 37235512<<Epub ahead of print>>
- 5878 Simons KS, Laheij RJ, van den Boogaard M, et al: Dynamic light application therapy to reduce the 5879 incidence and duration of delirium in intensive-care patients: a randomised controlled trial. Lancet
- 5880 Respir Med 4(3):194-202, 2016 26895652
- 5881 Skrobik YK, Bergeron N, Dumont M, et al: Olanzapine vs haloperidol: treating delirium in a critical care 5882 setting. Intensive Care Med 30(3):444-449, 2004 14685663
- 5883 Skrobik Y, Duprey MS, Hill NS, et al: Low-dose nocturnal dexmedetomidine prevents icu delirium. a 5884 randomized, placebo-controlled trial. Am J Respir Crit Care Med 197(9):1147-1156, 2018 29498534
- 5885 Smit L, Dijkstra-Kersten SMA, Zaal IJ, et al: Haloperidol, clonidine and resolution of delirium in critically ill 5886 patients: a prospective cohort study. Intensive Care Med 47(3):316-324, 2021 33591422
- Smith CM, Turner NA, Thielman NM, et al: Association of black race with physical and chemical restraint
 use among patients undergoing emergency psychiatric evaluation. Psychiatr Serv 73(7):730-736, 2022
 c34932385
- 5890 Smithard D, Randhawa R: Physical restraint in the critical care unit: a narrative review. New Bioeth5891 28:68-82, 2022 35083967
- Softy SJ, Rogers J, Voronina M, Brueckner AJ: Deliriogenic medication prescribing and delirium in
 hospitalized, non-critically ill older people. Sr Care Pharm 38(1):21-28, 2023 36751916.
- Soh S, Shim JK, Song JW, et al: Effect of dexmedetomidine on acute kidney injury after aortic surgery: a
 single-centre, placebo-controlled, randomised controlled trial. Br J Anaesth 2020 32007239 << Epub
 ahead of print>>
- Sosnowski K, Lin F, Chaboyer W, et al: The effect of the ABCDE/ABCDEF bundle on delirium, functional
 outcomes, and quality of life in critically ill patients: A systematic review and meta-analysis. Int J Nurs
 Stud 138:104410, 2023 36577261
- Spence J, Belley-Cote E, Jacobsohn E, et al: Restricted versus liberal intraoperative benzodiazepine use in
 cardiac anaesthesia for reducing delirium (B-Free Pilot): a pilot, multicentre, randomised, cluster
 crossover trial. Br J Anaesth 125(1):38-46, 2020 32416996
- Spies CD, Knaak C, Mertens M, et al: Physostigmine for prevention of postoperative delirium and long term cognitive dysfunction in liver surgery: a double-blinded randomised controlled trial. Eur J
 Anaesthesiol 38(9):943-956, 2021 33534264

- 5906 Spronk PE, Riekerk B, Hofhuis J, Rommes JH: Occurrence of delirium is severely underestimated in the 5907 ICU during daily care. Intensive Care Med 35(7):1276-1280, 2009 19350214
- 5908Stenvall M, Berggren M, Lundström M, et al: A multidisciplinary intervention program improved the5909outcome after hip fracture for people with dementia--subgroup analyses of a randomized controlled
- 5910 trial. Arch Gerontol Geriatr 54(3):e284-289, 2012 21930310
- 5911 Stollings JL, Devlin JW, Lin JC, et al: Best practices for conducting interprofessional team rounds to
- facilitate performance of the ICU liberation (ABCDEF) bundle. Crit Care Med 48(4):562-570, 202032205603
- Stoppe C, Fahlenkamp AV, Rex S, et al: Feasibility and safety of xenon compared with sevoflurane
 anaesthesia in coronary surgical patients: a randomized controlled pilot study. Br J Anaesth 111(3):406416, 2013 23578862
