The American Psychiatric Association Practice Guideline for the Prevention and Treatment of Delirium

Appendices

Table of Contents

Appendices	1
Appendix A. Clinical Questions	1
Appendix B. Search Strategies, Study Selection, and Search Results	1
General Methods	1
Search Strategies	1
Literature Flow Diagrams	6
Study Selection	8
Data Extraction	9
Risk of Bias Assessment	9
Data Synthesis and Analysis	10
Rating the Strength of Guideline Statements and the Body of Research Evidence	11
Appendix C. Review of Research Evidence Supporting Guideline Statements	14
Assessment and Treatment Planning	14
Nonpharmacological Interventions	21
Pharmacological Interventions	53
Transitions of Care	107
Appendix D. Evidence Tables for Individual Studies Supporting Guideline Statements	1
Nonpharmacological Interventions for Prevention of Delirium	1
Nonpharmacological Interventions for Treatment of Delirium	32
Pharmacological Interventions for Prevention of Delirium	41
Pharmacological Interventions for Treatment of Delirium	93
Appendix E. Risk of Bias Ratings for Individual Studies Supporting Guideline Statements	

DRAFT February 3, 2025 NOT FOR CITATION

Appendix F. Review of Benefits and Harms, Patient Preferences, and Other Practice Guidelines	1
Assessment and Treatment Planning	1
Nonpharmacological Interventions	8
Pharmacological Interventions	Э
Transitions of Care	5
Appendix G. Description of Additional Studies Reviewed	1
Additional Nonpharmacological Interventions for Prevention of Delirium	1
Additional Pharmacological Interventions for Prevention of Delirium	4
Additional Pharmacological Interventions for Treatment of Delirium	4
Appendix H. Evidence Tables for Additional Studies Reviewed	1
Additional Nonpharmacological Interventions for Prevention of Delirium	1
Additional Pharmacological Interventions for Prevention of Delirium	C
Additional Pharmacological Interventions for Treatment of Delirium	4
Appendix I. Considerations in the Use of Guidelines to Enhance the Quality of Care	1
Quality Related Considerations for Individual Guideline Statements	2
References	1

Appendix A. Clinical Questions

The following Key Questions (KQs) were developed by the Pacific Northwest Evidence-based Practice Center (EPC) in conjunction with American Psychiatric Association (APA) practice guidelines staff and were registered in PROSPERO (ID CRD42020172961).

KQ 1. What is the evidence on benefits and harms of interventions to prevent delirium, including:

- 1a. Drug interventions compared with placebo?
- 1b. Drug interventions compared with each other?

1c. Non-drug interventions (e.g., environmental, pain management) compared with no intervention (e.g., usual care)?

- 1d. Non-drug interventions compared with each other?
- 1e. Drug and non-drug interventions compared with each other?
- KQ 2. What is the evidence on benefits and harms of interventions to treat delirium, including:
 - 2a. Drug interventions compared with placebo?
 - 2b. Drug interventions compared with each other?

2c. Non-drug interventions (e.g., environmental, pain management) compared with no intervention (e.g., usual care)?

- 2d. Non-drug interventions compared with each other?
- 2e. Drug and non-drug interventions compared with each other?

KQ 3. Are there patient-level or setting factors that modify the effects (benefits or harms) of these interventions?

3a. Demographics

3b. Co-morbidities and severity of underlying illness, such as dementia, traumatic brain injuries, cancer, or patients who have undergone major surgery (factors include type of surgery and duration of anesthesia); co-interventions (e.g., propofol, polypharmacy); hypoactive vs. hyperactive delirium?

3c. Type of setting (e.g., acute care, hospice care, long-term care)

Appendix B. Search Strategies, Study Selection, and Search Results

General Methods

This guideline is developed on the basis of a systematic search of available research evidence conducted by the EPC. The methods for this systematic review followed the Agency for Healthcare Research and Quality (AHRQ) Methods Guide for Effectiveness and Comparative Effectiveness Reviews (available at https://effectivehealthcare.ahrq.gov/topics/cer-methods-guide/overview).

Search Strategies

Table B-1. MEDLINE literature search strategy with explanation of key search elements

Search term	Explanation
1 exp Confusion/	Population
2 (confusion or confuse* or delirium or delirious or disorient*).ti,ab,kf.	
3 "altered consciousness".ti,ab,kf.	
4 ((emergence or emergent or emerging or emerge or postanesthe* or postanaesthe* or	
anesthe* or anaesthe*) adj3 (agitat* or excite*)).ti,ab,kf.	
5 ("Memorial Delirium Assessment Scale" or "MDAS").ti,ab,kf.	
6 (prevent* or avoid* or treat* or intervention* or drug or medication* or pharmacologic*	Intervention
or nonpharmacologic* or psychosocial).ti,ab,kf.	
7 (dt or pc or th).fs.	
8 or/1-5	Population terms
	combined
9 6 or 7	Intervention terms
	combined
10 8 and 9	Population terms +
	Intervention terms
11 (pediatric* or preschool* or toddler* or infan* or child* or adolescent*).ti.	
12 10 not 11	
13 (animal* or mouse or mice or rat* or dog* or canine or cow* or horse* or mare* or	
rabbit*).ti.	
14 12 not 13	Population +
	Intervention, limited to
	adult humans
15 (random* or control* or placebo or sham or trial or blind*).ti,ab,kw.	_
16 exp clinical trial/	
17 14 and (15 or 16)	Line 14, limited to trials
18 observational study/ or comparative study/	
19 exp cohort studies/	
20 exp case-control studies/	
21 (cohort* or case* or prospective or retrospective or observational).ti,ab,kw.	
22 or/18-21	
23 case reports.pt.	
24 "case series".ti,ab,kf.	
25 "case report".ti,ab,kf.	
26 22 not (or/23-25)	
27 14 and 26	Line 14, limited to
	controlled
	observational studies
28 meta-analysis/ or "systematic review"/	_
29 (systematic or "meta analysis" or metaanalysis or medline or cochrane).ti,ab,kf.	
30 14 and (28 or 29)	Line 14, limited to
	systematic reviews
31 17 or 27 or 30	
32 limit 31 to english language	Total, no date limit
33 limit 32 to yr="2000 - 2020"	Total, limited by date

Table B-2. PsycINFO literature search strategy

Dates of search 1806 to January Week 3 2020

- 1 Delirium/
- 2 (confusion or confuse* or delirium or delirious or disorient* or agitat*).ti,ab.
- 3 "altered consciousness".tw.
- 4 ((emergence or emergent or emerging or emerge or postanesthe* or postanaesthe* or anesthe* or anaesthe*) adj3 excite*).tw.
- 5 ("Memorial Delirium Assessment Scale" or "MDAS").tw.
- 6 ("Confusion Assessment Method for the Intensive Care Unit" or "CAM ICU").tw.
- 7 ("Intensive Care Delirium Screening Checklist" or "ICDSC").tw.
- 8 ("Delirium Rating Scale" or "DRS R 98").tw.
- 9 "Neecham Confusion Scale".tw.
- 10 "Nursing Delirium Screening Scale".tw.
- 11 or/1-10
- 12 exp Schizophrenia/
- 13 schizophreni*.ti,ab.
- 14 12 or 13
- 15 11 not 14
- 16 (pediatric* or preschool* or toddler* or infan* or child* or adolescent*).ti.
- 17 15 not 16
- 18 (animal* or mouse or mice or rat* or rodent* or dog* or canine or cow* or horse* or mare* or rabbit*).ti,sh.
- 19 17 not 18
- 20 Treatment Outcome/
- 21 Drug Therapy/
- 22 (prevent* or avoid* or treat* or intervention* or drug or medication* or pharmacologic* or nonpharmacologic* or psychosocial).tw.
- 23 or/20-22
- 24 19 and 23
- 25 (random* or controlled or placebo or sham or trial or blind*).ti,ab.
- 26 (cohort* or "case control" or prospective or retrospective or observational or longitudinal).ti,ab.
- 27 ("meta analysis" or "systematic review" or medline or cochrane).ti,ab.
- 28 or/25-27
- 29 24 and 28

Table B-3. EBM reviews - Cochrane Central Register of Controlled Trials literature search strategy

Date of search December 2019

- 1 exp Confusion/
- 2 (confusion or confuse* or delirium or delirious or disorient* or agitat*).ti,ab,hw.
- 3 "altered consciousness".ti,ab,hw.
- 4 ((emergence or emergent or emerging or emerge or postanesthe* or postanaesthe* or anesthe* or anaesthe*) adj3 excite*).ti,ab,hw.
- 5 ("Memorial Delirium Assessment Scale" or "MDAS").ti,ab,hw.
- 6 ("Confusion Assessment Method for the Intensive Care Unit" or "CAM ICU").ti,ab,hw.
- 7 ("Intensive Care Delirium Screening Checklist" or "ICDSC").ti,ab,hw.
- 8 ("Delirium Rating Scale" or "DRS R 98").ti,ab,hw.
- 9 "Neecham Confusion Scale".ti,ab,hw.
- 10 "Nursing Delirium Screening Scale".ti,ab,hw.
- 11 or/1-10
- 12 exp Schizophrenia/
- 13 schizophreni*.ti,ab,hw.
- 14 12 or 13
- 15 11 not 14
- 16 (pediatric* or preschool* or toddler* or infan* or child* or adolescent*).ti.
- 17 15 not 16
- 18 (animal* or mouse or mice or rat* or rodent* or dog* or canine or cow* or horse* or mare* or rabbit*).ti,sh.

- 19 17 not 18
- 20 Treatment Outcome/
- 21 Drug Therapy/
- 22 (prevent* or avoid* or treat* or intervention* or drug or medication* or pharmacologic* or nonpharmacologic* or psychosocial).ti,ab,hw.
- 23 (dt or pc or th).fs.
- 24 or/20-23
- 25 19 and 24
- 26 conference abstract.pt.
- 27 "journal: conference abstract".pt.
- 28 "journal: conference review".pt.
- 29 "http://.www.who.int/trialsearch*".so.
- 30 "https://clinicaltrials.gov*".so.
- 31 26 or 27 or 28 or 29 or 30
- 32 25 not 31
- 33 limit 32 to medline records
- 34 32 not 33
- 35 limit 34 to english language

Table B-4. EBM Reviews - Cochrane Database of Systematic Reviews literature search strategy

Dates of search 2005 to January 21, 2020

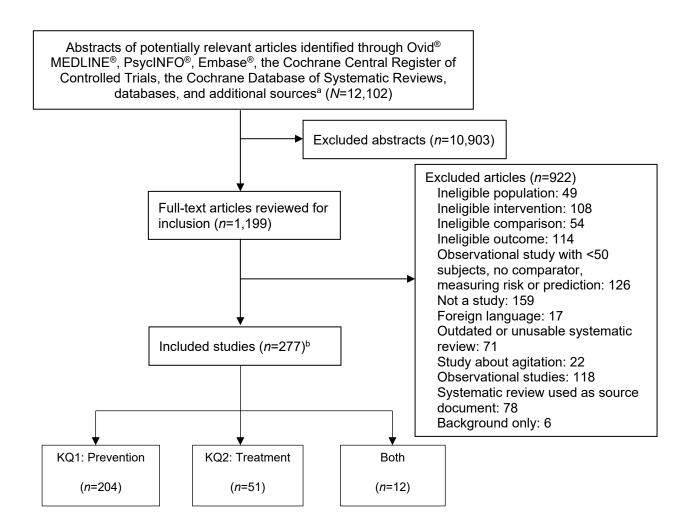
- 1 (confusion or confuse* or delirium or delirious or disorient* or agitat*).ti,ab.
- 2 schizophreni*.ti,ab.
- 3 (pediatric* or preschool* or toddler* or infan* or child* or adolescent*).ti.
- 4 (prevent* or avoid* or treat* or intervention* or drug or medication* or pharmacologic* or nonpharmacologic* or psychosocial).ti,ab.
- 5 1 not (2 or 3)
- 6 4 and 5
- 7 limit 6 to full systematic reviews

Table B-5. EMBASE literature search strategy

- -----
- 1. Confusion/exp
- 2. (delirium OR delirious):ti,ab,kw
- 3. 'altered consciousness':ti,ab,kw
- 4. ((Emergence OR Emergent OR Emerging OR Emerge OR postanesthe* OR postanaesthe* OR anesthe* OR anaesthe*) NEAR/3 (agitat* OR excite*)):ti,ab,kw
- 5. ('Memorial Delirium Assessment Scale' OR MDAS):ti,ab,kw
- 6. ('Confusion Assessment Method for the Intensive Care Unit' OR 'CAM ICU'):ti,ab,kw
- 7. ('Intensive Care Delirium Screening Checklist' OR ICDSC):ti,ab,kw
- 8. ('Delirium Rating Scale' OR 'DRS R 98'):ti,ab,kw
- 9. 'Neecham Confusion Scale':ti,ab,kw
- 10. 'Nursing Delirium Screening Scale':ti,ab,kw
- 11. #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 OR #9 OR #10
- 12. Schizophrenia/exp
- 13. schizophreni*:ti,ab,kw
- 14. #12 OR #13
- 15. #11 NOT #14
- 16. (pediatric* OR preschool* OR toddler* OR infan* OR child* OR adolescent*):ti
- 17. #15 NOT #16
- 18. (animal* OR mouse OR mice OR rat* OR rodent* OR dog* OR canine OR cow* OR horse* OR mare* OR rabbit*):ti ,sh.
- 19. #17 NOT #18
- 20. 'Treatment Outcome'/de
- 21. 'Drug Therapy'/de
- 22. (prevent* OR avoid* OR treat* OR intervention* OR drug OR medication* OR pharmacologic* OR nonpharmacologic* OR psychosocial):ti,ab,kw

- 23. :Ink
- 24. #20 OR #21 OR #22 OR #23
- 25. #19 AND #24
- 26. (random* OR controlled OR placebo OR sham OR trial OR blind*):ti,ab ,kw.
- 27. Clinical Trial/exp
- 28. #26 OR #27
- 29. #25 AND #28
- 30. 'limit 29 to english language'
- 31. 'observational study'/de OR 'comparative study'/de
- 32. 'cohort studies'/exp
- 33. 'case-control studies'/exp
- 34. (cohort* OR 'case control' OR prospective OR retrospective OR observational OR longitudinal):ti,ab ,kw.
- 35. #31 OR #32 OR #33 OR #34
- 36. term:it
- 37. ('case series' OR 'case report*'):ti,ab,kw
- 38. #35 NOT (#36 OR #37)
- 39. #25 AND #38
- 40. 'limit 39 to english language'
- 41. meta-analysis/de
- 42. 'systematic review'/de
- 43. (systematic OR 'meta analysis' OR metaanalysis OR medline OR cochrane):ti,ab,kw

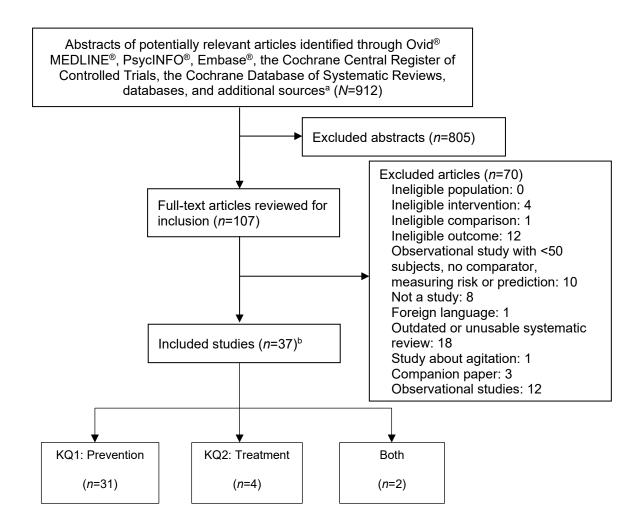
- 44. #41 OR #42 OR #43
- 45. #25 AND #44
- 46. 'limit 45 to yr="2010 2020"'
- 47. 'limit 46 to english language'
- 48. #30 OR #40 OR #47


Table B-6. CINAHL literature search strategy

- 1. (MH Confusion+)
- 2. ((TI delirium OR AB delirium OR SU delirium) OR (TI delirious OR AB delirious OR SU delirious))
- 3. (TI "altered consciousness" OR AB "altered consciousness" OR SU "altered consciousness")
- 4. (((TI emergence OR AB emergence OR SU emergence) OR (TI emergent OR AB emergent OR SU emergent) OR (TI emerging OR AB emerging OR SU emerging) OR (TI emerge OR AB emerge OR SU emerge) OR (TI postanesthe* OR AB postanesthe* OR SU postanesthe*) OR (TI postanaesthe* OR AB postanaesthe* OR SU postanaesthe*) OR (TI anesthe* OR AB anesthe* OR SU anesthe*) OR (TI anaesthe* OR AB anaesthe* OR SU anaesthe*)) N3 ((TI agitat* OR AB agitat* OR SU agitat*) OR (TI excite* OR AB excite* OR SU excite*)))
- 5. ((TI "Memorial Delirium Assessment Scale" OR AB "Memorial Delirium Assessment Scale" OR SU "Memorial Delirium Assessment Scale") OR (TI MDAS OR AB MDAS OR SU MDAS))
- ((TI "Confusion Assessment Method for the Intensive Care Unit" OR AB "Confusion Assessment Method for the Intensive Care Unit" OR SU "Confusion Assessment Method for the Intensive Care Unit") OR (TI "CAM ICU" OR AB "CAM ICU" OR SU "CAM ICU"))
- 7. ((TI "Intensive Care Delirium Screening Checklist" OR AB "Intensive Care Delirium Screening Checklist" OR SU "Intensive Care Delirium Screening Checklist") OR (TI ICDSC OR AB ICDSC OR SU ICDSC))
- 8. ((TI "Delirium Rating Scale" OR AB "Delirium Rating Scale" OR SU "Delirium Rating Scale") OR (TI "DRS R 98" OR AB "DRS R 98" OR SU "DRS R 98"))
- 9. (TI "Neecham Confusion Scale" OR AB "Neecham Confusion Scale" OR SU "Neecham Confusion Scale")
- 10. (TI "Nursing Delirium Screening Scale" OR AB "Nursing Delirium Screening Scale" OR SU "Nursing Delirium Screening Scale")
- 11. S1 OR S2 OR S3 OR S4 OR S5 OR S6 OR S7 OR S8 OR S9 OR S10
- 12. (MH Schizophrenia+)
- 13. (TI schizophreni* OR AB schizophreni* OR SU schizophreni*)
- 14. S12 OR S13
- 15. S11 NOT S14
- 16. (TI pediatric* OR TI preschool* OR TI toddler* OR TI infan* OR TI child* OR TI adolescent*) (1044684)
- 17. S15 NOT S16
- 18. (TI animal* OR TI mouse OR TI mice OR TI rat* OR TI rodent* OR TI dog* OR TI canine OR TI cow* OR TI horse* OR TI mare* OR TI rabbit*) ,sh.
- 19. S17 NOT S18

- 20. (MH "Treatment Outcome")
- 21. (MH "Drug Therapy")
- 22. ((TI prevent* OR AB prevent* OR SU prevent*) OR (TI avoid* OR AB avoid* OR SU avoid*) OR (TI treat* OR AB treat* OR SU treat*) OR (TI intervention* OR AB intervention* OR SU intervention*) OR (TI drug OR AB drug OR SU drug) OR (TI medication* OR AB medication* OR SU medication*) OR (TI pharmacologic* OR AB pharmacologic* OR SU pharmacologic*) OR (TI nonpharmacologic* OR AB nonpharmacologic* OR SU nonpharmacologic*) OR (TI psychosocial OR AB psychosocial OR SU psychosocial))
- 23. ((MW dt) OR (MW pc) OR (MW th) ÓR (MW nu))
- 24. S20 OR S21 OR S22 OR S23
- 25. S19 AND S24
- 26. ((TI random* OR AB random*) OR (TI controlled OR AB controlled) OR (TI placebo OR AB placebo) OR (TI sham OR AB sham) OR (TI trial OR AB trial) OR (TI blind* OR AB blind*)) ,kw.
- 27. (MH "Clinical Trial"+)
- 28. S26 OR S27
- 29. S25 AND S28
- 30. "limit 29 to english language"
- 31. (MH "observational study") OR (MH "comparative study")
- 32. (MH "cohort studies"+)
- 33. (MH "case-control studies"+)
- 34. ((TI cohort* OR AB cohort*) OR (TI "case control" OR AB "case control") OR (TI prospective OR AB prospective) OR (TI retrospective OR AB retrospective) OR (TI observational OR AB observational) OR (TI longitudinal OR AB longitudinal)), kw.
- 35. S31 OR S32 OR S33 OR S34
- 36. PT "case reports"
- ((TI "case series" OR AB "case series" OR SU "case series") OR (TI "case report*" OR AB "case report*" OR SU "case report*"))
- 38. S35 NOT (S36 OR S37)
- 39. S25 AND S38
- 40. "limit 39 to english language"
- 41. (MH meta-analysis)
- 42. (MH "systematic review")
- 43. ((TI systematic OR AB systematic OR SU systematic) OR (TI "meta analysis" OR AB "meta analysis" OR SU
 "meta analysis") OR (TI metaanalysis OR AB metaanalysis OR SU metaanalysis) OR (TI medline OR
 AB medline OR SU medline) OR (TI cochrane OR AB cochrane OR SU cochrane))
- 44. S41 OR S42 OR S43
- 45. S25 AND S44
- 46. "limit 45 to yr="2010 2020""
- 47. "limit 46 to english language"
- 48. S30 OR S40 OR S47

Literature Flow Diagrams


Figure B-1. Literature flow diagram for initial literature search.

^a Additional sources include suggested references, reference lists, etc.

^b 267 studies in 277 publications

Figure B-2. Literature flow diagram for updated literature search.

^a Additional sources include suggested references, reference lists, etc.

^b 34 new trials and 3 cohort studies

Study Selection

Initial searches were conducted in Ovid[®] MEDLINE[®], PsycINFO[®], Embase[®], Cochrane Central Register of Controlled Trials, and Cochrane Database of Systematic Reviews from database inception through October 2020 to identify studies eligible for this review, according to the criteria listed in Table B-7. An updated search was conducted using the same search strategies to identify studies through July 9, 2021.

Studies were selected for inclusion using pre-established criteria on the basis of the KQs (see Appendix A) and PICOTs (see Table B-7), which focused on the benefits and harms of interventions to prevent and treat delirium. Studies with mixed populations, where interventions addressed both prevention and treatment of delirium, were included and classified separately. A third KQ assessed patient-level or setting factors that modify the effects (benefits or harms) of the interventions, which included demographics, comorbidities and severity of underlying illness, and type of setting.

The population was restricted to adults (≥18 years old) at risk for delirium or with delirium. Studies that used Diagnostic and Statistical Manual (DSM) criteria were considered for inclusion, as well as studies that used a clinical diagnosis of delirium. Studies that assessed agitation, including post-operative agitation, were excluded if there was no DSM or clinical diagnosis of delirium. Inclusion was restricted to English-language articles and interventions that were available in the United States.

A hierarchy-of-evidence approach was used in which observational studies with at least 50 participants were included only if inadequate evidence was found in randomized controlled trials (RCTs) for primary outcomes on any KQ. Given the substantial number of RCTs that were identified, observational studies were only included to fill in gaps in the review.

For both the initial and updated searches, title and abstract were screened by an initial reviewer with excluded articles screened by a second reviewer. Full text review was conducted in duplicate. Any discrepant determinations in title/abstract or full text review were resolved by consensus with input included from a third individual if consensus could not be reached.

PICOTS Element	Include	Exclude
Populations	Adults (≥18 years old) at risk for delirium or with delirium, including those on palliative care and at end of life	Children and adolescents (<18 years old), delirium tremens
Interventions	Drug interventions (e.g., antipsychotics, cholinesterase inhibitors, sedatives, hypnotics, analgesics, melatonin, over-the-counter medications, complementary and alternative medicine) and non-drug interventions (e.g., environmental, light therapy, pain management, psychosocial interventions, reduction of unnecessary medications)	No intervention

Table B-7. Inclusion and exclusion criteria by PICOTS element

PICOTS Element	Include	Exclude
Comparisons	Placebo, no intervention (usual care), other drug	No comparison
	interventions, other non-drug interventions,	
	different doses, frequencies, or intensities of	
	interventions	
Outcomes	Incidence and severity of delirium, frequency of	None
	delirium episodes, duration of delirium, agitation,	
	re-admission or admission to hospital, quality of life	
	(including PTSD, cognitive decline, etc.), caregiver	
	burden, rescue medication use, length of stay in	
	hospital or ICU, mortality, adverse events ^a	
Duration	Any duration	None
Settings	Any setting, including inpatient, hospice, and nursing	None
	homes	
Study designs	RCTs, observational studies with N≥50, non-	Uncontrolled,
	randomized clinical studies with a comparator	observational study with
		no comparator

^a Outcomes for which Strength of Research Evidence was assessed are shown in **bold**.

ICU=intensive care unit; N=number; PTSD=posttraumatic stress disorder; RCT=randomized controlled trial.

Data Extraction

Data were abstracted from included studies into evidence tables, including study and patient characteristics and study results, with data verified for accuracy and completeness by a second team member. Study and patient characteristics abstracted were: setting, eligibility criteria, age, sex/gender, race, other population characteristics (baseline delirium, function, dementia, cancer, and admission for surgery), number of participants randomized and analyzed, whether the intervention was for prevention or treatment, intervention characteristics, timing and duration of the intervention, duration of follow-up, and funding source. Data abstracted for results were incidence, severity, and duration of delirium, length of intensive care unit (ICU) and hospital stay, mortality, treatment-related adverse events, and additional outcomes identified in our PICOTS. Where trials reported more than one delirium measurement over the study period, a cumulative measure was reported if available. Otherwise, a time point was used that either matched that reported in other similar studies or was the latest one reported. All study data were verified for accuracy and completeness by a second team member.

Risk of Bias Assessment

Risk of bias ratings are included in evidence tables (see Appendix D) with specific factors contributing to the risk of bias for each study shown in Appendix E. Predefined criteria were used to assess the risk of bias of included trials. RCTs were assessed on the basis of criteria established in the Cochrane Handbook for Systematic Reviews of Interventions (Furlan et al. 2015; Higgins et al. 2023) with observational studies assessed using criteria developed by the U.S. Preventive Services Task Force (Harris et al. 2001). Two team members independently assessed risk of bias and assigned an overall rating of low, moderate, or high risk of bias, with disagreements were resolved by consensus.

Studies rated low are considered to have the least risk of bias, and their results are generally considered valid. Low risk of bias intervention studies include a valid method for allocating patients to treatment

and similar patient characteristics across groups at baseline; blinding of patients, caregivers, and outcome assessors to treatment received; low and non-differential dropout rates and clear reporting of dropouts; and use of intention-to-treat analysis.

Studies rated moderate are susceptible to some bias, although not enough to invalidate the results. These studies may not meet all the criteria for a rating of low risk of bias, but no flaw or combination of flaws is likely to cause major bias. The study may be missing information, making it difficult to assess limitations and potential problems. The moderate risk of bias category is broad, and studies with this rating vary in their strengths and weaknesses. The results of some moderate studies are likely to be valid, while others may be only possibly valid.

Studies rated high have significant flaws that imply biases of various types that may invalidate the results. They have a serious or "fatal" flaw (or combination of flaws) in design, analysis, or reporting; large amounts of missing information or very high attrition; discrepancies in reporting; or serious problems in the delivery of the intervention. The results of these studies are at least as likely to reflect flaws in the study design as to show true difference between the compared interventions. We did not exclude studies rated high risk of bias a priori, but high risk of bias studies were considered less reliable and given less weight than lower risk of bias studies when synthesizing the evidence, particularly when discrepancies between studies were present.

Data Synthesis and Analysis

Evidence was analyzed according to KQs, using both qualitative (narrative) and where possible quantitative (meta-analysis) methods. In both approaches, pharmacological studies were grouped by setting (e.g., surgical, ICU, general inpatient), and nonpharmacological studies by intervention type (single-component vs. multi-component). For pharmacological studies, within each setting, drugs of the same general class were assessed together.

To determine whether meta-analysis could be meaningfully performed, we considered the quality of the studies and the heterogeneity among studies in design, patient population, interventions, and outcomes. Meta-analyses were conducted on outcomes of delirium incidence, severity, and duration, ICU and hospital length of stay, and mortality, when there were at least two studies reporting the same outcome.

DerSimonian and Laird random effects models were used for meta-analyses (Hardy and Thompson 1996), with heterogeneity assessed using both the χ^2 test and the I-squared (I²) statistic (Higgins and Thompson 2002). Small study effects (including potential publication bias) were analyzed using funnel plots and the Egger and Harbord tests, where there were at least 10 studies combined in meta-analyses. For dichotomous outcomes, relative risks (RRs) and 95% confidence intervals (CIs) were calculated and presented with the incidence in each group. RRs were calculated rather than absolute risk differences to account for variation in the underlying risk for the outcome in different study populations. For continuous outcomes, mean differences (MDs) were calculated (or standardized mean differences [SMDs] when outcome measures differed) as well as 95% CIs. When necessary, standard error was estimated from other measures of variance that trials reported. All analyses were performed using

STATA® 14.2 (StataCorp, College Station, TX). Selected forest plots for meta-analyses are included in the text, and additional forest plots for additional outcomes are available on request.

The *a priori* plan for subgroup analysis included the population characteristics specified in KQ3 in Appendix A. For studies that could be combined, meta-analyses were stratified by factors such as setting, type of surgery, or comparator. Meta-regression was used to calculate p-values for the interaction between these factors and treatment in their effects on outcomes. Where individual trials analyzed subgroups within their study populations, these are reported as well.

Rating the Strength of Guideline Statements and the Body of Research Evidence

Each guideline statement is separately rated to indicate strength of recommendation and strength of supporting research evidence as described in the Introduction and Guideline Development Process.

The Pacific Northwest EPC evaluated the strength of research evidence (SRE) of primary outcomeintervention pairs using AHRQ methods (Berkman et al. 2015). Primary outcomes assessed were delirium incidence, severity, and duration, and adverse events.

Outcomes assessed for SRE were prioritized on the basis of input from the APA; these are footnoted and listed in bold in Table B-7. PICOTS element. On the basis of this prioritized list, the SRE for comparisonoutcome pairs within each KQ was initially assessed by one researcher for each clinical outcome by using the approach described in the AHRQ *Methods Guide for Comparative Effectiveness Review* (Berkman et al. 2015). To ensure consistency and validity of the evaluation, the ratings for SRE were dual reviewed for:

• Study limitations (low, medium, or high)

Rated as the degree to which studies for a given outcome are likely to reduce bias on the basis of study design and study conduct (reflected in risk of bias assessments).

• Consistency (consistent, inconsistent, or unknown/not applicable)

Rated by degree to which studies find similar magnitude of effect (i.e., range sizes are similar) or same direction (i.e., effect sizes have the same sign). When available, measures of statistical heterogeneity in meta-analyses also contributed to assessments of consistency.

• Measures of statistical heterogeneity in meta-analyses

Rated as unknown (rather than not applicable) with downgrading of the SRE if only one study was available. This evidence was not automatically assessed as "insufficient," but instead, the SRE considered the sample size or number of events available for analysis.

• Directness (direct or indirect)

Rated by degree to which evidence assesses a) comparison of interest, with studies that directly compare included interventions b) in the population of interest, and c) measures a clinically important outcome of interest.

• Precision (precise or imprecise)

Rated on the basis of the degree of certainty surrounding an effect estimate as it relates to a specific outcome. This may be determined on the basis of sufficiency of sample size and number of events, and if these are adequate, the interpretation of the confidence interval. Thresholds of 400 analyzed patients were used for continuous outcomes, and 300 events were used for dichotomous outcomes to determine whether the Optimal Information Size (OIS) had been met. If the OIS was met, the 95% CI was evaluated according to the criteria in the AHRQ *Methods Guide for Comparative Effectiveness Review* (Berkman et al. 2015). The SRE was downgraded if either assessment indicated imprecision.

• Publication bias (suspected or undetected)

Rated on the basis of whether funnel plots or statistical methods showed evidence of selective publishing of research findings on the basis of favorable direction or magnitude of effects. If fewer than 10 studies were available to conduct such analyses, this domain was rated as "unknown".

By evaluating and weighing the combined results of the above domains, the bodies of research evidence (specific outcome and intervention comparisons) were assigned an overall grade of high, moderate, low, or insufficient according to a four-level scale that reflected the confidence or certainty in the findings (Table B-8).

Grade	Definition
High	We are very confident that the estimate of effect lies close to the true effect for this outcome. The body of evidence has few or no deficiencies. We believe that the findings are stable (i.e., another study would not change the conclusions).
Moderate	We are moderately confident that the estimate of effect lies close to the true effect for this outcome. The body of evidence has some deficiencies. We believe that the findings are likely to be stable, but some doubt remains.
Low	We have limited confidence that the estimate of effect lies close to the true effect for this outcome. The body of evidence has major or numerous deficiencies (or both). We believe that additional evidence is needed before concluding either that the findings are stable or that the estimate of effect is close to the true effect.

Table B-8. Definitions of the grades of overall strength of research evidence (Berkman et al. 2015)

Insufficient	We have no evidence, we are unable to estimate an effect, or we have no confidence in
	the estimate of effect for this outcome. No evidence is available, or the body of
	evidence has unacceptable deficiencies, precluding reaching a conclusion.

The APA uses these same definitions for the overall strength of research evidence with the modification that the *low* rating is used when evidence is insufficient because there is low confidence in the conclusion and further research, if conducted, would likely change the estimated effect or confidence in the estimated effect.

In addition to assessing the SRE, the magnitude of effects were summarized according to thresholds of little to no difference, small, moderate, or large effects (Table B-9). These were applied regardless of the statistical significance of the differences.

Magnitude	Absolute Difference	RR (or OR)	MD (days)	SMD (severity)
Little/no difference:	<5%	>0.81 to <1.2	<1.0	<0.2
Small	5% to 10%	1.2 to 1.4	>1 to 2.0	0.2 to 0.5
Moderate	11% to 20%	1.5 to 1.9	>2.0 to 3.0	>0.5 to 0.8
Large	>20%	≥2.0	> 3.0	>0.8

Table B-9. Categories of magnitude of difference or effect

MD=mean difference; OR=odds ratio; RR=relative risk; SMD=standardized mean difference.

In reporting the results of studies on treatment of delirium, the word "response" is used to indicate that the study reported the proportion of patients who either had no symptoms of delirium or did not meet the threshold for delirium on the scales used, at study endpoint. Note that, in this report, the term "significant" is used to describe statistically significant differences in the results, and the categories above are used to describe the magnitudes of difference in findings.

Appendix C. Review of Research Evidence Supporting Guideline Statements

Assessment and Treatment Planning

Statement 1 – Structured Assessments for Delirium

APA *recommends* **(1C)** that patients with delirium or who are at risk for delirium undergo regular structured assessments for the presence or persistence of delirium using valid and reliable measures.

Support for this statement comes from the literature on delirium prevention and management, general principles of assessment, and clinical care in psychiatric practice, from epidemiological data on the prevalence of delirium in non-community populations (e.g., hospitalized general medical patients, critical care patients), and from data on the validation of delirium screening tools. Together, the strength of research evidence is rated as low.

A detailed systematic review to support this statement is outside the scope of this guideline; however, a less comprehensive search of the literature identified multiple studies and reviews advising clinicians to engage in routine assessment and screening for delirium (Bush et al. 2017; Devlin et al. 2018; Kotfis et al. 2018; Mart et al. 2021). In addition, delirium is under-detected, even by highly trained health care professionals in acute care settings, unless screening is implemented using tools as used in validation studies and including deliberate cognitive assessment (Bush et al. 2017; Carpenter et al. 2021; Devlin et al. 2007; Geriatric Medicine Research Collaborative 2019; Grossmann et al. 2014; Kotfis et al. 2018; Spronk et al. 2009). These findings also support this guideline recommendation.

Grading of the Overall Supporting Body of Research Evidence for Structured Assessments for Delirium In the absence of a detailed systematic review on the topic of structured assessments for delirium, no grading of the body of research evidence is possible.

Statement 2 – Determination of Baseline Neurocognitive Status

APA *recommends* (1C) that a patient's baseline neurocognitive status be determined to permit accurate interpretation of delirium assessments.

Support for this statement comes from the literature on delirium diagnosis and assessment and from the definition of delirium itself, which states that delirium represents an acute departure from a person's baseline attention and awareness (American Psychiatric Association 2022). Additionally, many delirium assessments, such as the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU), include instructions or assessment items that state outright that the patient's symptoms must represent a change from baseline cognitive functioning.

A detailed systematic review to support this statement is outside the scope of this guideline; however, a less comprehensive search of the literature identified multiple studies and reviews that emphasized the importance of baseline cognitive status for determining whether cognitive changes are present and reflective of delirium or some other pathology (Duggan et al. 2021; Fong and Inouye 2022; Grover and Kate 2012; Kotfis et al 2018; Maldonado 2017; Meagher and Leonard 2008; Oh et al. 2017; Ospina et al. 2018). Without information on the patient's baseline cognitive status, the diagnosis of delirium can be missed, as the clinician would be unable to tell whether the presenting symptoms represent an acute

change from normal (Oh et al. 2017). This is particularly true in patients who have some pre-existing cognitive impairment. Baseline cognitive status on hospital admission also may help determine the risk of incident delirium and duration during a hospital stay (Tsui et al. 2022), because patients with pre-existing cognitive impairment are more likely to develop delirium and for delirium to persist. Similarly, knowledge of a patient's baseline cognitive status is important for differentiating between delirium and dementia, as acute changes from baseline are more indicative of the former whereas slower, more subtle changes reflect the latter (Fong and Inouye 2022).

Grading of the Overall Supporting Body of Research Evidence for Determination of Baseline Cognitive Status

In the absence of a detailed systematic review on the topic of baseline cognitive status determination, no grading of the body of research evidence is possible.

Statement 3 – Review for Predisposing or Contributing Factors

APA *recommends* **(1C)** that patients with delirium or who are at risk for delirium undergo a detailed review of possible predisposing or contributing factors.

Support for this statement comes from the literature on delirium management, which underscores the importance of resolving delirium precipitants as the primary intervention. Although not all contributing factors to delirium will be modifiable, review of possible precipitants can help clinicians identify factors amenable to change and implement interventions in a timely manner. Early intervention in delirium can help reduce the risk of serious complications, such as dehydration, pneumonia, and falls, among others (O'Hanlon et al. 2014). In some studies, timely intervention has also been associated with a reduction in delirium duration (O'Hanlon et al. 2014).

A detailed systematic review to support this statement is outside the scope of this guideline; however, a less comprehensive search of the literature on the management of delirium found numerous studies and reviews that emphasize the importance of identifying and reversing underlying causes and contributors to delirium as a cornerstone of delirium treatment (Z. Jin et al. 2020; Maldonado 2017; Mart et al. 2021; Mattison 2020; Oh and Park 2019; Ospina et al. 2018; Wilson et al. 2020; see also Statement 3, Implementation). This is especially important given that some underlying causes may be life-threatening, such as intracranial hemorrhage, hypertensive crisis, electrolyte imbalance, hypoxemia, and infection (Ospina et al. 2018).

Grading of the Overall Supporting Body of Research Evidence for Review of Predisposing or Contributing Factors

In the absence of a detailed systematic review on the topic of predisposing or contributing factors to delirium, no grading of the body of research evidence is possible.

Statement 4 – Review of Medications

APA *recommends* (1C) that a detailed medication review be conducted in patients with delirium or who are at risk for delirium, especially those with pre-existing cognitive impairment.

Support for this statement comes from the literature on delirium risk, management, and prevention, which underscores the importance of assessing medication use as a potential contributor to or exacerbator of delirium.

A detailed systematic review to support this statement is outside the scope of this guideline; however, a less comprehensive search of the literature on the risks, management, and prevention of delirium highlights the importance of medication review. It has been estimated that as many as 39% of all cases of delirium may be due to medication use (Adeola et al. 2018). Research on medication-related risk factors for delirium has found a higher odds of delirium in patients treated with antipsychotics, benzodiazepines, anticholinergics, opioids (especially when combined with benzodiazepines), and polypharmacy (Aloisi et al. 2019; Duprey et al. 2021, 2022; Featherstone et al. 2022; Kang et al. 2019; Kassie et al. 2017; Lee et al. 2022; Marquetand et al 2022; Reisinger et al. 2023; Rigor et al. 2020; Saljuqi et al. 2020; Shi et al 2022; Silva et al. 2021; Softy et al. 2023; Vacas et al. 2022; H. Zhang et al. 2021); however, some of these associations may result from the use of these medications in patients with early signs of delirium to address neuropsychiatric symptoms. In addition, medications such as antipsychotics and benzodiazepines can increase the risk of adverse effects, including cardiac disturbances, falls, cognitive impairment, cerebrovascular events, infection, and mortality (Johnson et al. 2017; Markota et al. 2016). Although antipsychotic medications do not appear to decrease the incidence or duration of delirium (Neufeld et al. 2016; Nikooie et al. 2019; see also Statement 8), they are sometimes used in an effort to reduce behavioral symptoms of delirium. Once prescribed, these medications are often continued after transfer of care and hospital discharge (Boncyk et al. 2021; Dixit et al. 2021; Flurie et al. 2015; Johnson et al. 2017; Lambert et al. 2021; see also Statements 14 and 15).

Deliriogenic medication use is even more concerning in patients with preexisting cognitive impairment because some of these medications can exacerbate cognitive dysfunction and lead to poorer outcomes for patients. For instance, anticholinergics are associated with increased memory and learning impairment, with a greater magnitude of effect observed in people with preexisting cognitive dysfunction versus cognitively normal individuals (Taylor-Rowan et al. 2023). Benzodiazepines similarly are associated with an increased risk of impairments in memory, learning, attention, and visuospatial abilities especially with prolonged exposure in older adults (Markota et al. 2016; Picton et al. 2018). Furthermore, patients with premorbid cognitive dysfunction are already at a greater risk of delirium than cognitively healthy adults, likely due in part to the neurodegeneration and neuroinflammation associated with cognitive decline (Davis et al. 2015; Prendergast et al. 2022). Exposure to potentially deliriogenic medication in these patients further increases their vulnerability to delirium and could make them more susceptible to poor outcomes associated with delirium, such as further cognitive deterioration and dementia (Wilson et al. 2020).