- 5917 Strike E, Arklina B, Stradins P, et al: Postoperative pain management strategies and delirium after
- transapical aortic valve replacement: a randomized controlled trial. J Cardiothorac Vasc Anesth
- 5919 33(6):1668-1672, 2019 30559067
- 5920 Strøm T, Martinussen T, Toft P: A protocol of no sedation for critically ill patients receiving mechanical 5921 ventilation: a randomised trial. Lancet 375(9713):475-480, 2010 20116842
- Stuart MM, Smith ZR, Payter KA, et al: Pharmacist-driven discontinuation of antipsychotics for ICU
 delirium: a quasi-experimental study. Journal of the American College of Clinical Pharmacy 3(6):1009–
 1014, 2020
- Su X, Meng ZT, Wu XH, et al: Dexmedetomidine for prevention of delirium in elderly patients after noncardiac surgery: a randomised, double-blind, placebo-controlled trial. Lancet 388(10054):1893-1902,
 2016 27542303
- Sultan SS: Assessment of role of perioperative melatonin in prevention and treatment of postoperative
 delirium after hip arthroplasty under spinal anesthesia in the elderly. Saudi J Anaesth 4(3):169-173, 2010
 21189854
- Sun Y, Jiang M, Ji Y, et al: Impact of postoperative dexmedetomidine infusion on incidence of delirium in
 elderly patients undergoing major elective noncardiac surgery: a randomized clinical trial. Drug Des
 Devel Ther 12:2011 2022 2010 21:005 222
- 5933 Devel Ther 13:2911-2922, 2019 31695323
- Susheela AT, Packiasabapathy S, Gasangwa DV, et al: The use of dexmedetomidine and intravenous
 acetaminophen for the prevention of postoperative delirium in cardiac surgery patients over 60 years of
 age: a pilot study. F1000Res 6:1842, 2017 29333240
- 5937 Szwed K, Pawliszak W, Szwed M, et al: Reducing delirium and cognitive dysfunction after off-pump 5938 coronary bypass: a randomized trial. J Thorac Cardiovasc Surg 161(4):1275-1282, 2021 31685272

- 5939 Tagarakis GI, Voucharas C, Tsolaki F, et al: Ondasetron versus haloperidol for the treatment of
- postcardiotomy delirium: a prospective, randomized, double-blinded study. J Cardiothorac Surg 7:25,2012 22436170
- Taguchi T, Yano M, Kido Y: Influence of bright light therapy on postoperative patients: a pilot study.
 Intensive Crit Care Nurs 23(5):289-297, 2007 17692522
- 5944 Tahir TA, Eeles E, Karapareddy V, et al: A randomized controlled trial of quetiapine versus placebo in the 5945 treatment of delirium. J Psychosom Res 69(5):485-490, 2010 20955868
- Tamblyn R, Abrahamowicz M, Buckeridge DL, et al: Effect of an electronic medication reconciliation
 intervention on adverse drug events: a cluster randomized trial. JAMA Netw Open 2(9):e1910756, 2019
 31539073
- 5949 Tanaka P, Goodman S, Sommer BR, et al: The effect of desflurane versus propofol anesthesia on
- 5950 postoperative delirium in elderly obese patients undergoing total knee replacement: a randomized,
- controlled, double-blinded clinical trial. J Clin Anesth 39:17-22, 2017 28494898
- 5952 Tang CL, Li J, Zhang ZT, et al: Neuroprotective effect of bispectral index-guided fast-track anesthesia
- using sevoflurane combined with dexmedetomidine for intracranial aneurysm embolization. Neural
 Regen Res 13(2):280-288, 2018 29557378
- Tang C, Hu Y, Zhang Z, et al: Dexmedetomidine with sufentanil in intravenous patient-controlled
 analgesia for relief from postoperative pain, inflammation and delirium after esophageal cancer surgery.
 Biosci Rep 40(5):BSR20193410, 2020 32343308
- Tang CJ, Jin Z, Sands LP, et al: ADAPT-2: A Randomized Clinical Trial to Reduce Intraoperative EEG
 Suppression in Older Surgical Patients Undergoing Major Noncardiac Surgery. Anesth Analg 131(4):12281236, 2020 32925344
- Tang L, Fang P, Fang Y, et al: Comparison of effects between combined lumbar-sacral plexus block plus
 general anesthesia and unilateral spinal anesthesia in elderly patients undergoing hip fracture surgery: a
 pilot randomized controlled trial. Evid Based Complement Alternat Med 2021:6685497, 2021 34012474
- Taylor-Rowan M, Alharthi AA, Noel-Storr AH, et al: Anticholinergic deprescribing interventions for
 reducing risk of cognitive decline or dementia in older adults with and without prior cognitive
 impairment. Cochrane Database Syst Rev 12(12):CD015405, 2023 38063254
- 5967 Teece A, Baker J, Smith H: Identifying determinants for the application of physical or chemical restraint 5968 in the management of psychomotor agitation on the critical care unit. J Clin Nurs 29:5-19, 2020
- 5969 31495002
- 5970 Thanapluetiwong S, Ruangritchankul S, Sriwannopas O, et al: Efficacy of quetiapine for delirium
- 5971 prevention in hospitalized older medical patients: a randomized double-blind controlled trial. BMC
- 5972 Geriatr 21(1):215, 2021 33789580

- 5973 The Joint Commission: National Patient Safety Goals[®] Effective January 2024 for the Hospital Program.
- 5974 2023. Available at: https://www.jointcommission.org/-/media/tjc/documents/standards/national-
- 5975 patient-safety-goals/2024/npsg_chapter_hap_jan2024.pdf. Accessed on December 26, 2023.
- 5976 Thom RP, Bui MP, Rosner B, et al: A comparison of early, late, and no treatment of intensive care unit 5977 delirium with antipsychotics: a retrospective cohort study. Prim Care Companion CNS Disord 20(6):15, 5978 2018 30476373
- Thom R, Bui M, Rosner B, et al: Ramelteon is not associated with improved outcomes among critically ill
 delirious patients: a single-center retrospective cohort study. Psychosomatics 60(3):289-297, 2019
 30193784
- 5982 Tingleff EB, Bradley SK, Gildberg FA, et al: "Treat me with respect". a systematic review and thematic 5983 analysis of psychiatric patients' reported perceptions of the situations associated with the process of
- 5984 coercion. J Psychiatr Ment Health Nurs 24(9-10):681-698, 2017 28665512
- Tropea J, Slee JA, Brand CA, et al: Clinical practice guidelines for the management of delirium in older
 people in Australia. Australas J Ageing 27(3):150-156, 2008 18713175
- Tsui A, Searle SD, Bowden H, et al: The effect of baseline cognition and delirium on long-term cognitive
 impairment and mortality: a prospective population-based study. The Lancet Healthy Longevity
 3(4):e232-241, 2022 35382093
- Turan A, Duncan A, Leung S, et al: Dexmedetomidine for reduction of atrial fibrillation and delirium after
 cardiac surgery (DECADE): a randomised placebo-controlled trial. Lancet 396(10245):177-185, 2020
 32682483.
- 5993 Unneby A, Svensson PO, Gustafson PY, et al: Complications with focus on delirium during hospital stay 5994 related to femoral nerve block compared to conventional pain management among patients with hip 5995 fracture - a randomised controlled trial. Injury 51(7):1634-1641, 2020 32360090
- 5996 Uysal AI, Altiparmak B, Yasar E, et al: The effects of early femoral nerve block intervention on
 5997 preoperative pain management and incidence of postoperative delirium geriatric patients undergoing
 5998 trochanteric femur fracture surgery: A randomized controlled trial. Ulus Travma Acil Cerrahi Derg
 5999 26(1):109-114, 2020 31942744