Medication review is a necessary precursor to medication cessation or dose reduction. It can also be an effective nonpharmacological strategy to reduce unnecessary exposure to high-risk medication. Although many studies of medication review and deprescribing have been conducted in ambulatory or long-term care settings (Evrard et al. 2022), some studies have examined hospital settings or patients with delirium or at risk for delirium. For example, in a large study of ICU patients (*N*=281), physician and nurse education, medication review, and an antipsychotic discontinuation algorithm were associated

with reduced rates of antipsychotic continuation at transfer of care (P=0.014) and at hospital discharge (P=0.024) (D'Angelo et al. 2019). Similarly, a pharmacist-led intervention (e.g., pharmacy surveillance alerts and discontinuation/dose reduction plans) effectively reduced unnecessary exposure to high-risk medications in hospitalized patients with delirium (Adeola et al. 2018). In contrast, in a study of 200 adults age 18 or older who were admitted to an ICU with delirium, there was no impact of a deprescribing initiative that used electronic alerts and pharmacist support to reduce use of anticholinergic medications and benzodiazepines (Campbell et al. 2019).

Medication review is often a component of multi-component nonpharmacological interventions for patients at risk for delirium (Burton et al. 2021), and much of the literature on its effects in preventing incident delirium come from studies of multi-component interventions. A pilot study of a nurse intervention to prevent delirium in hospitalized older adults (N=50; Avendano-Cespedes et al. 2016) found that a multifactorial intervention, which included medication review, was associated with a significantly lower incidence of delirium versus controls (3% vs. 12%, P=0.039), as well as lower delirium severity (P=0.04). In a study of older adults with severe pancreatic encephalopathy, use of the Hospital Elderly Life Program intervention—which included medication review and management—was associated with significantly lower incidence of delirium versus controls (4% vs. 17%, P=0.033) (Dong et al. 2020). A multicenter RCT of a geriatric-focused multi-component intervention that included medication review also reported a reduced incidence of delirium with the intervention versus usual care (N=260; 9.4% vs. 14.3%, OR 0.63, 95% CI 0.29–1.35) (Hempenius et al. 2013).

Fewer studies have examined medication review as an intervention in isolation, but existing evidence suggests it could help reduce delirium prevalence, duration, and length of episodes. In a trial conducted in the Netherlands (*N*=93; van Velthuijsen et al 2018) that assessed the effects of medication review on length of delirium, length of stay, mortality, and discharge destination, delirium duration was shorter in intervention patients versus controls (8.56 days vs. 15.47 days). Additionally, among intervention patients who were taking up to six medications, episodes of delirium were significantly shorter than in controls taking up to six medications (MD 15.46 days, *P*<0.001).

Grading of the Overall Supporting Body of Research Evidence for Detailed Medication Review

In the absence of a detailed systematic review on the topic of detailed medication review for patients with delirium or who are at risk for delirium, no grading of the body of research evidence is possible.

Statement 5 – Use of Restraints

APA *recommends* (1C) that physical restraints not be used in patients with delirium, except in situations where injury to self or others is imminent and only:

- after review of factors that can contribute to racial/ethnic and other biases in decisions about restraint;
- with frequent monitoring; and
- with repeated reassessment of the continued risks and benefits of restraint use as compared with less restrictive interventions.

This recommendation is determined on the basis of a focused review of the literature on the use of physical restraints in patients with or at risk for delirium as well as the literature on precipitating and predisposing factors of delirium.

Physical restraints are often used to enhance patient safety, prevent self-extubation or tube dislodgment, reduce the risk of falls, and protect staff from patient combativeness (Devlin et al. 2018). However, there are no data from RCTs that support these benefits. Paradoxically, one post-hoc study found greater rates of device removal or need for reintubation in patients who were physically restrained (Rose et al. 2016). Several additional studies also reported rates of self-extubation of at least 80% despite the presence of physical restraints (Perez et al. 2019). Data on falls and restraint use are also limited and likely dependent on the type of restraint used, with some studies including bedrails or bed/chair alarms as forms of restraint (Abraham et al. 2022). Studies of falls and restraint use have also been confounded by factors that could increase both types of events. For example, one study found injurious falls occurred in individuals who had a mental status change in the prior 24 hours and that such falls were associated with a greater length of stay in those who were physically restrained after the mental status change (Francis-Coad et al. 2020). Another study found that patients with an order for physical restraint fell more often than patients without such an order; however, many patients with an order were not actually found to be restrained and the order for restraint may have been placed due to a perceived increase in fall risk (Shorr et al. 2002).

In patients with delirium, use of physical restraints is generally not recommended because delirium can be caused by easily identifiable and correctable factors that can be avoided by thoroughly assessing for contributing factors to the delirium (Smithard and Randhawa 2022). Use of restraints can also exacerbate agitation, heighten confusion, and lead to injury (Sharifi et al. 2021; Teece et al. 2020). Many physical consequences of restraints have been reported and can include pressure ulcers, fractures, cardiac arrythmias, musculoskeletal injuries, incontinence, asphyxiation, and potentially death from strangulation (Sharifi et al. 2021). Rates of such events have not been well studied, but one prospective study found that neurovascular effects (e.g., redness, edema, color changes, reduced pulse strength) were greater in restrained limbs after 4 days of restraint than on the initial day of restraint (Ertuğrul and Özden 2020).

Emotional harms of restraint have also been described. In one qualitative study of patients who had been physically restrained in an emergency department, the experience was viewed as frightening and dehumanizing, prompting a sense of helplessness, anxiety, and mistrust of health care as well as some long-term psychological effects (Wong et al. 2020). A systematic review of posttraumatic stress disorder (PTSD) in ICU settings identified three studies that examined the association of PTSD and restraint use (Franks et al. 2021). One of these studies (N=98; Hatchett et al. 2010) found that one-third of ICU survivors had symptoms of PTSD and that risk of PTSD symptoms was greater in those who recalled being physically restrained during the admission (OR 6.04, 95% CI 2.21–16.33, P<0.001). Another study (N=114; Zghidi et al. 2019) also found use of physical restraint to be associated with a greater risk of meeting criteria for PTSD when assessed 3 months after ICU discharge (OR 6.27, 95% CI 1.66–23.67, P=0.007). A larger study (N=238; Jones et al. 2007) used structural equation modeling to investigate

relationships between PTSD and possible contributors; it found that individuals who were physically restrained without being concomitantly sedated were predisposed to develop PTSD symptoms.

A number of observational studies have suggested that use of physical restraints is associated with an increase in the likelihood of incident delirium (Maldonado 2017; McPherson et al. 2013; Mehta et al. 2015; Pan et al. 2018). However, this does not imply a causal relationship. Rather, underlying factors or unreported clinical observations may contribute both to a greater likelihood of restraint use as well as to a greater likelihood of delirium being recognized. Future clinical trials could help establish whether restraint-free approaches to care are feasible and could improve delirium outcomes (Flaherty and Little 2011).

When the potential benefits of using physical restraints appear to outweigh the harms, it is important to consider whether any biases have been introduced into the clinical decision-making. Evidence suggests racial/ethnic bias may be present in the use of physical restraints among hospitalized or emergency department patients (Wong et al. 2021). For example, a retrospective chart analysis of more than 195,000 patients with emergency department visits found a significant increase in the use of restraints among Asian patients (RR 0.71, 95% CI 0.55–0.92, P=0.009) and Black patients (RR 1.22, 95% CI 1.05– 1.40, P=0.007) compared with White patients (Schnitzer et al. 2020). Another large retrospective study (Wong et al. 2021) examined use of restraints among 726,417 emergency department visits of which 1% included an episode of physical restraint. Black individuals were more likely to be restrained than White individuals (adjusted OR 1.13, 95% Cl 1.08–1.21), whereas Hispanic or Latino individuals (adjusted OR 0.78, 95% CI 0.70–0.88) had lower odds of being restrained compared with non-Hispanic individuals (Wong et al. 2021). Female patients also had lower odds of being restrained (adjusted OR 0.75, 95% CI 0.71–0.79) as compared with male patients (Wong et al. 2021). Differences in the likelihood of restraint use were also noted on the basis of housing (patients who were homeless had adjusted OR 1.35, 95% CI 1.14–1.16 as compared with those with housing) and insurance status (as compared with patients with private insurance, patients with Medicaid had adjusted OR 1.55, 95% CI 1.45–1.67 and those with Medicare had adjusted OR 1.67, 95% CI 1.54–1.82) (Wong et al. 2021). A retrospective study of 4,410,816 encounters in Northern California included 6,369 encounters (5,554 unique patients) in which physical restraint was used (Walia et al. 2023). Black patients and patients with other or unknown race/ethnicity had higher odds of restraint (adjusted OR 1.11, 95% CI 1.02–1.21 and adjusted OR 1.52, 95% CI 1.34–1.72, respectively) whereas Asian patients had lower odds (adjusted OR 0.75, 95% CI 0.66– 0.85) as compares with White patients (Walia et al. 2023). Another analysis of 12,229 emergency department patient visits focused on patients 16 and older with diagnoses of aggression or agitation who received either chemical or physical restraints used (Conteh et al. 2023). This study found Hispanic patients, as compared with White patients, were less likely to receive physical restraints (P=0.044, 95% CI 0.467–0.989) or a dose of a chemical restraints (P=0.008, 95% CI -0.359 to -0.053) (Conteh et al. 2023). However, this study differed from the other emergency department samples in noting no statistically significant differences when comparing Black patients to White patients on the likelihood of restraint use.

In studies that focused on restraint use during psychiatric emergency encounters, one study of more than 32,000 emergency department encounters reported significantly higher odds of restraint use

among Black (adjusted OR 1.22, 95% CI 1.01–1.48, *P*<0.001) and Hispanic patients (adjusted OR 1.45, 95% CI 1.22–1.73, *P*<0.01) compared with White patients (Carreras Tartak et al. 2021). Another retrospective study of 12,977 emergency psychiatric evaluations observed that Black patients were more likely to be physically (adjusted OR 1.35, 95% CI 1.07–1.72) or chemically (adjusted OR 1.33, 95% CI 1.15–1.55) restrained than White patients (Smith et al. 2022).

Limited research has examined potential bias in the restraint of patients with delirium, but existing studies are consistent with this pattern. In the National Inpatient sample, a de-identified all-payors database of acute care hospital discharges in the United States, restraints were used in 0.7% of overall hospitalizations and 7.4% of patients with a diagnosis of encephalitis (Luccarelli et al. 2023). In an adjusted model in the sample as a whole, Black individuals had a greater likelihood of restraint than White individuals (OR 1.3, 95% CI 1.2–1.4), and men had a greater likelihood of restraint than women (OR 1.4, 95% CI 1.4–1.5) (Luccarelli et al. 2023). The same sample included 991,605 patients noted to have dementia with behavioral disturbances, with physical restraints being used in 6.5% (Luccarelli et al. 2023). An additional analysis using the same sample found that individuals who were restrained, as compared with unrestrained, were more likely to be Black (15.2% vs. 11.8%, P<0.01), males (59.0% vs. 45.8%, P<0.01), and younger in age (mean age ± standard error: 78.7 ± 0.25 vs. 79.9 ± 0.34, P<0.01) (Singh et al. 2023).

Factors other than race, ethnicity, gender, or age can also introduce bias into decisions related to restraint. For example, a retrospective cohort study of general medical patients in Canada (Reppas-Rindlisbacher et al. 2022) observed 2.6-fold the risk of physical restraint use among patients who did not prefer English as their dominant language compared with patients who did prefer English (27.9% vs. 11.7%, adjusted RR 2.61, 95% CI 1.40–4.85).

Grading of the Overall Supporting Body of Research Evidence for Use of Restraints

In the absence of a detailed systematic review on the topic of restraint use in a patient with delirium, no grading of the body of research evidence is possible.

Statement 6 – Person-Centered Treatment Planning

APA *recommends* **(1C)** that patients with delirium have a documented, comprehensive, and personcentered treatment plan.

Support for this statement comes from the literature on delirium management and risk factors, which underscores the complexity of delirium and the importance of accounting for individual variability in symptoms, illness severity, and contributors when selecting appropriate treatments.

A detailed systematic review to support this statement is outside the scope of this guideline; however, a less comprehensive search of the literature did not find evidence on the specific benefits of treatment planning in patients with delirium. Nevertheless, best practices in clinical care and available information on the risks and management of delirium demonstrate the need for a comprehensive, personalized approach to treatment planning.

Delirium has multiple etiologies, heterogenous phenotypes, and according to a recent systematic literature review, 33 predisposing and 112 precipitating risk factors (Ormseth et al. 2023); because of this, management can be challenging and needs to be individualized (Devlin et al. 2018; Mart et al. 2021; Ormseth et al. 2023). Multi-component nonpharmacological treatments are the primary management tool for treating delirium (Mart et al. 2021; Oh and Park 2019), and evidence for those approaches is described in Appendix C, Statement 7.

Person-centered treatment planning can include consideration of how family and caregivers can be incorporated into care, as appropriate (Kukreja et al. 2015). A systematic review and meta-analysis of family and caregiver interventions for delirium found family-caregiver involvement in delirium management is associated with reduced length of hospital stay (10 days intervention vs. 14 days control, *P*=0.005) and reduced levels of family anxiety (McKenzie and Joy 2020). Although more research is needed to better understand the effects of including informal carers in delirium treatments, for some patients with delirium, family and caregivers could be valuable in providing patients support, functional assistance, and reassurance (McKenzie and Joy 2020; Pandhal and Van Der Wardt 2022).

Grading of the Overall Supporting Body of Research Evidence for Person-Centered Treatment Planning

In the absence of a detailed systematic review on the topic of person-centered treatment planning for patients with delirium, no grading of the body of research evidence is possible.

Nonpharmacological Interventions

Statement 7 – Multi-Component Nonpharmacological Interventions

APA *recommends* (1B) that patients with delirium or who are at risk for delirium receive multicomponent nonpharmacological interventions to manage and prevent delirium.

In general, nonpharmacological interventions have been shown to prevent delirium in at-risk populations but have not shown a consistent effect in reducing duration or severity of delirium once it is present. Importantly, however, these studies of nonpharmacological interventions have key limitations and should be interpreted cautiously. For example, studies have extensive differences in the extent to which components are delivered and how they are operationalized in various hospital settings. Studies differ in the specific combination of interventions used in each trial, and interventions are also combined differently in the study arms. In some instances, overlaps between intervention and treatment as usual groups are not well-defined, whereas in in other instances, the same intervention has been implemented in different ways. These features of the study designs make it difficult to know the extent to which an intervention was actually provided. In addition, most of the interventions would be impossible to deliver in a blinded fashion, and few studies included procedures to ensure fidelity and completion of interventions, further complicating a robust analysis of the data. Other interventions, such as family involvement, may take place regardless of study participation. Finally, several elements of care may be unrecognized and could have an effect but have not been studied, observed, or controlled for (e.g., having a private vs. a shared room).

Nonpharmacological Interventions for the Prevention of Delirium

The systematic review conducted by the Pacific Northwest EPC for development of this practice guideline assessed outcomes from multi-component and single-component nonpharmacological interventions among clinical trials designed to prevent delirium. For both multi-component and single-component interventions, treatment groups had a significantly lower incidence of delirium than control groups. However, results were not significant for subgroups of general inpatient, home care/long-term care, or ICU populations. A Cochrane review of multi-component interventions for the prevention of delirium similarly found a lower incidence of delirium with treatment versus control (Burton et al. 2021). Analyses of studies of ABCDEF bundle interventions found significant improvements in delirium symptoms compared with control patients, but this was highly dependent on the extent to which the patients completed every element of the bundle (Balas et al. 2022; Barnes-Daly et al. 2017; Pun et al. 2019; Sosnowski et al. 2023). Hospital Elder Life Program (HELP) interventions similarly demonstrated a reduction in delirium incidence with treatment (Chen et al. 2017; Hshieh et al. 2018; Inouye et al. 2000; Y.Y. Wang et al. 2020). Subgroup analyses looking for effects of multi-component interventions by their specific interventions were generally not significant.

Multi-Component Interventions

The EPC systematic review identified 23 RCTs that are described in 26 publications (Abbasinia et al. 2021; Avendano-Cespedes et al. 2016; Boockvar et al. 2020; Boustani et al. 2012; Caplan et al. 2006; Chen et al. 2011, 2017; Dong et al. 2020; Guo et al. 2016; Hamzehpour et al. 2018; Hempenius et al. 2013, 2016; Hosie et al. 2020; Khan et al. 2013; Lapane et al. 2011; Lundström et al. 2005, 2007; Moon and Lee 2015; Rice et al. 2017; Rood et al. 2021; Siddiqi et al. 2016; Stenvall et al. 2012; Verloo et al. 2015; Y.Y. Wang et al. 2020; Watne et al. 2014; Young et al. 2020) and that compared a multi-component nonpharmacological intervention with usual care for the prevention of delirium. Sample sizes varied widely but were predominantly less than 200 subjects. Four trials were conducted in the United States, eight in Europe, three in China, two in Taiwan and Australia each, and one each in Iran and South Korea. Six trials were conducted post-operatively, with types of surgeries including cardiac, abdominal, orthopedic, oncologic, and other procedures. Other trials included seven conducted in general inpatient settings, three in ICUs, four in nursing home or home care settings, and one in a palliative care setting. A majority of the trials had a moderate risk of bias.

Evidence also included outcomes from a Cochrane review of multi-component nonpharmacological interventions (Burton et al. 2021). Additionally, studies on ABCDEF care bundles and from HELPs were also considered (Balas et al. 2022; Barnes-Daly et al. 2017; Chen et al. 2017; Hshieh et al. 2018; Inouye et al. 2000; Pun et al. 2019; Sosnowski et al. 2023; Y.Y. Wang et al. 2020), although they did not meet inclusion criteria for the formal systematic review conducted by the EPC.

Overview of study characteristics

Interventions were a mix of behavioral and other types of interventions, with a mean of six interventions (range 2 to 11; see Table C-1). Behavioral intervention studies included: sensory interventions (9 trials), orientation interventions (10 trials), cognitively stimulating activities (8 trials), and increasing self-/independent care (3 trials). Other types of interventions included: early mobilization (15 trials), early removal of urinary catheter (7 trials), avoidance of restraints (3 trials all of which also removed urinary

catheters early), avoidance or reduction of certain medications (10 trials), sleep aids or promotion of good quality sleep (10 trials), scheduled liquid intake to avoid dehydration (13 trials), nutritional assistance or scheduled oral food intake (13 trials, 11 of which also scheduled liquid intake), and monitoring for infection (7 trials), need for transfusion (1 trials), need for oxygen (4 trials), need for pain medications (7 trials). In the majority of trials (11 trials), interventions were delivered by nursing staff and, in other studies, multidisciplinary teams, research staff, or geriatric specialists were used. Only three trials involved family members in delivering the interventions. All control interventions were usual care of the hospital or facility where the trial was conducted and may have involved portions of the multi-component interventions but were not utilized as consistently as in the intervention groups.

Author Year Trial Name	Setting Country	RF	Family ^a	Sensory ^b	Orient	Early mobile	↓ Restraints ^d	Planned intake ^e	↓Rxs ^f	Cognitive activities	↑Self-care ^g	Sleep ^h
Abbasinia et al.	ICU			Х	Х	Х		Х	Х			Х
2021	Iran											
Avendano-	Inpatient	Х	Х	Х		Х	Х	Х	Х			
Cespedes et al.	Spain											
2016												
Boockvar et al.	Nursing home	Х			Х	Х		Х		Х		
2020	U.S.											
HELP-LTC												
Boustani et al.	Inpatient						Х		Х			
2012, Khan et	U.S.											
al. 2013												
e-CHAMPS trial												
Caplan et al.	Inpatient	Х										
2006	Australia											
The REACH-												
OUT trial												
Chen et al.	Inpatient				Х	Х		Х		Х		
2011	Taiwan											
mHELP												
Chen et al.	Postop				Х	Х		Х				
2017	Taiwan											
mHELP												
Dong et al.	Inpatient	Х		Х		Х		Х	Х	Х		Х
2020	China											
mHELP												

Table C-1. Components in multi-component intervention trials for the prevention of delirium

DRAFT February 3, 2025 NOT FOR CITATION

Author Year Trial Name	Setting Country	RF	Family ^a	Sensory ^b	Orient	Early mobile	↓ Restraints ^d	Planned intake ^e	↓Rxs ^f	Cognitive activities	↑Self-care ^g	Sleep ^h
Guo et al. 2016	Postop China			Х	Х		х			Х		
Hamzehpour et al. 2018	ICU Iran	х				Х		Х				Х
Hempenius et al. 2013, 2016 LIFE trial	Postop The Netherlands	X		X	х	Х			X			Х
Hosie et al. 2020 PRESERVE Pilot Study	Palliative Australia	X	X	Х	Х	X		X				Х
Moon and Lee 2015	ICU S. Korea	Х		Х	Х	Х	х	Х	Х			Х
Lapane et al. 2011 GRAM software	Nursing home U.S.	Х							Х			
Lundström et al. 2005	Inpatient Sweden	х									Х	
Lundström et al. 2007, Stenvall et al. 2012	Postop Sweden	X				Х	X	X			х	х
Rice et al. 2017 mHELP	ICU U.S.	Х						х	Х	Х		Х
Rood et al. 2021	ICU The Netherlands			Х	х	Х				Х		Х
Siddiqi et al. 2016 Stop Delirium!	Nursing home U.K.	X		Х		Х		Х				Х
Verloo et al. 2015	Home care Switzerland	Х		Х	Х	Х		Х	Х	Х	Х	Х
Y.Y. Wang et al. 2020 t-HELP	Postop China	Х	Х		Х	Х	X	Х	Х	Х		Х

Author Year Trial Name	Setting Country	RF	Family ^a	Sensory ^b	Orient	Early mobile	↓ Restraints ^d	Planned intake ^e	↓Rxs ^f	Cognitive activities	↑ Self-care ^g	Sleep ^h
Watne et al.	Postop	Х				Х		Х	Х			
2014	Norway											
Oslo												
Orthogeriatric												
Trial												
Young et al.	Inpatient			Х	Х	Х		Х		Х		
2020	U.K.											

^a Family was involved in the delivery of the intervention.

^b Such as glasses, hearing aids, good lighting, noise avoidance

^c Such as date, time, location, reason for being there

^d Decrease use of either physical restraints or catheters, which may act as a tether

^e Daily scheduled oral or IV administration of fluids (liquids) and/or nutritional assistance

^f Decreased use or avoidance of use of psychotropic medications, opioids, anticholinergics, sedatives, and other

drugs that may increase risk of delirium or sedation

^g Increase patient's independent care for self, preferably to baseline

^h Sleep aids such as ear plugs and/or eye masks, and decreased noise and light at night

e-CHAMPS=enhanced Care for Hospitalized older Adults with Memory Problems; GRAM=Geriatric Risk Assessment MedGuide; HELP=Hospital Elder Life Program; HELP-LTC=Hospital Elder Life Program-Long Term Care; ICU=intensive care unit; LIFE=Liaison Intervention in Frail Elderly; mHELP=modified Hospital Elder Life Program; postop=post-operative; REACH-OUT=Rehabilitation Of Elderly And Care At Home Or Usual Treatment; RF=risk factor analysis; t-HELP=tailored Hospital Elder Life Program.

Source. Abbasinia et al. 2021; Avendano-Cespedes et al. 2016; Boockvar et al. 2020; Boustani et al. 2012; Caplan et al. 2006; Chen et al. 2011, 2017; Dong et al. 2020; Guo et al. 2016; Hamzehpour et al. 2018; Hempenius et al. 2013, 2016; Hosie et al. 2020; Khan et al. 2013; Moon and Lee 2015; Lapane et al. 2011; Lundström et al. 2005, 2007; Rice et al. 2017; Rood et al. 2021; Siddiqi et al. 2016; Stenvall et al. 2012; Verloo et al. 2015; Y.Y. Wang et al. 2020; Watne et al. 2014; Young et al. 2020.

The weighted mean age of patients across these prevention trials was 77 years old, with 23 studies having a mean age 65 or older. Most patients were female (mean 56%; range 27% to 76%). Only six U.S. or U.K. based trials reported race: three of these studies had a majority of White participants, two included a population that was 59.5% White and 47% Black, and one trial included population that was 35.2% Black, 33.3% White, 29.7% Hispanic, and 1.8% Other. Six trials reported that participants had dementia at baseline (range from 4.5% to 52.5%). All trials that reported baseline functional status described patients as being within normal levels of functioning as measured by the Charlson Comorbidity Index, the Glasgow Coma Scale, the Acute Physiology and Chronic Health Evaluation (APACHE II), the Functional Independence Measure, or another function scale. In addition to the DSM-IV and DSM-5 criteria, four different measures were used to diagnosis delirium in the trials: three versions of the Confusion Assessment Method (CAM, CAM-ICU, and CAM-Nursing Homes [NH-CAM]), a modified Organic Brain Syndrome scale, Delirium Observational Scale, and Neelon-Champagne Confusion scale (NEECHAM). Although the goal of these studies was prevention of delirium, only three trials specifically excluded individuals with delirium at baseline, eight trials did not report on the presence of delirium at baseline, and six trials reported the presence of delirium at baseline in 1% to 30% of participants.

Effect of multi-component interventions on delirium incidence

Regarding delirium outcomes, 23 trials (described in 24 publications) reported incidence of delirium (Abbasinia et al. 2021; Avendano-Cespedes et al. 2016; Boockvar et al. 2020; Boustani et al. 2012; Caplan et al. 2006; Chen et al. 2011, 2017; Dong et al. 2020; Guo et al. 2016; Hamzehpour et al. 2018; Hempenius et al. 2013, 2016; Hosie et al. 2020; Khan et al. 2013; Lundström et al. 2005, 2007; Rice et al. 2017; Rood et al. 2021; Siddiqi et al. 2016; Stenvall et al. 2012; Verloo et al. 2015; Y.Y. Wang et al. 2020; Watne et al. 2014; Young et al. 2020), which was measured at discharge from hospital in five trials, at a specific follow-up time in five (3–480 days, 4 trials ≤30 days), during the acute illness in one, and with unclear timing in one. At baseline, two trials enrolled some patients with delirium (29.5% [Watne et al. 2007]) and did not exclude these individuals when reporting delirium prevalence at endpoint.

In a pooled analysis of 21 trials, the intervention groups had a significantly lower incidence of delirium compared with usual care (*N*=6,527; 25.1% vs. 28.0%, RR 0.74, 95% CI 0.61–0.89, I²=70.3%) (see Figure C-1). Although subgroup analyses all favored the interventions and subgroup analyses of patients in post-operative settings favored the intervention group (8 trials, *N*=1,685; RR 0.66, 95% CI 0.47–0.92, I²=70%), analyses stratified by setting for the general inpatient population (7 trials, *N*=2,373; RR 0.77, 95% CI 0.48–1.22, I²=74%), home care or long-term care patients (3 trials, *N*=482; RR 0.77, 95% CI 0.39–1.55, I²=47%), or patients in the ICU (4 trials, *N*=2,034; 36.3% vs. 37.9%, RR 0.82, 95% CI 0.60–1.12, I²=39.2) did not show a statistically significant difference between intervention and control groups. Overall, the findings did not indicate a strong potential for publication bias.

Figure C-1. Delirium incidence with multi-component interventions versus usual care stratified by population or setting.

Setting and Author, Year	Incidence Measure	Assessment Time (days)	Treatmen n/N	n/N	Risk Ratio (95% CI)
Home or LCF				an encode and	
Boockvar, 2020	CAM	During acute illness	41/114	33/105	1.14 (0.79, 1.66
Siddiqi, 2016	CAM	480 days	3/75	6/85 -	0.57 (0.15, 2.19
Verloo, 2015	CAM	30 days	4/51	10/52 -	0.41 (0.14, 1.22
Subgroup			48/240	49/242	0.77 (0.39, 1.55
(l ² = 46.8%, p = 0.144)					
ICU					
Abbasinia, 2021	CAM-ICU	POD 2	2/30	4/30 -	0.50 (0.10, 2.53
Hamzehpour, 2018	NEECHAM	7 days	20/50	30/50	0.67 (0.44, 1.00
Rice, 2017	CAM	Unclear	3/59	7/66 -	0.48 (0.13, 1.77
Rood, 2021	CAM-ICU	Unclear	361/924	327/825	0.99 (0.88, 1.11)
Subgroup		onorda	386/1063		0.82 (0.60, 1.12
(l ² = 39.2%, p = 0.176)			500,1005	000/07/1	0.02 (0.00, 1.12
Inpatient					
Avendano-Cespedes, 2016	CAM	16 days	3/21	12/29 -	0.35 (0.11, 1.07)
Boustani, 2012	CAM	Cumulative until D/C		70/225	1.08 (0.82, 1.43
Caplan, 2006	CAM	Cumulative until D/C		2/34 -	0.49 (0.07, 3.30
Chen, 2011	CAM	Unclear	0/102	12/77	0.03 (0.00, 0.50
Dong, 2020	CAM	Cumulative until D/C		9/53	0.24 (0.05, 1.04
Lundström, 2005	DSM-IV	3 days	123/400		1.50 (1.18, 1.91
Young, 2020	CAM	10 days	24/343	33/370	0.78 (0.47, 1.30
Subgroup	CAM	To days		220/1188	0.77 (0.48, 1.22
(l ² = 73.8%, p = 0.001)			221/1105	220/1100	0.77 (0.40, 1.22
Palliative					
Hosie, 2020	DSM-V	7 days	4/20	8/25 -	0.63 (0.22, 1.78
					1
Postop	C 444	Decker.	40/407	07/400	0.44/0.00.0.00
Chen, 2017	CAM	Unclear	13/197	27/180	0.44 (0.23, 0.83
Guo, 2016	CAM-ICU	3 days	10/67	25/80	0.48 (0.25, 0.92
Hempenius, 2013	DOS	POD 10 or D/C	12/127	19/133	0.66 (0.33, 1.31
Lundstrom, 2007		Cumulative until D/C		73/97	0.73 (0.59, 0.90
Y.Y.Wang, 2020	CAM	Unclear	4/152	25/129 -	0.14 (0.05, 0.38
Watne, 2014	CAM	Cumulative until D/C		86/166	 0.95 (0.76, 1.17)
Subgroup			175/808	255/785	0.59 (0.41, 0.83
(l ² = 74.9%, p = 0.001)					
P-value for interaction (meta	aregression): p	= 0.7628			1
Overall (I ² = 70.3%, p = 0.000)			834/3316	900/3211	0.74 (0.61, 0.89
f				1	
				0.0019531	1 512
				Favors intervention	Favors control

CAM=Confusion Assessment Method; CAM-ICU=Confusion Assessment Method for the Intensive Care Unit; CI=confidence interval; D/C=discharge; DOS=Delirium Observation Screening; DSM-IV=*Diagnostic Statistical Manual*, 4th Edition; ICU=intensive care unit; LCF=long-term care facility; NEECHAM=NeeIon-Champagne confusion scale; OBS=Organic Brain Syndrome Scale; POD=post-operative day; postop=post-operative.

Source. Abbasinia et al. 2021; Avendano-Cespedes et al. 2016; Boockvar et al. 2020; Boustani et al. 2012; Caplan et al. 2006; Chen et al. 2011, 2017; Dong et al. 2020; Guo et al. 2016; Hamzehpour et al. 2018; Hempenius et al. 2013; Lundström et al. 2005, 2007; Rice et al. 2017; Rood et al. 2021; Siddiqi et al. 2016; Verloo et al. 2015; Y.Y. Wang et al. 2020; Watne et al. 2014; Young et al. 2020.

One trial additionally reported that the point-prevalence of delirium at discharge was 15% in the tailored, family-involved HELP intervention group compared with 26% in the usual care group (*P*=0.01) (Watne et al. 2014). Two other trials examined a geriatric specialist ward intervention that involved individualized care with re-organization tasks and increasing self-care tasks (Lundström et al. 2005, 2007). In these trials, none of the patients with dementia (*N*=18 and 63) had delirium on day 7 or at discharge, whereas usual care groups included four of 18 and 15 of 63 patients with delirium, respectively (Lundström et al. 2005, 2007).

In addition to the Pacific Northwest EPC systematic review, a Cochrane review (Burton et al. 2021) demonstrated generally the same outcomes as described in this section. In the Cochrane review, the authors found moderate-certainty evidence regarding the benefit of multi-component nonpharmacological interventions for the prevention of delirium in hospitalized, non-ICU adults (14 studies; *N*=3,693). Specifically, interventions were estimated to reduce delirium incidence by 43% compared with usual care (10.5% incidence with treatment vs. 18.4% in the control group, RR 0.57, 95% CI 0.46–0.71, I²=39%).

Effect of multi-component interventions on delirium severity

Nine trials reported the severity of delirium in those who developed it (Abbasinia et al. 2021; Avendano-Cespedes et al. 2016; Boockvar et al. 2020; Dong et al. 2020; Hamzehpour et al. 2018; Hempenius et al. 2013; Hosie et al. 2020; Watne et al. 2014; Young et al. 2020), with four trials reporting delirium severity at a specific time point (7–30 days), three trials the median value of delirium severity until discharge, and one trial reporting the highest severity of delirium during the acute illness. Three trials used the Delirium Rating Scale-Revised-98 (DRS-R-98) to measure delirium severity, three used the CAM-Severity scale (CAM-S), two used the Memorial Delirium Assessment Scale (MDAS), and one trial used the NEECHAM. In a pooled analysis there was no difference in severity of delirium between the intervention and usual care groups (8 trials, N=1,362; SMD 0.43, 95% CI -0.49–1.36, I²=93%). However, when stratified by setting, the interaction term was significant (P=0.029). One trial conducted in nursing homes examined individuals who were suspected of having an onset of an acute illness or change in condition within the prior 24 hours to 48 hours and found no significant differences in delirium severity between the control group and those receiving an adapted version of HELP in Long-Term Care (HELP-LTC) on the CAM-S (Boockvar et al. 2020). In contrast, one of the trials conducted in non-surgical hospital settings reported that significantly more patients in the usual care group had severe delirium, reflected by a score of 18 or higher on the MDAS, as compared with a group that received tailored, family-involved HELP (9.6% vs. 1.5%, P=0.008) (Y.Y. Wang et al. 2020). Another trial (N=60) also reported a lower severity of delirium in those receiving the HELP intervention compared with usual care, but the difference did not reach statistical significance and study ratings used the Richmond Agitation and Sedation Scale (RASS), which has problematic measurement properties and does not specifically assess delirium (Abbasinia et al. 2021). In a group of patients treated with the Roy adaptation model, which addresses physiological and behavioral effects of delirium, an ICU study found a significantly lower severity of delirium on the NEECHAM scale compared with patients who received usual care (mean 23.27 vs. 19, MD -0.59, 95% CI -1.17 to -0.01) (Hamzehpour et al. 2018).

In the Cochrane review, evidence was very uncertain as to the effect on delirium severity (N=147; SMD - 0.49, 95% CI -1.13–0.14, I^2 =64%) (Burton et al. 2021).

Effect of multi-component interventions on delirium duration

Six trials (in 7 publications) reported the duration of delirium in those who developed it (Avendano-Cespedes et al. 2016; Guo et al. 2016; Lundström et al. 2007; Rood et al. 2021; Stenvall et al. 2012; Watne et al. 2014; Young et al. 2020). In a pooled analysis, the interventions resulted in a significantly shorter duration of delirium compared with usual care (6 trials, N=1,483; MD –0.70, 95% CI -1.53–0.13, I²=87.1%). An additional trial that reported on individuals with co-occurring dementia also found a shorter duration of delirium in the intervention group as compared with usual care (Lundström et al. 2007).

In the Cochrane review, there was low-certainty evidence that multi-component nonpharmacological interventions resulted in a small reduction (i.e., approximately 1 day) in the duration of a delirium episode (N=351; MD -0.93, 95% CI -2.01–0.14 days, I²=65%) (Burton et al. 2021).

Effect of multi-component interventions on ICU and hospital length of stay

Four trials reported the length of stay in the ICU (Abbasinia et al. 2021; Chen et al. 2017; Moon and Lee 2015; Rood et al. 2021). In a pooled analysis, the length of ICU stay was not significantly different between groups (4 trials, *N*=2,309; MD -0.18, 95% CI -0.61–0.24, I²=16.3%); however, one of the studies reported higher rates of ICU re-admission during the same hospitalization in the usual care group compared with the intervention group (16% vs. 5%, *P*=0.05; Moon and Lee 2015).

Nine trials (in 11 publications; Boustani et al. 2012; Caplan et al. 2006; Chen et al. 2011; Dong et al. 2020; Khan et al. 2013; Lundström et al. 2005, 2007; Stenvall et al. 2012; Y.Y. Wang et al. 2020; Watne et al. 2014; Young et al. 2020) reported data on the length of hospital stay. In a pooled analysis, length of hospital stay was significantly shorter in the intervention groups compared with usual care, with a small statistically significant difference (11 trials, *N*=4,489; MD -1.88 days, 95% CI -3.88–0.12, I^2 =95%). Results were statistically significant for trials in general inpatients (6 trials, *N*=1,923; MD -2.88 days, 95% CI -5.37 to -0.39, I^2 =92.8%), but was not significant for the trials conducted in post-operative patients (4 trials, *N*=817; MD -1.39 days, 95% CI -5.89–3.11, I^2 =97.2%).

In the Cochrane review, low-certainty evidence also suggested a small reduction in hospital length of stay compared with usual care (*N*=3,351; MD -1.30 days, 95% CI -2.56 to -0.04 days, I²=91%) (Burton et al. 2021).

Effect of multi-component interventions on mortality and adverse events

Twelve trials (in 15 publications) reported mortality (Boustani et al. 2012; Caplan et al. 2006; Hempenius et al. 2013, 2016; Khan et al. 2013; Lundström et al. 2007; Moon and Lee 2015; Rood et al. 2021; Siddiqi et al. 2016; Stenvall et al. 2012; Verloo et al. 2015; Y.Y. Wang et al. 2020; Watne et al. 2014; Young et al. 2020). In terms of deaths from any cause, a pooled analysis of 11 trials did not find a significant difference between groups (*N*=4,439; 27.0% vs. 26.5%, RR 1.00, 95% CI 0.85–1.18, I²=34.0%). An additional trial was not able to be incorporated into the pooled analysis but reported no deaths in either group (Y.Y. Wang et al. 2020). One trial conducted in a long-term nursing home facility that also

provided short-term post-operative rehabilitation reported the hazard ratio (HR) for mortality separately for home residents (long-term care) and new admits (short-term care). For interventions compared with usual care the HR for mortality of in-home residents was 0.89 (95% CI 0.73–1.08) and for new admits was 0.88 (95% CI 0.66–1.16) (Lapane et al. 2011).

Eight trials reported adverse events (Boustani et al. 2012; Hempenius et al. 2013; Hosie et al. 2020; Lapane et al. 2011; Lundström et al. 2007; Rood et al. 2021; Y.Y. Wang et al. 2020; Watne et al. 2014), with six reporting no differences between groups in complications (Boustani et al. 2012; Hempenius et al. 2013), hospitalizations due to adverse events (Lapane et al. 2011), and total number of adverse events (Hosie et al. 2020; Rood et al., 2021; Y.Y. Wang et al. 2020). In contrast, two trials reported significant differences between the intervention and usual care groups in specific adverse events. In a study of early mobilization, scheduled liquid intake to avoid dehydration, scheduled nutritional assistance, avoidance and/or reduction of certain medications, and oxygen monitoring to prevent hypoxia, urinary tract infections (UTI) occurred less frequently in the intervention group (16% vs. 25%, P=0.05), whereas falls occurred slightly more frequently in the intervention group (9% vs. 7%, P=0.05) (Watne et al. 2014). Another study reported significantly lower frequencies of decubitus ulcers (8.8% vs. 22.1%, P=0.010), UTIs (31.4% vs. 51.0%, P=0.005), sleeping problems (27.5% vs. 45.4%, P=0.009), and falls (11.8% vs. 26.8%, P=0.006) in the intervention group receiving care in a specialized geriatric ward that included early mobilization compared with the usual care group (Lundström et al. 2007). In contrast, an additional study that was not included in the EPC's systematic review found more adverse events with early mobilization in the ICU setting (Patel et al. 2023).

In the Cochrane review, the authors found little or no effect of interventions on inpatient mortality (10 studies, N=2,640) compared with usual care (5.2% in the intervention group vs. 4.5% in the control group, RR 1.17, 95% CI 0.79–1.74, I²=15%) (Burton et al. 2021).

Effect of multi-component interventions on other outcomes

Six trials (*N*=1,259) reported on admission or readmission to the hospital (Boockvar et al. 2020; Boustani et al. 2012; Caplan et al. 2006; Hempenius et al. 2016; Rood et al. 2021; Siddiqi et al. 2016). Three trials reported no differences between the intervention and usual care groups in readmission rates within 30 days (18.6% vs. 16.4%, *P*=0.53 [Boustani et al. 2012]) or 90 days (23% vs. 18%, OR 1.32, 95% CI 0.69–2.53 [Hempenius et al. 2016]) of discharge or within 28 days from the end of rehabilitation (21% vs. 24%, *P*-value not reported [Caplan et al. 2006]). Another trial reported similar readmission rates (11% vs. 10%, *P*=0.69) between the intervention and control groups but did not specify the duration of follow-up observations (Rood et al. 2021). Two trials conducted in nursing home residents reported no differences in the time to hospital admission between the intervention and usual care groups (STOP Delirium intervention: HR 0.72, 95% CI 0.38–1.36 [Siddiqi et al. 2016] and HELP-LTC intervention: 14% vs. 17%, *P*=0.52 [Boockvar et al. 2020]). In the Cochrane review, multi-component nonpharmacological interventions were associated with little to no difference in new admissions to long-term care at the time of hospital discharge (*N*=536; RR 0.77, 95% CI 0.55–1.07) (Burton et al. 2021).