- Vacas S, Grogan T, Cheng D, Hofer I: Risk factor stratification for postoperative delirium: a retrospective
 database study. Medicine (Baltimore) 101:e31176, 2022 36281117
- 6002 van den Boogaard M, Schoonhoven L, Evers AW, et al: Delirium in critically ill patients: impact on long-
- term health-related quality of life and cognitive functioning. Crit Care Med 40(1):112-118, 201221926597

- van den Boogaard M, Slooter AJC, Brüggemann RJM, et al: Effect of haloperidol on survival among
 critically ill adults with a high risk of delirium: the REDUCE randomized clinical trial. JAMA 319(7):6806007 690, 2018 29466591
- van der Vorst MJDL, Neefjes ECW, Boddaert MSA, et al: Olanzapine versus haloperidol for treatment of
 delirium in patients with advanced cancer: a phase III randomized clinical trial. Oncologist 25(3):e570e577, 2020 32162816
- 6011 van Eijk MM, Roes KC, Honing ML, et al: Effect of rivastigmine as an adjunct to usual care with
- haloperidol on duration of delirium and mortality in critically ill patients: a multicentre, double-blind,
- 6013 placebo-controlled randomised trial. Lancet 376(9755):1829-1837, 2010 21056464
- van Norden J, Spies CD, Borchers F, et al: The effect of peri-operative dexmedetomidine on the
- 6015 incidence of postoperative delirium in cardiac and non-cardiac surgical patients: a randomised, double-
- 6016 blind placebo-controlled trial. Anaesthesia 76(10):1342-1351, 2021 33960404
- Van Rompaey B, Elseviers MM, Van Drom W, et al: The effect of earplugs during the night on the onset
 of delirium and sleep perception: a randomized controlled trial in intensive care patients. Crit Care
 16(3):R73, 2012 22559080
- van Velthuijsen EL, Zwakhalen SMG, Pijpers E, et al: Effects of a medication review on delirium in older
 hospitalised patients: a comparative retrospective cohort study. Drugs Aging 35:153-161, 2018
 29396715
- Verloo H, Goulet C, Morin D, et al: Effect estimation of an innovative nursing intervention to improve
 delirium among home-dwelling older adults: a randomized controlled pilot trial. Dement Geriatr Cogn
 Dis Extra 5(1):176-190, 2015 26034489
- Vlisides PE, Das AR, Thompson AM, et al: Home-based cognitive prehabilitation in older surgical
 patients: a feasibility study. J Neurosurg Anesthesiol 31(2):212-217, 2019 30557230
- Walia H, Tucker LS, Manickam RN, et al: Patient and visit characteristics associated with physical
 restraint use in the emergency department. Perm J 27(1):94-102, 2023 36464780
- Wang W, Li HL, Wang DX, et al: Haloperidol prophylaxis decreases delirium incidence in elderly patients
 after noncardiac surgery: a randomized controlled trial. Crit Care Med 40(3):731-739, 2012 22067628
- 6032 Wang R, Chen J, Wu G: Variable lung protective mechanical ventilation decreases incidence of
- postoperative delirium and cognitive dysfunction during open abdominal surgery. Int J Clin Exp Med8(11):21208-21214, 2015
- Wang X, Wang Y, Hu Y, et al: Effect of flurbiprofen axetil on postoperative delirium for elderly patients.
 Brain Behav 9(6):e01290, 2019 31007001

- Wang J, Zhu L, Li Y, et al: The potential role of lung-protective ventilation in preventing postoperative
 delirium in elderly patients undergoing prone spinal surgery: a preliminary study. Med Sci Monit
 26:e926526, 2020 33011734
- Wang YY, Yue JR, Xie DM, et al: Effect of the tailored, family-involved hospital elder life program on
 postoperative delirium and function in older adults: a randomized clinical trial. JAMA Intern Med
- 6042 180(1):17-25, 2020 31633738
- Wang ML, Min J, Sands LP, et al: Midazolam premedication immediately before surgery is not associated
 with early postoperative delirium. Anesth Analg 133(3):765-771, 2021 33721875
- Wang E, Belley-Côté EP, Young J, et al: Effect of perioperative benzodiazepine use on intraoperative
 awareness and postoperative delirium: a systematic review and meta-analysis of randomised controlled
 trials and observational studies. Br J Anaesth 131(2):302-313, 2023 36621439
- Watkins K, Horvitz-Lennon M, Caldarone LB, et al: Developing medical record-based performance
 indicators to measure the quality of mental healthcare. J Healthc Qual 33(1):49-66, 2011 21199073
- Watkins KE, Farmer CM, De Vries D, Hepner KA: The Affordable Care Act: an opportunity for improving
 care for substance use disorders? Psychiatr Serv 66(3):310-312, 2015 25727120
- Watkins KE, Smith B, Akincigil A, et al: The quality of medication treatment for mental disorders in the
 Department of Veterans Affairs and in private-sector plans. Psychiatr Serv 67(4):391-396, 2016
 26567931
- Watne LO, Torbergsen AC, Conroy S, et al: The effect of a pre- and postoperative orthogeriatric service
 on cognitive function in patients with hip fracture: randomized controlled trial (Oslo Orthogeriatric
 Trial). BMC Med 12:63, 2014 24735588
- 6058 Weaver CB, Kane-Gill SL, Gunn SR, et al: A retrospective analysis of the effectiveness of antipsychotics in 6059 the treatment of ICU delirium. J Crit Care 41:234-239, 2017 28595082
- Weidman K, LaFond E, Hoffman KL, et al: Post-intensive care unit syndrome in a cohort of COVID-19
 survivors in New York City. Ann Am Thorac Soc 19(7):1158-1168, 2022 34936536
- Welk B, Killin L, Reid JN, et al: Effect of electronic medication reconciliation at the time of hospital
 discharge on inappropriate medication use in the community: an interrupted time-series analysis. CMAJ
 Open 9:E1105-E1113, 2021 34848551
- 6065 Wibrow B, Martinez FE, Myers E, et al: Prophylactic melatonin for delirium in intensive care (Pro-6066 MEDIC): a randomized controlled trial. Intensive Care Med 48(4):414-425, 2022 35220473
- Wildes TS, Winter AC, Maybrier HR, et al. Protocol for the Electroencephalography Guidance of
 Anesthesia to Alleviate Geriatric Syndromes (ENGAGES) study: a pragmatic, randomised clinical trial.
 BMJ Open 6(6):e011505, 2016 27311914

- 6070 Wildes TS, Mickle AM, Ben Abdallah A, et al: Effect of electroencephalography-guided anesthetic
- administration on postoperative delirium among older adults undergoing major surgery: the ENGAGES
 randomized clinical trial. JAMA 321(5):473-483, 2019 30721296
- 6073 Williams-Russo P, Sharrock NE, Mattis S, et al: Cognitive effects after epidural vs general anesthesia in 6074 older adults. a randomized trial. JAMA 274(1):44-50, 1995 7791257
- 6075 Wilson JE, Mart MF, Cunningham C, et al: Delirium. Nat Rev Dis Primers 6(1):90, 2020 33184265
- 6076 Winings NA, Daley BJ, Bollig RW, et al: Dexmedetomidine versus propofol for prolonged sedation in 6077 critically ill trauma and surgical patients. Surgeon 19(3):129-134, 2021 32340800
- Wolters AE, Peelen LM, Welling MC, et al: Long-term mental health problems after delirium in the ICU.
 Crit Care Med 44(10):1808-1813, 2016 27513540
- Wong AH, Ray JM, Rosenberg A, et al: Experiences of individuals who were physically restrained in the
 emergency department. JAMA Netw Open 3:e1919381, 2020 31977058
- Wong AH, Whitfill T, Ohuabunwa EC, et al: Association of race/ethnicity and other demographic
 characteristics with use of physical restraints in the emergency department. JAMA Netw Open
 4(1):e2035241, 2021 33492372
- Wu XH, Cui F, Zhang C, et al: Low-dose dexmedetomidine improves sleep quality pattern in elderly
 patients after noncardiac surgery in the intensive care unit: a pilot randomized controlled trial.