Three trials found no significant difference between groups in quality of life or functional measures. One found no differences between groups in quality of life as measured by the Short Form survey 36 Item

(SF-36) Physical Functioning (OR 1.02, 95% CI 0.56–1.86), Mental Health(OR 0.80, 95% CI 0.50–1.40) or General Health (OR 0.84, 95% CI 0.50–1.40) subscales (Hempenius et al. 2013). Another found no differences between groups on the EuroQol-5 Dimension (mean 0.42, standard deviation [SD] 0.39 with the intervention vs. mean 0.38, SD 0.42 in the control group) (Siddiqi et al. 2016). One trial reported that there was not a significant difference between the intervention and usual care groups in risk for decline in daily function (OR 1.19, 95% CI 0.70–2.02), increased need for care assistance (OR 0.93, 95% CI 0.52– 1.65), or return to independent pre-operative living situation (OR 2.02, 95% CI 0.84–4.87) (Hempenius et al. 2013, 2016).

Three trials measured depressive symptoms using the Geriatric Depression Scale, with conflicting findings. In a study conducted in China, the scale was rescaled so that higher scores reflect fewer depressive symptoms (Chen et al. 2011). This study found that the control group's score worsened significantly more than the intervention group's score (mean change -4.4 vs. -0.3, *P*<0.001) (Chen et al. 2011). The other trials, conducted in the United Kingdom and Australia, reported that the difference between groups was not significant at 1 month (mean 8.84 vs. 8.17, *P*=0.63 [Caplan et al. 2006] and mean 4.7 vs. 4.2, *P*-value not reported [Young et al. 2020]) or 6 months (mean 7.80 vs. 7.14, *P*=0.62 [Caplan et al. 2006]). The trial conducted in the United Kingdom also reported no differences in anxiety as measured by the Clinical Anxiety Scale at 1 month (mean 16.8 vs. 16.9) (Young et al. 2020).

Five trials (*N*=888) reported on cognitive decline in patients after receiving the intervention (Chen et al. 2011; Dong et al. 2020; Hempenius et al. 2016; Verloo et al. 2015; Y.Y. Wang et al. 2020). Four trials reported significantly more decline in the usual care group than the intervention group when measured with the Mini-Mental State Evaluation (MMSE; mean at follow-up 23.81 vs. 25.06, *P*=0.15 [Verloo et al. 2015] and mean change from baseline -1.4 vs. -0.4, *P*=0.05 [Chen et al. 2011]) or the Short Portable Mental Status Questionnaire (7.0% vs. 0.8%, *P*=0.009 [Y.Y. Wang et al. 2020] and 4% vs. 24.5%, *P*=0.012 [Dong et al. 2020]), whereas the other trial reported no differences between groups (14.1% vs. 23.1%, OR 1.83, 95% CI 0.74–4.56 [Hempenius et al. 2016]).

Several trials reported on the use of or avoidance of other specific interventions. Although findings were not statistically significant, one trial reported less use of restraint in the intervention group compared with usual care (9% vs. 17%) (Avendano-Cespedes et al. 2016), and another trial reported more orders to discontinue the use of restraints in the intervention groups compared with usual care (5% vs. 0%) (Boustani et al. 2012). One trial reported similar re-intubation rates (7% vs. 7%, *P*=0.99) between the intervention and control groups as well as similar rates of physical restraint use (37% vs. 40%, *P*=0.43) (Rood et al. 2021). Five trials reported on the use of other medications but in heterogeneous ways. Only one study reported statistically significant findings: 15% vs. 42% received sedatives (*P*=0.008) and 31% vs. 62% received opioids (*P*=0.004) in the intervention and control groups, respectively (Lundström et al. 2007). Two others found a reduced use of other medications in the intervention group as compared with usual care but the decrease was not statistically significant; the mean number of medications prescribed per participant during study was 8.7 vs. 9.1 in one trial (Siddiqi et al. 2016) with 33% vs. 48% of patients receiving "neuroleptics" in the other trial (Avendano-Cespedes et al. 2016). Additionally, one study reported more orders to discontinue use of anticholinergics in the intervention group (49% vs.

31%) (Boustani et al. 2012). Finally, one study reported that the use of benzodiazepines was similar in the intervention group compared with usual care (43% vs. 41%) (Avendano-Cespedes et al. 2016).

Effects of the ABCDEF Bundle

The ABCDEF bundle represents an evidence-based method of coordinated, holistic, multidisciplinary care designed to optimize patient outcomes in delirium (Marra et al. 2017; Mart et al. 2019). The bundle interventions are largely nonpharmacological in nature but do include some overlap with principles of good pharmacology practice (e.g., avoiding benzodiazepines, deprescribing whenever possible). Studies of ABCDEF bundles did not meet criteria for inclusion in the Pacific Northwest EPC's systematic review but nonetheless offer important information about the effectiveness of nonpharmacological approaches to managing delirium. The specific elements of the ABCDEF bundle are described in Table 6, under Statement 7, Implementation.

In the largest ABCDEF study to date, with over 15,000 participants from 68 academic, community, and Veterans Administration ICUs in 29 states and Puerto Rico, Pun et al. (2019) found widespread symptom improvement with patients who completed every element of the bundle. Notably, patients with complete bundle performance had a higher likelihood of ICU discharge (adjusted HR 1.7, CI 1.05–1.30), higher likelihood of hospital discharge (adjusted HR 1.19, CI 1.01–1.40), lower risk of death at any time (adjusted HR 0.32, CI 0.17–0.62), and lower risks of next-day mechanical ventilation use (adjusted OR 0.28, 95% CI 0.22–0.36), coma (adjusted OR 0.35, 95% CI 0.22–0.56), delirium (adjusted OR 0.60, CI 0.49–0.72), and need for physical restraints (adjusted OR 0.37, CI 0.30–0.46). A dose-response relationship was observed with tight confidence intervals, suggesting that outcomes were better if more elements of the bundle were completed.

A prospective quality improvement study among seven California hospitals (Barnes-Daly et al. 2017) also found a dose-response relationship between complete or partial ABCDEF bundle adherence and increased odds of hospital survival (OR 1.07, 95% Cl 1.04–1.11 and OR 1.15, 95% Cl, 1.09–1.2, respectively). Complete and partial bundle adherence were also associated with more days alive and free of delirium and coma (incident rate ratio 1.02, 95% Cl 1.01–1.04 and incident rate ratio 1.15, 95% Cl, 1.09–1.22, respectively).

Effects of the Hospital Elder Life Program

HELP is an evidence-based model of preventing delirium and functional decline that targets hospitalized older adults (see Table 6, Statement 7, Implementation). As with ABCDEF bundle studies, HELP studies include important and useful information about the effectiveness of nonpharmacological interventions for delirium but did not meet inclusion criteria for the formal systematic review conducted by the EPC. A meta-analysis of 14 studies found HELP effectively reduced delirium incidence and rate of falls, with a trend toward reducing length of stay and preventing institutionalization (Hshieh et al. 2018). Overall, in comparative studies of HELP, there were significant reductions in delirium incidence (14 studies; OR 0.47, 95% CI 0.37–0.59), and the rate of falls decreased by 42% among intervention patients (3 studies; OR 0.58, 95% CI 0.35–0.95) (Hshieh et al. 2018).

Grading of the Overall Supporting Body of Research Evidence for Multi-component Interventions in Prevention of Delirium

o Magnitude of effect: Low. The magnitude of the effect of multi-component interventions is small in reducing the incidence and the duration of delirium. There was little or no effect on the severity of delirium or mortality associated with delirium.

o Risk of bias: Moderate. Although three studies had a high risk of bias, the remaining studies had a moderate risk of bias. Key factors that contributed bias were unclear procedures for random assignment and concealment as well as inadequate masking of patients and care providers. Some studies also did not provide information on how missing data was accounted for in their statistical analysis.

o Applicability: The findings of these studies are applicable to older patients, those in critical care and medical inpatient settings as well as post-operative patients (specifically following orthopedic or cardiac procedures). Applicability to younger individuals and those in other clinical settings is likely to be reduced. Demographic information on study participants was often not reported, and non-white individuals were often under-represented when demographic information was available.

o Directness: Direct. Outcomes were directly related to delirium or its associated adverse effects, including mortality.

o Consistency: Varies with outcome. For delirium incidence and duration and for mortality associated with delirium, study findings were consistent whereas, for other outcomes, findings were inconsistent.

o Precision: Varies with outcome. For delirium incidence and severity, the findings were precise whereas for other outcomes, findings were imprecise.

o Dose-response relationship: Present. For multi-component interventions, there was evidence that greater adherence to specific interventions and adherence with a greater number of interventions was associated with improved outcomes in studies of the ABCDEF bundle.

o Confounding factors (including likely direction of effect): The data may be confounded by variations in delirium assessment due to rater training. Individuals with hypoactive delirium may have been less likely to be identified than those with hyperactive delirium. However, the direction of effect from these potential confounding factors is not clear.

o Publication bias: Not identified. There was no evidence of publication bias for studies related to the incidence of delirium. For other outcomes, there was insufficient information to make a determination.

o Overall strength of research evidence: Low to Moderate. The strength of research evidence for multi-component interventions is moderate for incidence and severity of delirium and low for duration of delirium. For other outcomes, there was insufficient information to make a determination.

Single-Component Interventions

Because multi-component nonpharmacological interventions are comprised of multiple independent interventions, the Pacific Northwest EPC systematic review considered the effectiveness outcomes from single-component studies as well as assessing effects of each component within the multi-component trials.

Overview of study characteristics

Thirty-six trials (Alvarez et al. 2017; Arttawejkul et al. 2020; Browning et al. 2020; Brummel et al. 2014; Chevillon et al. 2015; Dai et al. 2021; Eghbali-Babadi et al. 2017; Fahimi et al. 2020; Fazlollah et al. 2021; Giraud et al. 2016; Humeidan et al. 2021; Jeffs et al. 2013; Johnson et al. 2018; Karadas and Ozdemir 2016; Khan et al. 2020; Leong et al. 2021; Martinez et al. 2012; Martinez-Velilla et al. 2019; Mitchell et al. 2017; Morris et al. 2016; Munro et al. 2017; Nydahl et al. 2020, 2022; O'Gara et al. 2020; Obanor et al. 2021; Ono et al. 2011; Potharajaroen et al. 2018; Rosa et al. 2019; Schweickert et al. 2009; Shirvani et al. 2020; Simons et al. 2016; Taguchi et al. 2007; Van Rompaey et al. 2012; Vlisides et al. 2019; Xue et al. 2020; K.S. Zhang et al. 2021) compared a single behavioral intervention with usual care for the prevention of delirium. Sample sizes ranged from 6 to 1,685 (total N=6,811). Thirteen trials were conducted in the United States; four in Iran; two each in Australia, Chile, China, Germany, Japan, and Thailand; and one each in Belgium, Brazil, The Netherlands, Singapore, Spain, Turkey, and the United Kingdom. In terms of risk of bias, only one trial had a low risk of bias, whereas 26 trials had a moderate risk of bias and nine trials had a high risk of bias.

The single behavioral interventions assessed were family member interventions (increased visitations, 5 trials [Eghbali-Babadi et al. 2017; Martinez et al. 2012; Mitchell et al. 2017; Munro et al. 2017; Rosa et al. 2019]), exercise interventions (range of motion/mobilization, twice daily exercise program, 8 trials [Jeffs et al. 2013; Karadas and Ozdemir 2016; Martinez-Velilla et al. 2019; Morris et al. 2016; Nydahl et al. 2020, 2022; Schweickert et al. 2009; Shirvani et al. 2020]), bright light therapy (5 trials [Ono et al. 2011; Potharajaroen et al. 2018; Simons et al. 2016; Taguchi et al. 2007; K.S. Zhang et al. 2021]), listening to music (3 trials [Browning et al. 2020; Johnson et al. 2018; Khan et al. 2020]), massage (1 trial [Fazlollah et al. 2021]), occupational therapy (OT; 1 trial [Alvarez et al. 2017]), sleeping with earplugs (2 trials [Arttawejkul et al. 2020; Van Rompaey et al. 2012]), use of earplugs plus an eye mask (2 trials [Leong et al. 2021; Obanor et al. 2021]), use of mirrors for orientation (1 trial [Giraud et al. 2016]), individualized pre-operative educational (3 trials [Chevillon et al. 2015; Fahimi et al. 2020; Xue et al. 2020]), cognitive exercises or tests (4 trials [Dai et al. 2021; Humeidan et al. 2021; O'Gara et al. 2020; Vlisides et al. 2019]), early and intensive occupational therapy (1 trial [Alvarez et al. 2017]), and cognitive therapy plus physical therapy (PT; 1 trial [Brummel et al. 2014]). The control group was usual care in all trials.

Most of the studies included individuals of all adult ages, but nine studies limited the sample to older adults. In the 28 trials that reported the mean age of the sample, 12 had a mean age 65 or older. There was a predominance of men in eight trials, a predominance of women in six trials, and between 40% and 60% women in the remaining 22 trials. Of trials that reported race/ethnicity, five included mostly White participants (range 67% to 85%), two trials reported that about half the participants were Black (range 56% and 59%), and two trials reported a predominance of Asian patients (range 84% to 100%). The remaining 27 trials did not provide information on race or ethnicity. Seven trials excluded patients with

dementia, two trials reported that 1% and 6% of patients had dementia at baseline, and the remaining 27 trials did not report on dementia status. Eighteen trials reported patients' baseline functioning as measured by the APACHE II, Charlson Comorbidity Index, Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE), or the Barthel Index, whereas the other 18 trials did not report information on functioning status. Three different measures of delirium were used to diagnose delirium in the trials—two versions of the CAM (CAM and CAM-ICU), DSM-IV criteria, the NEECHAM, and the confusion scale of the NEECHAM. For most studies, the goal was prevention of delirium, and fourteen trials excluded patients with delirium at baseline. However, two trials reported that 13% to 14% of patients had delirium at the onset of the study, and 20 trials did not report information on whether delirium was present.

Effect of single-component interventions on delirium incidence

Twenty-eight trials reported the incidence of delirium (Alvarez et al. 2017; Arttawejkul et al. 2020; Chevillon et al. 2015; Dai et al. 2021; Eghbali-Babadi et al. 2017; Fahimi et al. 2020; Fazlollah et al. 2021; Giraud et al. 2016; Humeidan et al. 2021; Jeffs et al. 2013; Johnson et al. 2018; Karadas and Ozdemir 2016; Martinez et al. 2012; Martinez-Velilla et al. 2019; Mitchell et al. 2017; Nydahl et al. 2020, 2022; Obanor et al. 2021; O'Gara et al. 2020; Ono et al. 2011; Potharajaroen et al. 2018; Rosa et al. 2019; Simons et al. 2016; Taguchi et al. 2007; Van Rompaey et al. 2012; Vlisides et al. 2019; Xue et al. 2020; K.S. Zhang et al. 2021). More than half of the trials measured the incidence of delirium cross-sectionally at a specific time after the intervention was started (3–28 days), whereas the rest measured the cumulative incidence of delirium until discharge from the hospital. One trial reported risk incidence ratios and reported a much lower risk in the intervention group compared with usual care (0.15 vs. 6.66) (Alvarez et al. 2017). A pooled analysis of single-component interventions showed a significantly lower incidence of delirium than usual care (26 trials, N=5,796; 21.9% vs. 25.4%, RR 0.79, 95% CI 0.67–0.93, l^2 =60.1%; see Figure C-2). A subgroup analysis showed single-component interventions were associated with a significant reduction of delirium incidence in post-operative patients (10 trials, N=809; RR 0.58, 95% CI 0.41–0.82, I^2 =35.8%; see Figure C-2) as well as in patients who received education (3 trials, N=372; RR 0.53, 95% CI 0.37–0.76, I²=0%; see Figure C-3) or OT (1 trial, N=140; RR 0.14, 95% CI 0.03– 0.61; see Figure C-3) as compared with usual care. However, other subgroup analyses showed no significant differences either by setting (P=0.11 for interaction; Figure C-2) or by intervention (P=0.48 for interaction; Figure C-3). Analysis for potential publication bias suggested a strong possibility of unpublished small studies.

Figure C-2. Delirium incidence with single-component interventions versus usual care stratified by population or setting.

Setting and Author, Year	Treatment	Incidence	Assessment Time	Treatment n/N	Control n/N		Risk Ratio (95% CI)
warm, rear	rreatment	Weasure	Assessment nine	TRUN	1014		(55% 61)
CU		~	201007		44770		
Alvarez, 2017	OT	CAM	5 days	2/70	14/70		0.14 (0.03, 0.61
vrttawejkul, 2020	Sleep	CAM-ICU	5 days	1/8	1/9	-	1.13 (0.08, 15.1
Chevillon, 2015		CAM-ICU	7 days	14/63	21/66		0.70 (0.39, 1.25
Dai, 2021	Cognitive		7 days	9/38	16/38		0.56 (0.28, 1.11
Giraud, 2016	Mirrors	CAM-ICU	Cumulative until ICU D/C		17/108	1	1.10 (0.61, 1.99
Karadas, 2016	Exercise	CAM-ICU	Cumulative until D/C	4/47	10/47	•	0.40 (0.13, 1.19
Vitchell, 2017	Family	CAM	Cumulative until D/C	17/29	18/32	*	1.04 (0.68, 1.61
Vydahl, 2020	Exercise		At D/C	114/120	141/152		1.02 (0.96, 1.09
Vydahl, 2022	Exercise		3 days	7/26	10/20		0.54 (0.25, 1.16
Rosa, 2019	Family	CAM-ICU	Cumulative until D/C	157/831	170/845		0.94 (0.77, 1.14
Simons, 2016	Light	CAM-ICU	28 days	137/361	123/373		1.15 (0.95, 1.40
/an Rompaey, 2012	Sleep	NEECHAM	5 days	13/69	13/67	+	0.97 (0.49, 1.94
K.S. Zhang, 2021	Light	CAM-ICU	Cumulative Until ICU D/C	7/38	7/40	+	1.05 (0.41, 2.72
Subgroup				502/1815	561/1867		0.95 (0.82, 1.08
(l ² = 38.0%, p = 0.025)						1	
inpatient						1	
Jeffs, 2013	Exercise	CAM	Cumulative until D/C	15/305	21/343		0.80 (0.42, 1.53
Martinez, 2012	Family	CAM	Cumulative until D/C	8/144	19/143 -	•	0.42 (0.19, 0.92
Martinez-Velilla, 2019	Exercise	CAM	Cumulative until D/C	27/185	15/185		1.80 (0.99, 3.27
Subgroup				50/634	55/671	-	0.87 (0.39, 1.97
(l ² = 77.2%, p = 0.012)							
Postop							
Eghbali-Babadi, 2017	Family	CAM-ICU	3 days	11/34	26/34	*	0.42 (0.25, 0.71
Fahimi, 2020		CAM-ICU	Cumulative	13/55	28/55		0.46 (0.27, 0.80
Fazlollah, 2021	Massage		2 days	8/30	7/30	-	1.14 (0.47, 2.75
Humeidan, 2021	Cognitive		Cumulative until D/C	18/125	29/126	-	0.63 (0.37, 1.07
O'Gara, 2020	Cognitive	CAM	Cumulative until D/C	5/20	3/20	-+	1.67 (0.46, 6.06
Ono, 2011	Light	DSM-IV	6 days	1/10	5/12		0.24 (0.03, 1.73
Potharajaroen, 2018	Light	CAM-ICU	3 days	2/31	11/31		0.18 (0.04, 0.75
Taguchi, 2007	Light	NEECHAM	4 to 5 days	1/6	2/5	• 	0.42 (0.05, 3.36
Vlisides, 2019	Cognitive	CAM	3 days	6/23	5/29	-++	1.51 (0.53, 4.34
Xue, 2020	Education	CAM-ICU	7 days	7/67	16/66 -	•	0.43 (0.19, 0.98
Subgroup			S 3	72/401	132/408		0.58 (0.41, 0.82
(l ² = 35.8%, p = 0.122)							
P-value for interaction (i	metaregres	sion): p = 0.1	1134				
Overall				624/2850	748/2946		0.79 (0.67, 0.93
(l ² = 60.1%, p = 0.000)						1	10.480 AV 10.520 AV 2015 AV 2015
					0.03125	1 32	
					Favors intervent	ion Favors c	

CAM=Confusion Assessment Method; CAM-ICU=Confusion Assessment Method for the Intensive Care Unit; CI=confidence interval; D/C=discharge; DOS=Delirium Observation Screening; DSM-IV=*Diagnostic and Statistical Manual of Mental Disorders*, 4th Edition; ICU=intensive care unit; NEECHAM=NeeIon-Champagne confusion scale; OT=occupational therapy; postop=post-operative.

Source. Alvarez et al. 2017; Arttawejkul et al. 2020; Chevillon et al. 2015; Dai et al. 2021; Eghbali-Babadi et al. 2017; Fahimi et al. 2020; Fazlollah et al. 2021; Giraud et al. 2016; Humeidan et al. 2021; Jeffs et al. 2013; Karadas and Ozdemir 2016; Martinez et al. 2012; Martinez-Velilla et al. 2019; Mitchell et al. 2017; Nydahl et al. 2020, 2022; O'Gara et al. 2020; Ono et al. 2011; Potharajaroen et al. 2018; Rosa et al. 2019; Simons et al. 2016; Taguchi et al. 2007; Van Rompaey et al. 2012; Vlisides et al. 2019; Xue et al. 2020; K.S. Zhang et al. 2021.

Figure C-3. Delirium incidence with	single-component	interventions stratified by	/ intervention.

Treatment and Author, Year	Setting	Incidence Measure	Assessment Time	Treatment n/N	Control n/N		Risk Ratio (95% CI)
Cognitive						1	
Dai. 2021	ICU	Unclear	7 days	9/38	16/38	•	0.56 (0.28, 1.11)
Humeidan, 2021	Postop	CAM	Cumulative until D/C	18/125	29/126		0.63 (0.37, 1.07)
O'Gara, 2020	Postop	CAM	Cumulative until D/C	5/20	3/20		1.67 (0.46, 6.06)
Viisides, 2019	Postop	CAM	3 days	6/23	5/29		1.51 (0.53, 4.34)
Subgroup	1			38/206	53/213	.	0.79 (0.49, 1.27)
(l ² = 30.1%, p = 0.231)						1	
Education						1	
Chevillon, 2015	ICU	CAM-ICU	7 days	14/63	21/66	•	0.70 (0.39, 1.25)
Fahimi, 2020	Postop	CAM-ICU	Cumulative	13/55	28/55	•	0.46 (0.27, 0.80)
Xue, 2020	Postop	CAM-ICU	7 days	7/67	16/66		0.43 (0.19, 0.98)
Subgroup (I ² = 0.0%, p = 0.512)				34/185	65/187		0.53 (0.37, 0.76)
Exercise						1	
Jeffs, 2013	Inpatient	CAM	Cumulative until D/C	15/305	21/343	-	0.80 (0.42, 1.53)
Karadas, 2016	ICU	CAM-ICU	Cumulative until D/C	4/47	10/47		0.40 (0.13, 1.19)
Martinez-Velilla, 2019	Inpatient	CAM	Cumulative until D/C	27/185	15/185		1.80 (0.99, 3.27)
Nydahi, 2020	ICU	CAM-ICU	At D/C	114/120	141/152		1.02 (0.95, 1.09)
Nydahl, 2022	ICU	CAM-ICU	3 days	7/26	10/20	•	0.54 (0.25, 1.16)
Subgroup				167/683	197/747	- A	0.91 (0.63, 1.33)
(l ² = 57.9%, p = 0.040)					0200000	٦ آ	
Family						1	
Eghbali-Babadi, 2017	Postop	CAM-ICU	3 days	11/34	26/34		0.42 (0.25, 0.71)
Martinez, 2012	Inpatient	CAM	Cumulative until D/C	8/144	19/143		0.42 (0.19, 0.92)
Mitchell, 2017	ICU	CAM	Cumulative until D/C	17/29	18/32		1.04 (0.68, 1.61)
Rosa, 2019	ICU	CAM-ICU	Cumulative until D/C	157/831	170/845		0.94 (0.77, 1.14)
Subgroup				193/1038	233/1054	•	0.70 (0.45, 1.08)
(l ² = 74.7%, p = 0.008)						i i	
Light	Dealers	DOM IN	d data			1	D 34 /0 03 4 735
Ono, 2011	Postop	DSM-IV	6 days	1/10	5/12		0.24 (0.03, 1.73)
Potharajaroen, 2018	Postop	CAM-ICU	3 days	2/31	11/31		0.18 (0.04, 0.75)
Simons, 2016	ICU	CAM-ICU	28 days	137/361	123/373		1.15 (0.95, 1.40)
Taguchi, 2007	Postop	CAM-ICU	4 to 5 days Cumulative Until ICU D/C	1/6	2/5 7/40	1.0	0.42 (0.05, 3.36)
K.S.Zhang, 2021	100	CAM-ICO	cumulative onthi ico bic	148/446	148/461	<u> </u>	1.05 (0.41, 2.72)
Subgroup (I ² = 57.7%, p = 0.045)				140/440	140/401	T	0.64 (0.30, 1.35)
Massage						1	
Faziollah, 2021	Postop	DOS	2 days	8/30	7/30	*	1.14 (0.47, 2.75)
						I	
Mirrors	1011	0.000	0	00/445	17/100		
Giraud, 2016	ICU	CAM-ICU	Cumulative until ICU D/C	20/115	17/108	T	1.10 (0.61, 1.99)
от						1	
Alvarez, 2017	ICU	CAM	5 days	2/70	14/70		0.14 (0.03, 0.61)
Sleep						1	
Arttawejkul, 2020	ICU	CAM-ICU	5 days	1/8	1/9	-	1.13 (0.08, 15.19)
Van Rompaey, 2012	ICU	NEECHAM		13/69	13/67		0.97 (0.49, 1.94)
Subgroup	1.1019-07			14/77	14/76	*	0.98 (0.50, 1.91)
(l ² = 0.0%, p = 0.915)						i i	
P-value for interaction (n Overall	netaregres	sion): p = 0.48	896	624/2850	748/2946	1	0.70 (0.67 0.03)
(l ² = 60.1%, p = 0.000)				024/2800	140/2340	1	0.79 (0.67, 0.93)

Favors intervention

Favors control

CAM=Confusion Assessment Method; CAM-ICU=Confusion Assessment Method for the Intensive Care Unit; CI=confidence interval; D/C=discharge; DOS=Delirium Observation Screening; DSM-IV=*Diagnostic and Statistical Manual of Mental Disorders*, 4th Edition; ICU=intensive care unit; NEECHAM=NeeIon-Champagne confusion scale; OT=occupational therapy; postop=post-operative.

Source. Alvarez et al. 2017; Arttawejkul et al. 2020; Chevillon et al. 2015; Dai et al. 2021; Eghbali-Babadi et al. 2017; Fahimi et al. 2020; Fazlollah et al. 2021; Giraud et al. 2016; Humeidan et al. 2021; Jeffs et al. 2013; Karadas and Ozdemir 2016; Martinez et al. 2012; Martinez-Velilla et al. 2019; Mitchell et al. 2017; Nydahl et al. 2020, 2022; O'Gara et al. 2020; Ono et al. 2011; Potharajaroen et al. 2018; Rosa et al. 2019; Simons et al. 2016; Taguchi et al. 2007; Van Rompaey et al. 2012; Vlisides et al. 2019; Xue et al. 2020; K.S. Zhang et al. 2021.

Effect of single-component interventions on delirium severity

Five trials reported the severity of delirium in those who developed it (*N*=81; Alvarez et al. 2017; Jeffs et al. 2013; Khan et al. 2020; Taguchi et al. 2007; Van Rompaey et al. 2012). Interventions in the trials were varied (i.e., OT, exercise, music, light therapy, ear plugs), and some trials had only one event per group; thus, study findings could not be pooled for meta-analysis. One small trial (*N*=15) used the NEECHAM Confusion Scale to measure the severity of delirium and reported significantly lower delirium severity in the group that received light therapy compared with usual care, although only three patients developed delirium (Taguchi et al. 2007). Another trial also used the NEECHAM Confusion Scale and found lower delirium severity in the group that was given earplugs to sleep as compared with controls (Van Rompaey et al. 2012). The remaining three trials used either the CAM, CAM-ICU, or the DRS to measure the severity of delirium and found no significant differences between the control group and either intensive OT (Alvarez et al. 2017), exercise (Jeffs et al. 2013), or music listening (Khan et al. 2020). One trial of early mobilization reported significant decreases in mild and moderate to severe delirium from post-operative day 1 to post-operative day 2 in the intervention group compared with usual care (87% to 11% vs. 98% to 87%) (Shirvani et al. 2020).

Effect of single-component interventions on delirium duration

Fourteen trials reported the duration of delirium in those that developed it (N=3,183; Alvarez et al. 2017; Chevillon et al. 2015; Giraud et al. 2016; Humeidan et al. 2021; Jeffs et al. 2013; Karadas and Ozdemir 2016; Martinez et al. 2012; Mitchell et al. 2017; Morris et al. 2016; Munro et al. 2017; Nydahl et al. 2022; Schweickert et al. 2009; Simons et al. 2016; K.S. Zhang et al. 2021). In a pooled analysis of the nine trials that were able to be combined, the difference between groups was small and not significant (9 trials, N=487; MD -0.18 days, 95% CI -0.62–0.26, I²=8.0%) (Chevillon et al. 2015; Giraud et al. 2016; Humeidan et al. 2021; Jeffs et al. 2013; Karadas and Ozdemir 2016; Martinez et al. 2012; Nydahl et al. 2022; Simons et al. 2016; K.S. Zhang et al. 2021). There were no differences when analyses were stratified by setting or intervention.

A number of trials reported results in a way that could not be combined with the other studies in a meta-analysis. Two trials reported that the intervention group had significantly fewer days in the ICU with delirium compared with usual care (median 2 days vs. 4 days, *P*=0.03 [Schweickert et al. 2009]) and fewer days overall in the hospital with delirium (median 2 days vs. 4 days, *P*=0.02 [Schweickert et al. 2009]; mean 0.3 days vs. 0.9 days, *P*=0.04 [Munro et al. 2017]). A third trial reported no differences between days in the ICU with delirium (median 0 day vs. 0 day [Morris et al. 2016]). Another trial reported similar median days with delirium (1 day vs. 1 day) but did not report a variance measure

(Mitchell et al. 2017). One trial also reported significantly larger proportions of time with delirium for the usual care group compared with the intervention group in the ICU (57% vs. 33%, *P*=0.02) or during hospitalization (41% vs. 28%, *P*=0.01) (Schweickert et al. 2009). In terms of the number of hospital days that were free of delirium, three trials reported similar numbers between the intervention and usual care groups (a median of 2 days vs. 2 days with 7 days of observation [Khan et al. 2020]; a median of 26 days vs. 27 days with 28 days of observation [Simons et al. 2016]; a median of 27 days vs. 28 days with observation to the time of discharge [Brummel et al. 2014]).

Effect of single-component interventions on ICU and hospital length of stay

Seventeen trials reported the length of stay in the ICU (Alvarez et al. 2017; Arttawejkul et al. 2020; Brummel et al. 2014; Chevillon et al. 2015; Giraud et al. 2016; Karadas and Ozdemir 2016; Mitchell et al. 2017; Morris et al. 2016; Munro et al. 2017; Obanor et al. 2021; O'Gara et al. 2020; Ono et al. 2011; Rosa et al. 2019; Schweickert et al. 2009; Shirvani et al. 2020; Simons et al. 2016; Vlisides et al. 2019; Xue et al. 2020; K.S. Zhang et al. 2021). Four trials were conducted in post-operative patients (3 after cardiac surgery and 1 after thoracotomy), whereas the other trials had a mix of general inpatients and surgical patients. In the trials that could be pooled, the intervention group had a shorter length of stay that was small in magnitude but statistically significant (14 trials, *N*=3,766; MD -0.09 days, 95% CI -0.32–0.15, I^2 =59.6%). The findings did not differ when analyses were separated by setting or intervention.

Eighteen trials reported the length of stay in the hospital (Alvarez et al. 2017; Arttawejkul et al. 2020; Brummel et al. 2014; Chevillon et al. 2015; Humeidan et al. 2021; Jeffs et al. 2013; Martinez-Velilla et al. 2019; Martinez et al. 2012; Mitchell et al. 2017; Morris et al. 2016; O'Gara et al. 2020; Ono et al. 2011; Schweickert et al. 2009; Shirvani et al. 2020; Simons et al. 2016; Vlisides et al. 2019; Xue et al. 2020; K.S. Zhang et al. 2021). In the trials that could be pooled, the difference was not significant (13 trials, N=2,799; MD 0.15 days, 95% CI -0.05–0.34, I²=0%). One trial did not report variance data and could not be included in the meta-analysis (Martinez-Velilla et al. 2019).

Effect of single-component interventions on mortality and adverse events

Several trials excluded patients who died during their hospital stay or during the study from their analyses. However, 12 trials (*N*=3,839) did report mortality (Alvarez et al. 2017; Brummel et al. 2014; Dai et al. 2021; Khan et al. 2020; Martinez-Velilla et al. 2019; Nydahl et al. 2020, 2022; Rosa et al. 2019; Schweickert et al. 2009; Simons et al. 2016; Xue et al. 2020; K.S. Zhang et al. 2021). In a pooled analysis of 12 trials, there were no significant differences in rates of mortality between intervention and control groups overall (*N*=3,730; 13% vs. 12.5%, RR 1.03, 95% Cl 0.87–1.21, I²=0%) or when the analysis was separated by setting or intervention.

Seven trials reported no adverse events or described any adverse events as unrelated to the intervention (Alvarez et al. 2017; Jeffs et al. 2013; Khan et al. 2020; Potharajaroen et al. 2018; Simons et al. 2016; Taguchi et al. 2007; K.S. Zhang et al. 2021). Similar proportions of falls were noted between groups in a study of family member education versus usual care (0% vs. 3% [Martinez et al. 2012]) and exercise sessions versus usual care (3% vs. 0% [Martinez-Velilla et al. 2019]). One trial of flexible family visitation reported no differences in ICU-acquired pneumonia, infection, UTI, and bloodstream infection (Rosa et al. 2019). Two other trials reported no differences in total complications with pre-operative

individualized education in cardiac surgery patients (Xue et al. 2020) or in total number of adverse events with standardized rehabilitation therapy in acute respiratory failure patients (Morris et al. 2016). However, one of these trials reported that a patient experienced an episode of asymptomatic bradycardia lasting less than 1 minute, which the authors noted might be related to the progressive resistance exercise intervention (Morris et al. 2016). Another trial reported that 16.6% of the early mobilization group experienced an "unwanted safety event" (Nydahl et al. 2022). The remaining trials did not report adverse events.

Effect of single-component interventions on other outcomes

Other outcomes were reported inconsistently across studies. One trial that assessed readmission rates found no significant differences between exercise sessions and usual care groups at 3 months (HR 2.4, 95% CI 1.7–3.2 vs. 2.5, 95% CI 1.8–3.3, *P*=0.82) (Martinez-Velilla et al. 2019). However, in comparison with usual care, the same trial reported that the exercise group showed significantly greater improvements in depression measured by the Geriatric Depression Scale (MD -2.0, 95% CI -2.5 to -1.6) and quality of life measured by the EuroQol-5 Dimension (MD 13.2, 95% CI 8.2–18.2) (Martinez-Velilla et al. 2019). One trial (*N*=129) of individualized pre-operative education compared with usual care reported no differences in trait or state anxiety on the Impact of Events Scale but did not report the data (Chevillon et al. 2015). One trial reported more patients in an OT group compared with usual care were functioning at a normal level at discharge on the basis of the Functional Independence Measure (81.5% vs. 47.7%) (Alvarez et al. 2017). Two trials of exercise compared with usual care found no differences between groups in the proportion who were able to return to their previous residence (75% vs. 79% [Jeffs et al. 2013]; 92% vs. 91% [Martinez-Velilla et al. 2019]).

One trial of pre-operative cognitive training reported more post-operative cognitive decline in the intervention group compared with usual care (37% vs. 53%), although this difference was not statistically significant (O'Gara et al. 2020). Another trial reported statistically significantly higher MMSE scores at 1 week in a group receiving cognitive training compared with usual care (mean 25.94 vs. 21.94, P<0.001) (Dai et al. 2021). An additional trial of cognitive training plus PT compared with usual care reported similar MMSE scores, in the no cognitive impairment range, at discharge from the ICU between groups (median 28.0 vs. 25, P=0.09) (Brummel et al. 2014). With an exercise intervention, one trial reported significantly greater increases in MMSE scores from baseline to discharge for the intervention group compared with usual care (MD 1.8, 95% Cl 1.3–2.3), but patients had a mean score of 22 on the MMSE at baseline, consistent with mild dementia (Martinez-Velilla et al. 2019).

Two trials reported significantly better sleep in the intervention groups compared with usual care (mean Richards-Campbell Sleep Questionnaire score [0 to 100, 100=better sleep] of 59.1 vs. 35.3, *P*=0.0003 for eye mask and ear plugs [Obanor et al. 2021] and mean Pittsburgh Sleep Quality Index score at 1 week of 6.89 vs. 9.54, *P*<0.001 for cognitive testing [Dai et al. 2021]), whereas one trial reported no difference between groups (had good quality of sleep on post-operative day 2: 70% vs. 83.3%, *P*=0.24) (Fazlollah et al. 2021).

Several trials reported on the effects of interventions on use of antipsychotic, benzodiazepine, opioid, or other sedating medications. One trial of light therapy as compared with usual care reported a

comparable use of haloperidol in each group (35% vs. 31%, P=0.35), with a similar cumulative dose (median 11 mg, interquartile range [IQR] 4–22 mg vs. median 14 mg, IQR 5–28 mg, P=0.42) (Simons et al. 2016); another reported no significant difference between groups in the number of days using sedatives (mean 3.9 days, SD 1.0 vs. mean 4.1 days, SD 1.3, P=0.57) (Ono et al. 2011). A third trial of light therapy reported no difference in the administration of additional medications (i.e., fentanyl, dexmedetomidine, quetiapine, midazolam, and haloperidol) as compared with usual care (K.S. Zhang et al. 2021). Finally, a trial of cognitive training plus PT compared with usual care reported no differences in rates of benzodiazepine (49% vs. 55%, P=0.46), propofol (98% vs. 59%, P=0.47), dexmedetomidine (37% vs. 14%, P=0.83), and opioid (98% vs. 95%, P=0.95) usage (Brummel et al. 2014).

Effectiveness of single-component interventions on the basis of multi-component trial data and network meta-analysis

To identify individual components that may be responsible for, or at least contribute meaningfully to, the overall results of multi-component interventions, the Pacific Northwest EPC conducted subgroup analyses on the basis of whether each study included an individual component. For example, they analyzed studies on the basis of whether the study did or did not include a mobilization component. They compared the findings for each subgroup to determine whether differences were statistically significantly different. Table C-2 shows the results of these analyses. When trials were compared on the basis of the individual components they included, no individual components affected the results to a statistically significant degree. In addition, analysis of the overall findings did not indicate a strong potential for publication bias.

	RR in studies including	RR in studies without		
Component	(95% CI)	(95% CI)	P-value*	
Sensory	0.796 (0.599 to 1.057)	0.674 (0.512 to 0.886)	0.637	
Orientation	0.467 (0.284 to 0.768)	0.870 (0.696 to 1.086)	0.076	
Mobilization	0.686 (0.557 to 0.846)	0.917 (0.590 to 1.425)	0.229	
Restraint avoidance	0.637 (0.306 to 1.326)	0.738 (0.597 to 0.911)	0.878	
Medication reduction	0.572 (0.384 to 0.850)	0.798 (0.630 to 1.011)	0.226	
Catheter removal	0.556 (0.344 to 0.899)	0.808 (0.655 to 0.995)	0.291	
Sleep aids	0.619 (0.465 to 0.822)	0.828 (0.621 to 1.104)	0.131	
Cognitive stimulation	0.560 (0.369 to 0.849)	0.798 (0.627 to 1.017)	0.400	
Liquid intake	0.674 (0.529 to 0.858)	0.831 (0.611 to 1.128)	0.239	
Nutrition	0.633 (0.485 to 0.825)	0.909 (0.697 to 1.185)	0.225	

Table C-2. Pooled analyses of individual components in multi-component trials to prevent delirium

*For interaction

CI=confidence interval; RR=risk ratio.

Burton et al. (2021) conducted an exploratory component network meta-analysis to assess the comparative effectiveness of individual components of the multi-component interventions. A decreased risk of incident delirium was associated with re-orientation (including use of familiar objects), cognitive stimulation, and sleep hygiene. Additionally, attention to nutrition and hydration, oxygenation, medication review, assessment of mood, and bowel and bladder care likely had an association with lower incident delirium, but this could not be determined definitively because estimates included the possibility of no benefit or harm. Contrary to expectations, reducing sensory deprivation, identification of infection, mobilization, and pain control were associated with potential increases in delirium incidence, but the evidence was highly uncertain.