 Anesthesiology 125(5):979-991, 2016 27571256
- 6088Xin X, Xin F, Chen X, et al: Hypertonic saline for prevention of delirium in geriatric patients who6089underwent hip surgery. J Neuroinflammation 14(1):221, 2017 29137628
- Xin X, Chen J, Hua W, Wang H:. Intraoperative dexmedetomidine for prevention of postoperative
 delirium in elderly patients with mild cognitive impairment. Int J Geriatr Psychiatry 36(1):143-151, 2021
 33411362
- Xu X, Hu X, Wu Y, et al: Effects of different BP management strategies on postoperative delirium in
 elderly patients undergoing hip replacement: A single center randomized controlled trial. J Clin Anesth
 6095 62:109730, 2020 31982847
- 6096 Xuan Y, Fan R, Chen J, et al: Effects of dexmedetomidine for postoperative delirium after joint
- replacement in elderly patients: a randomized, double-blind, and placebo-controlled trial. Int J Clin ExpMed. 11(12):13147-13157, 2018
- 6099Xue X, Wang P, Wang J, et al: Preoperative individualized education intervention reduces delirium after6100cardiac surgery: a randomized controlled study. J Thorac Dis 12(5):2188-2196, 2020 32642124

- 6101 Yang J, Choi W, Ko YH, et al: Bright light therapy as an adjunctive treatment with risperidone in patients
- with delirium: a randomized, open, parallel group study. Gen Hosp Psychiatry 34(5):546-551, 201222717090
- 4104 Yang X, Li Z, Gao C, et al: Effect of dexmedetomidine on preventing agitation and delirium after
- 6105 microvascular free flap surgery: a randomized, double-blind, control study. J Oral Maxillofac Surg 6106 73(6):1065-1072, 2015 25981836
- Yapici N, Coruh T, Kehlibar T, et al: Dexmedetomidine in cardiac surgery patients who fail extubation and
 present with a delirium state. Heart Surg Forum 14(2):E93-98, 2011 21521683
- Yoon HJ, Park KM, Choi WJ, et al: Efficacy and safety of haloperidol versus atypical antipsychotic
 medications in the treatment of delirium. BMC Psychiatry 13:240, 2013 24074357
- 6111 Youn YC, Shin HW, Choi BS, et al: Rivastigmine patch reduces the incidence of postoperative delirium in
- older patients with cognitive impairment. Int J Geriatr Psychiatry 32(10):1079-1084, 2017 27561376
- Young J, Green J, Farrin A, et al: A multicentre, pragmatic, cluster randomised, controlled feasibility trial
 of the POD system of care. Age Ageing 49(4):640-647, 2020 32307515
- 6115 Yu D-N, Zhu Y, Ma J, Sun Q: Comparison of post-anesthesia delirium in elderly patients treated with
- 6116 dexmedetomidine and midazolam maleate after thoracic surgery. Biomedical Research 28 (15): 6852-6117 6855, 2017
- Zghidi M, Saida IB, Kortli S, et al: Risk factors of post-traumatic stress disorder (PTSD) among ICU
 survivors. Ann Intensive Care 1–153, 2019
- 5120 Zhang DF, Su X, Meng ZT, et al. Impact of Dexmedetomidine on long-term outcomes after noncardiac
 5121 surgery in elderly: 3-year follow-up of a randomized controlled trial. Ann Surg 270(2):356-363, 2019
- 6122 Zhang W, Wang T, Wang G, et al: Effects of dexmedetomidine on postoperative delirium and expression
- of IL-1beta, IL-6, and TNF-alpha in elderly patients after hip fracture operation. Front Pharmacol 11:678,
 2020 32477139
- 6125 Zhang H, Yuan J, Chen Q, et al: Development and validation of a predictive score for ICU delirium in
 6126 critically ill patients. BMC Anesthesiol 21:37, 2021 33546592
- 6127 Zhang KS, Pelleg T, Hussain S, et al: Prospective randomized controlled pilot study of high-intensity
- 6128 lightbox phototherapy to prevent ICU-acquired delirium incidence. Cureus 13(4):e14246, 20216129 33959436
- 6130 Zhao W, Hu Y, Chen H, et al: The effect and optimal dosage of dexmedetomidine plus sufentanil for
- 6131 postoperative analgesia in elderly patients with postoperative delirium and early postoperative
- 6132 cognitive dysfunction: a single-center, prospective, randomized, double-blind, controlled trial. Front
- 6133 14:549516, 2020 33192244

- 6134 Zhou Y, Li Y, Wang K: Bispectral index monitoring during anesthesia promotes early postoperative
- 6135 recovery of cognitive function and reduces acute delirium in elderly patients with colon carcinoma: a
- 6136 prospective controlled study using the attention network test. Med Sci Monit 24:7785-7793, 2018
- 6137 30378591