Grading of the Overall Supporting Body of Research Evidence for Use of Single-Component Nonpharmacological Interventions in Prevention of Delirium

Magnitude of effect: Minimal. The magnitude of the effect of single interventions is minimal in most patient subgroups in reducing the incidence, severity, or duration of delirium or in terms of mortality associated with delirium. Statistically significant differences were noted with single-component interventions in post-operative patients, but interventions were varied. Education and OT were associated with statistically significant reductions in delirium incidence, but studies were small.
 Reductions in ICU length of stay were statistically significant but very small in magnitude for single-component interventions taken together; there is unlikely to be clinical significance of this decrease.

o Risk of bias: Moderate to High. Of the single-component studies, nine had a high risk of bias and 26 had a moderate risk of bias with only one study that had a low risk of bias. The factors that most often contributed to a higher risk of bias included lack of blinding or lack of information about blinding or allocation concealment, particularly in patients and clinicians.

o Applicability: The findings of these studies are applicable to older patients, those in critical care settings, and post-operative patients. Applicability to younger individuals and those in other clinical settings is likely to be reduced. Demographic information on study participants was often not reported, and non-White individuals were often under-represented when demographic information was available.

o Directness: Direct. Outcomes were directly related to delirium or its associated adverse effects, including mortality.

o Consistency: Consistent. Study findings were consistent for delirium incidence, duration, and severity, and for mortality associated with delirium.

o Precision: Varies with outcome. For delirium incidence and duration, the findings were precise whereas for other outcomes, findings were imprecise.

o Dose-response relationship: No available information.

o Confounding factors (including likely direction of effect): The data may be confounded by variations in delirium assessment due to rater training. Individuals with hypoactive delirium may have

been less likely to be identified than those with hyperactive delirium. However, the direction of effect from these potential confounding factors is not clear.

o Publication bias: Identified. There was possible evidence of publication bias for studies related to the incidence of delirium, with small studies likely to have gone unpublished.

o Overall strength of research evidence: Low to Moderate. The strength of research evidence for single interventions is moderate for the duration of delirium and low for the incidence and severity of delirium as well as for mortality associated with delirium. For other outcomes, there was insufficient information to make a determination.

Nonpharmacological Interventions for the Treatment of Delirium

A systematic review conducted by the Pacific Northwest EPC assessed outcomes from multi-component and single-component nonpharmacological interventions among clinical trials designed to treat delirium. For multi-component interventions, there were no group differences in delirium improvement, although one trial of general inpatients demonstrated an effect that favored the intervention group (Pitkälä et al. 2006). For single-component interventions, there was a non-significant group difference in the resolution of delirium.

Multi-Component Interventions

The EPC's systematic review assessed evidence from eight clinical trials (Cole et al. 1994, 2002; Khalifezadeh et al. 2011; Kolanowski et al. 2011, 2016; Marcantonio et al. 2001, 2010; Pitkälä et al. 2006, 2008) comparing a multi-component intervention with usual care to treat delirium.

Overview of study characteristics

The interventions were a mix of behavioral and care-related interventions (Table C-3). Behavioral interventions included sensory interventions, orientation interventions, cognitively stimulating activities, increasing self/independent-care activities, or emotional support. Care-related interventions included early mobilization, early removal of urinary catheter, avoidance of restraints, avoidance or reduction of certain medications, use of sleep aids or promotion of good quality sleep, scheduled liquid intake to avoid dehydration, nutritional assistance or scheduled oral food intake, and monitoring for infections, blood transfusion necessity, or pain. Several trials involved family members in the interventions. Most of the interventions would be considered good practice or even standard of care (e.g., early removal of catheter); they are not usually considered controversial or harmful. All control interventions were usual care and may have contained portions of the multi-component interventions, but they were not actively monitored for adherence or treatment fidelity.

Author Year	Setting/ Population Country	RF	Family ^a	Sensory⁵	Orientation ^c	Early mobilize	Decreased restraints ^d	Planned intake ^e	Decreased medications ^f	Cognitive activities	Increased self-care ^g	Sleeph
Cole et al.	Inpatient	Х	Х	Х	Х	Х	Х				Х	
1994	Canada											
Cole et al.	Inpatient	Х	Х	Х	Х	Х	х				Х	
2002	Canada											
Khalifezadeh	Postop,		Х		Х							
et al. 2011	neurosurgery											
	Iran											
Kolanowski	Rehab									Х		
et al. 2011	U.S.											
Kolanowski	Rehab									Х		
et al. 2016	U.S.											
Marcantonio	Nursing	Х		Х	Х	Х		Х	Х			
et al. 2001	home											
	U.S.											
Marcantonio	Nursing	Х	Х	Х	Х	Х	х	Х	Х		Х	Х
et al. 2010	home											
	U.S.											
Pitkälä et al. 2006	Inpatient Finland	Х			Х	Х		Х	Х			

Table C-3. Individual components in multi-component intervention trials to treat delirium

^a Family was involved in the delivery of the intervention.

^b Such as glasses, hearing aids, good lighting, and noise avoidance

^c Such as date, time, location, and reason for being there

^d Either physical restraints or catheter

^e Daily scheduled oral or intravenous administration of fluids (liquids) and/or nutritional assistance

^f Decreased use or avoidance of use of opioids, anticholinergics, sedatives, and other psychoactive drugs that may increase risk of delirium or sedation

^g Increase patient's independent care for self, preferably to baseline

^h Sleep aids, such as ear plugs and/or eye masks, and decreased noise and light at night

RF=risk factor analysis.

Source. Cole et al. 1994, 2002; Khalifezadeh et al. 2011; Kolanowski et al. 2011, 2016; Marcantonio et al. 2001, 2010; Pitkälä et al. 2006.

Trials were generally small in size (*N*<200) and were mostly conducted in the United States (4 trials) and Canada (2 trials) with one trial conducted in Iran and another trial in Finland. Risk of bias was low in two trials, moderate in five trials, and high in one trial. The weighted mean age was 84 years across those trials that reported age, and samples were predominantly female (mean 65%, range 54% to 74%). Participants were mostly White in the four trials that reported information on race/ethnicity. Study settings included post-operative neurosurgery, general inpatient, nursing homes, and rehabilitation centers. Co-occurring dementia was excluded in one study, present in all participants in two studies, and present in a portion of the sample in the other studies. In all trials, participants' baseline functional status was within normal ranges on the basis of the Charlson Comorbidity Index, the Clinical Dementia Rating Scale, the Crichton Geriatric Behavioral Scale, or the RASS. All patients were diagnosed with delirium with a validated assessment scale (i.e., the CAM, DRS, MDAS, and a composite scale).

Effect of multi-component interventions on delirium severity

The systematic review conducted by the EPC identified five individual clinical trials that reported on the response of delirium to multi-component nonpharmacological interventions (Khalifezadeh et al. 2011; Kolanowski et al. 2016; Marcantonio et al. 2001, 2010; Pitkälä et al. 2006). A pooled analysis of the four trials that could be combined found no significant differences between groups (*N*=795; RR 1.03, 95% CI 0.86–1.23, I^2 =72%) (Khalifezadeh et al. 2011; Kolanowski et al. 2016; Marcantonio et al. 2001, 2010) (see Figure C-4). A trial of general inpatients (*N*=174) found significantly greater sustained improvement of 4 points or more on the MDAS at day 8 in the intervention group compared with usual care (47% vs. 21%, *P*=0.002) (Pitkälä et al. 2006).

Two trials (*N*=16 and 283) from the EPC's systematic review that were conducted in dementia patients in rehabilitation centers found a non-significantly lower severity of delirium in the intervention group compared with usual care as measured by the DRS (Kolanowski et al. 2011, 2016). A trial (*N*=126) conducted in nursing homes, which included rehabilitation patients as well as long-term care residents, found more patients in the usual care group had severe delirium compared with the intervention group (RR 0.40, 95% CI 0.18–0.89), although baseline severity was not reported (Marcantonio et al. 2001).

Setting and Author, Year	Risk of Bias	Response Measure	Assessment Time	Treatment n/N	Control n/N		Risk Ratio (95% CI)
Nursing homes							
Marcantoni, 2001	Moderate	CAM	Discharge	54/62	52/64	+	1.07 (0.92, 1.25)
Marcantoni, 2010	Moderate	CAM	28 days	85/212	68/138		0.81 (0.64, 1.03)
Subgroup				139/274	120/202	-	0.95 (0.73, 1.24)
(l² = 73.0%, p = 0.0	22)						
Postop							
Khalifezadeh, 2011	High	Composite	5 days	17/20	8/20		2.13 (1.20, 3.75)
Subgroup				17/20	8/20	$\langle \rangle$	2.13 (1.20, 3.75)
(l²= 0.0%, p = NA)							
Rehab							
Kolanowski, 2016	Low	DRS	0 to 39 days	120/139	122/140	÷	0.99 (0.90, 1.09)
Subgroup				120/139	122/140	•	0.99 (0.90, 1.09)
(l²= 0.0%, p = NA)							
Interaction p-value	: p = 0.4046						
Overall				276/433	250/362	•	1.03 (0.86, 1.23)
(l² = 71.6%, p = 0.0	13)						
					.25	1 4	4
					Favors control	Favo	rs treatment

Figure C-4. Delirium response with multi-component interventions versus usual care.

CAM=Confusion Assessment Method; CI=confidence interval; DRS=Delirium Rating Scale; NA=not applicable; postop=post-operative; Rehab=rehabilitation.

Source. Khalifezadeh et al. 2011 ; Kolanowski et al. 2016 ; Marcantonio et al. 2001, 2010.

Effect of multi-component interventions on delirium duration

The systematic review conducted by the EPC identified four trials that reported on outcomes related to the duration of delirium (Cole et al. 2002; Kolanowski et al. 2011, 2016; Marcantonio et al. 2001). One trial in rehabilitation center patients with dementia reported a large but non-significant difference in the mean number of days with delirium (3.27 vs. 7, P=0.11) (Kolanowski et al. 2011). Another trial, among patients with hip fracture, also did not find a significant difference in mean hospital days of delirium per episode (2.9 vs. 3.1, P=0.72) (Marcantonio et al. 2001). Kolanowski et al. (2016) found a non-significant difference in the time to resolution of delirium symptoms (6.88 days vs. 7.39 days, P=0.79) and in the proportion of delirium-free days (64.8% vs. 68.7%, P=0.37) in patients with dementia. Finally, a trial of older inpatients reported that the time to improvement in the Delirium Index score was not significantly different between groups (HR 1.09, 95% CI 0.74–1.60) (Cole et al. 2002). There was also no difference in delirium time to improvement when the analysis was restricted to patients without dementia (HR 1.54, 95% CI 0.80–2.97) (Cole et al. 2002).

Effect of multi-component interventions on length of stay

Among four trials (*N*=810) that reported the length of hospital stay (Cole et al. 2002; Kolanowski et al. 2016; Marcantonio et al. 2001; Pitkälä et al. 2006), three trials showed a similar length of stay between intervention and usual care groups (Cole et al. 2002; Marcantonio et al. 2001; Pitkälä et al. 2006). In contrast, a single trial of patients with dementia in a rehabilitation center found significantly longer stay in the usual care group compared with the intervention group (mean 53.13 days vs. 36.09 days, *P*=0.01) (Kolanowski et al. 2016).

Effect of multi-component interventions on mortality

In a pooled analysis of six trials (*N*=1,245; Cole et al. 1994, 2002; Kolanowski et al. 2011, 2016; Marcantonio et al. 2010; Pitkälä et al. 2006), there were no differences between groups in rates of mortality (RR 1.07, 95% CI 0.85–1.36). None of the trials reported adverse events, and one trial excluded individuals who died during the study (Cole et al. 2002).

Effect of multi-component interventions on other outcomes

One trial (*N*=174), conducted in general hospitalized patients, reported higher health-related quality of life in the intervention group compared with the usual care group, as measured by the generic 15dimensional questionnaire (*P*=0.020) (Pitkälä et al. 2008). In the same trial, more patients in the intervention group reported feeling "healthy" or "quite healthy" at discharge (71% vs. 49%, *P*=0.050) (Pitkälä et al. 2008). In three trials (*N*=417), the MMSE was used to assess cognitive decline in patients with delirium. One found no differences in intervention and control groups at 3-month follow-up (mean 18.6 vs. 18.3) but did find a benefit of the multi-component intervention at 6-month follow-up (mean 18.4 vs. 15.8, *P*=0.047) (Pitkälä et al. 2006). The other two studies found no group differences (improvement at 36 days: HR 1.10, 95% CI 0.74–1.63 [Cole et al. 2002] and mean at discharge: 16.84 vs. 16.25, *P*=0.5233 [Kolanowski et al. 2011]). Lastly, two trials (*N*=227 and 174) failed to find any differences in mean scores on the Barthel Index, a disability assessment, between the intervention group and the usual care group at discharge (47.74 vs. 43.41, *P*=0.965 [Kolanowski et al. 2011]) or at 6-month follow-up (70.2 vs. 63.8, *P*=0.144 [Pitkälä et al. 2006]).

Grading of the Overall Supporting Body of Research Evidence for Use of Multi-Component Nonpharmacological Interventions in the Treatment of Delirium

o Magnitude of effect: Minimal. No significant differences were noted in the magnitude of effects on outcomes including delirium remission, severity, or duration with multi-component interventions.

O Risk of bias: Moderate. The majority of trials on multi-component interventions for the treatment of delirium had a moderate risk of bias with a high risk of bias in two of eight studies. Factors that most commonly affected the risk of bias were a lack of specification of the methods for random allocation and concealment as well as a lack of patient and clinician masking.

O Applicability: The majority of studies on use of multi-component interventions to treat delirium were done in the United States or Canada, primarily in nursing homes or rehabilitation facilities with some studies in acute care settings. Older individuals predominated in the majority of the studies and, in most studies, co-occurring dementia was present in some or all of the participants. Most of the studies

included a greater proportion of women than men. Little information was available on the race and ethnicity of participants for many of the studies, and when this information was specified, the sample was predominantly White.

o Directness: Direct. Outcomes were directly related to delirium or its associated adverse effects, including mortality.

o Consistency: Variable. Studies on delirium remission and mortality showed consistent findings whereas for other outcomes, only one study was available, and the consistency of findings was unknown.

o Precision: Imprecise. Findings were imprecise for all outcomes.

o Dose-response relationship: No available information.

o Confounding factors (including likely direction of effect): The data may be confounded by variations in delirium assessment due to rater training. Many of the studies included individuals with concomitant dementia, which may have delayed resolution of delirium in those subjects.

o Publication bias: Unclear. Although publication bias was not reported, there was an insufficient number of trials to make an assessment.

o Overall strength of research evidence: Low. The strength of research evidence was low for response of delirium to multi-component interventions and rates of mortality within the studies of delirium treatment using multi-component interventions.

Single-Component Interventions

Because multi-component nonpharmacological interventions are comprised of multiple independent interventions, the Pacific Northwest EPC systematic review considered the effectiveness outcomes from single-component studies as well as assessing effects of each component within the multi-component trials.

Overview of study characteristics

Six trials (Campbell et al. 2019; Khan et al. 2019; Levy et al. 2022; Mailhot et al. 2017; Makinian et al. 2015; Yang et al. 2012) compared a single behavioral intervention with usual care for the treatment of delirium. The single behavioral interventions assessed were computerized decision-support interventions to interrupt orders for strong anticholinergics (Campbell et al. 2019; Khan et al. 2019), a family member-delivered delirium management intervention (Mailhot et al. 2017), bright light therapy (Yang et al. 2012), massage (Makinian et al. 2015), and acupuncture (Levy et al. 2022). The control group was usual care in all trials. Two trials also provided adjunct antipsychotics to both groups—risperidone (starting at 0.5 mg/day and increased to a mean of 2.0 mg/day) with light therapy (Yang et al. 2012).

Trials were generally small in size, with the number of subjects ranging from 30 to 351. Two trials were conducted in the United States and one each in Canada, South Korea, Israel, and Iran. Trial settings

included post-operative cardiac surgery, ICU, general inpatient, and hospital psychiatry. All the trials were rated as having a moderate risk of bias. The weighted mean age was 63 years, with four trials having a mean age 70 or older. Several trials were predominantly female, although the range of female participants was 36% to 62%. In the two U.S. trials, Black participants comprised 42% and 52% of the study population; no other trials reported race/ethnicity. All trial participants were within normal levels of functioning at the start of the study, as measured by the APACHE II, Charlson Comorbidity Index, or the Clinical Global Impressions-Severity. In both ICU trials, nearly three-quarters of participants were on mechanical ventilation. All patients were diagnosed with delirium as per a validated assessment tool (i.e., the CAM, CAM-ICU, DRS, or the NEECHAM Confusion Scale).

Effect of single-component interventions on delirium response

A pooled analysis of three trials found no differences in the response of patients with delirium to a single-component intervention (N=191; 32.3% vs. 17.4%, RR 1.92, 95% Cl 1.13–3.25, $l^2=0\%$) (Levy et al. 2022; Mailhot et al. 2017; Makinian et al. 2015). A trial of ICU patients reported more delirium-/coma-free days in the intervention group compared with the usual care group by day 8 (median 4 vs. 5, P=0.36) or day 30 (median 25 vs. 26.5, P=0.10), but the differences were not significant (Campbell et al. 2019). The trial of acupuncture reported that the intervention group had more patients without delirium compared with the usual care group (24% vs. 11%, P=0.002) as well as a significantly shorter time to first remission of delirium for (HR 0.267, 95% Cl 0.098–0.010) and more delirium-free days (median of 5.5 vs. 0, P<0.001) (Levy et al. 2022).

Effect of single-component interventions on delirium severity

Five trials reported delirium severity was lower in the intervention group, but results were significant in only two of the trials. One trial reported significantly lower mean scores on day 5 for the intervention group compared with the usual care group (12 vs. 18, *P*<0.05) (Yang et al. 2012), and the other reported a significantly larger decrease in mean scores at discharge in the intervention group compared with the usual care group (-3.2 vs. -2.5, *P*=0.046) (Khan et al. 2019). The other three trials did not report significant differences (Campbell et al. 2019; Mailhot et al. 2017; Makinian et al. 2015), although all reported lower scores or larger decreases in the intervention group. Studies used different scales, and the interventions were heterogeneous; thus, they were not combined in the meta-analysis. Updated analyses indicated similar results as the previous meta-analysis, with no differences between groups.

Effect of single-component interventions on length of stay

Regarding length of stay, one trial (*N*=200; Campbell et al. 2019) reported significantly longer ICU stay in the intervention group (computer decision support) compared with the usual care group (median 10 days vs. 8 days, *P*=0.019), whereas four trials (*N*=399) found no group differences in hospital length of stay (Campbell et al. 2019; Levy et al. 2022; Mailhot et al. 2017; Makinian et al. 2015). Of those four trials, two found shorter hospital stays in the intervention groups (mean 6.3 vs. 12.1 and 4.11 vs. 4.6 days (Mailhot et al. 2017; Makinian et al. 2017; respectively), and two found longer hospital stays for the intervention group (median days: 12 vs. 11 and 13 vs. 12 days) (Campbell et al. 2019; Levy et al. 2022, respectively).

Effect of single-component interventions on mortality

In two ICU trials (*N*=551), there were no group differences on rates of mortality at discharge (11% vs. 8% [Campbell et al. 2019] and OR 0.61, 95% CI, 0.32–1.16 [Khan et al. 2019]) or at 30 days post-discharge (15% vs. 10% [Campbell et al. 2019] and OR 0.62, 95% CI 0.35–1.12 [Khan et al. 2019]). One trial (*N*=81) found no group differences in in-hospital mortality (16% vs. 23%, *P*=0.574) (Levy et al. 2022). In three trials, there were also no group differences in number of serious adverse events (*N*=581; 27% vs. 22% [Campbell et al. 2019] and 26% vs. 32% [Khan et al. 2019]) or in caregiver anxiety at day 4 (mean HADS score: 36.67 vs. 43.86 [Mailhot et al. 2017]). The remaining three trials did not report adverse events.

Effect of single-component interventions on other outcomes

Regarding health/functional status and medication use outcomes, Sickness Impact Profile scores were significantly lower (i.e., better) in the family member-delivered delirium management intervention group compared with the usual care group in post-cardiac surgery patients (N=30; mean 4.80 vs. 9.50, P=0.01) (Mailhot et al. 2017). In a trial of ICU patients (N=200), an intervention aimed at reducing medications with increased potential for causing delirium (e.g., strong anticholinergics and benzodiazepines) was not successful, as greater proportions of intervention patients were prescribed benzodiazepines (60.6% vs. 56.0%, P=0.50), haloperidol (29.3% vs. 20.0%, P=0.14), and anticholinergic drugs (34.3% vs. 26.0%, P=0.22) (Campbell et al. 2019). Finally, the trial of acupuncture reported the same number of psychotropic drug-free days in each group (median 7 days each group, P=0.253) and equivalent scores on the Katz Index of Independence in Activities of Daily Living at discharge (median 2 in each group, P=0.945) (Levy et al. 2022).

Effectiveness of single-component interventions on the basis of multi-component trial data and network meta-analysis

To identify individual components that may be responsible for, or at least contribute meaningfully to, the overall results of multi-component interventions, the Pacific Northwest EPC conducted subgroup analyses on the basis of whether each study included an individual component. The findings for each subgroup were compared to determine whether they were statistically significantly different (Table C-4). When trials were compared on the basis of the individual components they included, none of the individual components had significantly lower risk of delirium compared with the trials not including these interventions.

	RR in studies including	RR in studies without	
Component	(95% CI)	(95% CI)	P-value*
Sensory	0.948 (0.725 to 1.241)	1.375 (0.656 to 2.884)	0.472
Orientation	1.115 (0.783 to 1.588)	0.991 (0.904 to 1.086)	0.786
Mobilization	0.948 (0.725 to 1.241)	1.375 (0.656 to 2.884)	0.472
Restraint avoidance	0.814 (0.643 to 1.030)	1.107 (0.904 to 1.355)	0.446

Table C-4. Pooled analyses of individual components in multi-component trials to treat delirium

	RR in studies including	RR in studies without	
Component	(95% CI)	(95% CI)	P-value*
Medication reduction	0.948 (0.725 to 1.241)	1.375 (0.656 to 2.884)	0.472
Catheter removal	0.814 (0.643 to 1.030)	1.107 (0.904 to 1.355)	0.446
Sleep aids	0.814 (0.643 to 1.030)	1.107 (0.904 to 1.355)	0.446
Cognitive stimulation	0.991 (0.904 to 1.086)	1.115 (0.783 to 1.588)	0.786

*For interaction

CI=confidence interval; RR=risk ratio.

Grading of the Overall Supporting Body of Research Evidence for Use of Single-Component Nonpharmacological Interventions in the Treatment of Delirium

o Magnitude of effect: Minimal to low. On pooled analyses, there was no significant effect of single-component interventions; however, in some individual studies with outcomes that were not amenable to meta-analysis, there was a small benefit of the intervention.

o Risk of bias: Moderate to high. Two-thirds of trials on single-component interventions for the treatment of delirium had a moderate risk of bias whereas the other trials had a high risk of bias. Factors that most commonly affected the risk of bias were a lack of specification of the methods for random allocation and concealment as well as a lack of patient and clinician masking. Several trials also had intervention and control groups with dissimilar characteristics at baseline.

o Applicability: Most individuals in the trials of single-component interventions were older, but other demographic information was often not reported, and the samples may not be representative of usual clinical populations. Half of the trials were conducted in the United States or Canada. The singlecomponent interventions that were studied are not typically used in clinical settings in patients with delirium; however, the analysis of individual components of multi-component interventions includes common nonpharmacological approaches.

o Directness: Direct. Outcomes were directly related to delirium or its associated adverse effects, including mortality.

o Consistency: Varies with outcome. Findings on delirium remission and severity were consistent whereas findings on delirium duration and mortality were inconsistent. For other outcomes, findings were only available from one study.

o Precision: Varies with outcome. For delirium severity, the findings were precise whereas for other outcomes, findings were imprecise.

o Dose-response relationship: No available information.

o Confounding factors (including likely direction of effect): The data may be confounded by variations in delirium assessment due to rater training. Several of the trials had significant differences in

the characteristics of intervention and control groups at baseline, which may also have confounded results.

o Publication bias: Unclear. Although publication bias was not reported, there was an insufficient number of trials to make an assessment.

o Overall strength of research evidence: Low to moderate. The strength of research evidence was moderate for delirium severity and low for delirium response and serious adverse events.

Pharmacological Interventions

Statement 8 – Principles of Medication Use

APA *recommends* **(1C)** that medications, including antipsychotic agents, be used to address neuropsychiatric disturbances of delirium only when all the following criteria are met:

- verbal and non-verbal de-escalation strategies have been ineffective;
- contributing factors have been assessed and, insofar as possible, addressed; and
- the disturbances cause the patient significant distress and/or present a risk of physical harm to the patient or others.

Evidence in support of this statement is primarily indirect and comes from a small number of studies on the pharmacological treatment of delirium.

The systematic literature review of pharmacological treatments for delirium that was conducted by the Pacific Northwest EPC included antipsychotics, sedatives, sleep-related medications, cholinesterase inhibitors, and miscellaneous medication (i.e., the benzodiazepine antagonist flumazenil). Findings are consistent with those from a systematic review commissioned by the AHRQ, which showed no effect of antipsychotics in the treatment of delirium in hospitalized adults (Nikooie et al. 2019) and generally indicated no significant effect of pharmacological treatments in improving delirium response, delirium severity, adverse events, or mortality. Studies of antipsychotic medications are described in this statement whereas studies of dexmedetomidine, benzodiazepines, melatonin, ramelteon, and other sleep-related medications are described in Statements 10, 11, 12, and 13.

Use of Antipsychotic Medications for the Treatment of Delirium

Overview of study characteristics

There were 29 studies on treatment of delirium with antipsychotic medications that were identified in the systematic review conducted by the EPC (Agar et al. 2017; Atalan et al. 2013; Bakri et al. 2015; Boettger et al. 2011, 2015; Boncyk et al. 2021; Breitbart et al. 1996; Devlin et al. 2010; Fox et al. 2020; Fukata et al. 2017; Girard et al. 2018; Grover et al. 2016; Han and Kim 2004; Hatta et al. 2014a; Jain et al. 2017; Kim et al. 2010; Lee et al. 2005; Lin et al. 2008; Liu et al. 2004, 2021; Maneeton et al. 2013; Skrobik et al. 2004; Smit et al. 2021; Tagarakis et al. 2012; Tahir et al. 2010; Thom et al. 2018; van der Vorst et al. 2020; Weaver et al. 2017; Yoon et al. 2013). Studies were conducted in a wide range of countries with 11 in the United States, four in South Korea, three in India, two in Japan, and one each in Australia, Canada, China, Greece, Netherlands, Northern Taiwan, Saudi Arabia, Taiwan, Thailand, The Netherlands, Turkey, and the United Kingdom. Fifteen of the studies had a mean or median age 65 or greater, 16 had

a mean or median age less than 65, and one trial did not report this information. Fourteen studies enrolled a predominance of men, four studies enrolled a predominance of women, 12 enrolled comparable proportions of men and women, and two did not report this information. Twenty-five studies did not report information on race or ethnicity, and one study enrolled only Asian participants. In the other studies, White participants represented 13% to 83% of the sample, and Black participants represented 9% to 57% of participants. Individuals with dementia were excluded from 12 of the trials and constituted 10% to 25% of the sample in three trials. In the remaining seventeen trials, no information on the presence of dementia was reported.

Studies on the treatment of delirium included a mix of RCTs and prospective and retrospective cohort studies. Among the RCTs (*N*=2,111, range 28 to 566), the risk of bias was low in two studies, moderate in nine studies, and high in seven studies. Among the cohort studies (*N*=12,682 range 40 to 7,879), the risk of bias was moderate in six studies and high in five studies.

Studies on antipsychotic medications included post-operative patients (Atalan et al. 2013; Bakri et al. 2015; Fukata et al. 2017; Tagarakis et al. 2012) as well as patients in ICUs (Andersen-Ranberg et al. 2022; Devlin et al. 2010; Girard et al. 2018; Skrobik et al. 2004; Thom et al. 2018; Weaver et al. 2017), general inpatient (Breitbart et al. 1996; Grover et al. 2016; Han and Kim 2004; Jain et al. 2017; Kim et al. 2010; Lee et al. 2005; Maneeton et al. 2013; Tahir et al. 2010; van der Vorst et al. 2020), and palliative care (Agar et al. 2017; Boettger et al. 2015; Lin et al. 2008) settings.

In terms of specific treatments, four trials compared haloperidol with other drugs or no treatment among post-operative patients (Atalan et al. 2013; Bakri et al. 2015; Fukata et al. 2017; Tagarakis et al. 2012). Regarding ICU populations, the largest of the antipsychotic trials (N=1,000) compared haloperidol with placebo (Andersen-Ranberg et al. 2022). Another large trial (N=566; Girard et al. 2018) included both ziprasidone and haloperidol arms but reported only comparisons of each medication with placebo. The other placebo-controlled trial, assessing quetiapine, was small (N=36; Devlin et al. 2010), and one comparative effectiveness trial had high risk of bias (Skrobik et al. 2004). Two observational studies assessed ICU patients with delirium treated with any antipsychotic. One compared early treatment (within 48 hours of diagnosis) with late treatment and no treatment (Thom et al. 2018), the other treatment with no treatment (Weaver et al. 2017). Five trials in general inpatient populations compared treatment response with second-generation antipsychotics to that with haloperidol, using various delirium measures and thresholds (Grover et al. 2016; Han and Kim 2004; Jain et al. 2017; Maneeton et al. 2013; van der Vorst et al. 2020). Concerning palliative care patients, a study from Australia with moderate risk of bias assessed 247 patients treated with risperidone, haloperidol, or placebo; all patients also received nonpharmacological treatment and treatment for potential causes of delirium (Agar et al. 2017). The study with a high risk of bias compared olanzapine with haloperidol and analyzed 12 of 30 patients randomized (Lin et al. 2008). The study by Boettger et al. (2015) was an observational study of four antipsychotics in a cancer treatment hospital.

Effect of antipsychotic medications on delirium response

In four trials of antipsychotic medication among post-operative patients, one trial (Fukata et al. 2017) that compared haloperidol with no treatment found a greater rate of response to delirium in the

haloperidol group (see Table C-5). The other trials—two of which assessed 3 days to 5 days of haloperidol versus morphine (Atalan et al. 2013) or ondansetron (Bakri et al. 2015) and one that assessed a single dose of haloperidol or ondansetron (Tagarakis et al. 2012)—did not find significant differences between treatments.

An observational study of the timing of antipsychotic administration in ICU patients did not show statistically significant differences in the resolution of delirium or coma with either early (adjusted HR 1.24, 95% CI 0.77–1.99) or late treatment (adjusted HR 1.91, 95% CI 0.98–3.73) compared with no treatment (Thom et al. 2018).

Study Risk of Bias	Medication	Comparison	Duration (follow-	Surgery type Diagnostic tool	
N analyzed	and dose	treatment	up)	Age/mean age	Delirium outcomes
Study:	Haloperidol	No	5 days	Surgery type:	Response: 82% vs.
Fukata et al.	5 mg IV	treatment	(day 10)	Abdominal/orthopedic	68%, RR 1.21, 95%
2017	once daily			Diagnostic Tool:	CI 1.03–1.42
RoB:				NEECHAM scores of	Duration: 2 days
Moderate				20–24 for inclusion	vs. 2 days
N: 201				Age: >75 years	
Study:	Haloperidol	Morphine 5	5 days	Surgery type: Cardiac	Severity RASS: 0 vs.
Atalan et al.	5 mg IM	mg IM	(day 10)	hyperactive delirium	0.39 <i>, P=</i> 0.33
2013	hourly (max	hourly (max		Diagnostic Tool: RASS	Duration: 1.5 days
RoB: High	20 mg/day)	20 mg/day)		>2 (0–4)	vs. 1.5 days
<i>N</i> : 53				Age: 66 years	
Study: Bakri	Haloperidol	Ondansetron	3 days	Surgery type: Trauma	Response: 81% vs.
et al. 2015	5 mg IV	4 mg IV	(day 3)	Diagnostic Tool: ICDSC	94%, RR 1.14, 95%
RoB:	twice daily	twice daily		(0–8)	CI 0.95–1.38
Moderate				Age: Mean 31 years	Severity ICDSC: 1.2
N: 96					vs. 4.9, <i>P</i> =0.7
Study:	Haloperidol	Ondansetron	One	Surgery type: Cardiac	Response: 85% vs.
Tagarakis et	5 mg IV x 1	8 mg IV x 1	dose	Diagnostic Tool: 4-	83%, RR 1.03, 95%
al. 2012	on	preop on	(2-5	point scale	CI 0.84–1.25
RoB: High	detection of	detection of	hours)	Age: Mean 71 years	Severity: 1.2 vs.
N: 80	delirium	delirium			1.3 <i>, P=</i> NR ("not
					significant")

Cl=confidence interval; ICDSC=Intensive Care Delirium Screening Checklist; IM=intramuscular; IV=intravenous; N=number; NEECHAM=Neelon and Champagne Confusion Scale; NR=not reported; preop=pre-operative; RASS=Richmond Agitation and Sedation Scale; RoB=risk of bias; RR=risk ratio.

Source. Atalan et al. 2013; Bakri et al. 2015; Fukata et al. 2017; Tagarakis et al. 2012.

A pooled analysis of five trials in general inpatient populations (see Figure C-5) showed no difference in treatment response between haloperidol and second-generation antipsychotic agents (65% vs. 67%, RR 0.99, 95% CI 0.83–1.19, I²=27%) (Grover et al. 2016; Han and Kim 2004; Jain et al. 2017; Maneeton et al. 2013; van der Vorst et al. 2020). Two small trials, each enrolling about 30 patients, compared second-generation antipsychotics with each other, and neither found statistically significant differences (Kim et

al. 2010; Lee et al. 2005). Response was not different between olanzapine and risperidone (73% vs. 65%, P=0.71) (Kim et al. 2010) or between amisulpride and quetiapine (81% vs. 80%, P=0.93) (Lee et al. 2005).

An observational study of 84 patients with delirium in a cancer treatment hospital compared haloperidol with three second-generation antipsychotics (Boettger et al. 2015). It did not find a statistically significant difference between the four drugs in rates of delirium response after 4 to 7 days (*P*=0.42), with rates ranging from 62% for olanzapine to 86% for risperidone.

Figure C-5. Delirium response with	second-generation antipsychotics	s versus haloperidol in inpatients.

Author, Year	Risk of Bias	Treatment & Dose	Haloperidol Dose	Response Measure	Treatment n/N	Control n/N			Risk Ratio (95% CI)
Jain, 2017	High	Olanzapine 2.5 to 10 mg/day	1 to 4 mg/day	MDAS MDA	53/66	47/66	-	•	1.13 (0.93, 1.37)
van der Vorst, 2020	Moderate	Olanzapine 2.5 to 20 mg/day	0.5 to 20 mg/day	DRS-R-98 severity <15.25 & 25% drop	22/49	28/49		-	0.79 (0.53, 1.16)
Grover, 2016	High	Quetiapine 12.5 to 75 mg/day	0.25 to 10 mg/day	/ DRS-R-98 < 10	21/31	22/32	_	<u> </u>	0.99 (0.70, 1.38)
Maneeton, 2013	Moderate	Quetiapine 25 to 100 mg/day	0.5 to 2.0 mg/day	DRS-R-98 severity DRS	18/24	19/28		•	1.11 (0.78, 1.56)
Han, 2004 Overall	Moderate	Risperidone 0.5 to 2.0 mg/day	1.0 to 3.0 mg/day	MDAS <13	5/12 119/182	9/12 125/187			0.56 (0.26, 1.17) 0.99 (0.83, 1.19)
(l ² = 27.4%, p = 0.20)6)							ſ	
							.25 avors control	1 Favors trea	t Iment

Cl=confidence interval; DRS=Delirium Rating Scale; DRS-R-98=Delirium Rating Scale-Revised-98; MDAS=Memorial Delirium Assessment Scale. *Source*. Grover et al. 2016; Han and Kim 2004; Jain et al. 2017; Maneeton et al. 2013; van der Vorst et al. 2020.

Effect of antipsychotic medications on delirium duration

Among post- operative patients, two trials assessed whether haloperidol affected the duration of delirium and found no difference, either in comparison to no treatment (Fukata et al. 2017) or treatment with morphine (Atalan et al. 2013) (see Table C-5).

Two RCTs of antipsychotic medication in ICU populations reported measures of delirium duration; the smaller trial found a shorter duration with quetiapine treatment (Devlin et al. 2010), but the larger one showed no difference between either ziprasidone or haloperidol and placebo in the duration of delirium (Girard et al. 2018) (see Table C-6). An observational study in ICU patients found that delirium lasted longer with antipsychotic treatment (36 hours vs. 14 hours, *P*<0.001) (Weaver et al. 2017).

Study Risk of Bias <i>N</i> analyzed	Comparison	Delirium outcomes	Length of stay
Study: Andersen-Ranberg et al. 2022 RoB: NR N: 1,000	Haloperidol vs. placebo	NR	Hospital: 28.8 days vs. 26.4 days
Study: Devlin et al. 2010 RoB: Low N: 36	Quetiapine vs. placebo	Hours in delirium: median 36 vs. 120, <i>P=</i> 0.006	ICU: Median 16 days vs. 16 days, <i>P</i> =0.28 Hospital: Median 24 days vs. 26 days, <i>P</i> =0.32
Study: Girard et al. 2018 RoB: Low N: 566	Ziprasidone vs. placebo; haloperidol vs. placebo	Days with delirium: adjusted OR 1.02 (95% CI 0.69–1.51); 1.12 (95% CI 0.86–1.46)	ICU: HR 1.02, 95% CI 0.88–1.17; HR 0.95, 95% CI 0.81–1.12 Hospital: HR 1.05, 95% CI 0.88– 1.25; HR 1.03, 95% CI 0.85–1.23
Study: Skrobik et al. 2004 RoB: High N: 73	Olanzapine vs. haloperidol	Delirium severity: no difference between groups, P=0.64	NR

Table C-6. Delirium outcomes of antipsychotics versus other interventions to treat delirium in the ICU

CI=confidence interval; HR=hazard ratio; ICU=intensive care unit; NR=not reported; OR=odds ratio; RoB=risk of bias; RR=relative risk.

Source. Andersen-Ranberg et al. 2022; Devlin et al. 2010; Girard et al. 2018; Skrobik et al. 2004.

In a general inpatient population, two trials of second-generation antipsychotics compared with haloperidol found different results for duration of delirium, suggesting longer duration associated with olanzapine compared with haloperidol (MD 1.70 days, 95% CI 0.08–3.32) (van der Vorst et al. 2020) but not with quetiapine compared with haloperidol (MD -0.20 days, 95% CI -0.79–0.39) (Maneeton et al. 2013). These were both small trials.

Effect of antipsychotic medications on delirium severity

Among post- operative patients, three trials assessed whether haloperidol affected the severity of delirium and found no difference, either in comparison to treatment with morphine (Atalan et al. 2013) or ondansetron (Bakri et al. 2015; Tagarakis et al. 2012) (see Table C-5).

A trial with a high risk of bias comparing olanzapine and haloperidol reported delirium severity in ICU patients, measured by the Delirium Index (Skrobik et al. 2004). Their analysis of variance analysis found no effect of treatment choice on severity in the 73 patients studied (group-time interaction, *P*=0.64; Skrobik et al. 2004).

In general inpatients, trials did not find significant differences between groups in the effects of treatment on delirium severity. All trials showed severity scores that were similar between treatment groups at baseline. Change from baseline in delirium severity did not differ significantly between groups in pooled analysis of three trials of second-generation antipsychotics and haloperidol using the DRS-R-98 (total or severity score MD -0.11, 95% CI -0.42–0.21, I^2 =0%) (Grover et al. 2011, 2016; Maneeton et al. 2013). Effect of treatment on severity was similar between second-generation antipsychotics and haloperidol in two other trials that could not be pooled (Han and Kim 2004; Jain et al. 2017), between olanzapine and risperidone in two trials (MD 0.30, 95% CI -0.15–0.76, I^2 =0%) (Grover et al. 2011; Kim et al. 2010), and between amisulpride and quetiapine in a single small trial with high risk of bias (Lee et al. 2005). Compared with placebo, DRS-R-98 scores improved more quickly with quetiapine, but final scores did not differ in one study (Tahir et al. 2010). In a trial comparing two first-generation antipsychotics, haloperidol and chlorpromazine, severity (DRS scores) declined with treatment in both groups, but the difference between groups was not significant (endpoint score 11.64 vs. 11.85, *P*=0.94) (Breitbart et al. 1996).

In a pooled analysis of studies of palliative care patients, delirium severity (using MDAS) was not significantly different between second-generation antipsychotics and haloperidol (*N*=259; MD 0.03, 95% CI -0.31–0.38, I²=0%). The trial of risperidone, haloperidol, and placebo used three items from the Nursing Delirium Screening Scale (NuDESC) as the primary outcome, with severity scores ranging from 0 to 6 (lower better) (Agar et al. 2017). At the end of the trial, delirium symptoms were higher with either antipsychotic than with placebo (risperidone MD 0.48, 95% CI 0.09–0.86 and haloperidol MD 0.24, 95% CI 0.06–0.42) (Agar et al. 2017). While significant, the differences are small (Agar et al. 2017). In an observational palliative care study that compared haloperidol with three second-generation antipsychotics, delirium severity after treatment ranged from 6.8 points on the MDAS for haloperidol to 11.7 for olanzapine, but the difference was not statistically significant across the four drugs (*P*=0.25) (Boettger et al. 2015).

Effect of antipsychotic medications on length of stay

Table C-6 also shows ICU and hospital length of stay for the two trials that reported it (Devlin et al. 2010; Girard et al. 2018). Treatment with any antipsychotic compared with placebo had no effect on length of stay in either trial (Devlin et al. 2010; Girard et al. 2018). A retrospective cohort study of 510 patients suggested longer ICU stay with antipsychotic treatment compared with no treatment (5.7 days vs. 3.8 days, *P*=0.005) (Weaver et al. 2017). In terms of ICU readmission, no statistically significant difference was observed with either ziprasidone (HR 0.73, 95% CI 0.49–1.10) or haloperidol (HR 1.13, 95% CI 0.62–2.09) treatment as compared with placebo (*N*=566; Girard et al. 2018).

Effect of antipsychotic medications on mortality and adverse events

In four trials of haloperidol among post-operative patients, adverse events were not reported or reported as none (Atalan et al. 2013; Bakri et al. 2015; Fukata et al. 2017; Tagarakis et al. 2012).

Two RCTs in ICU populations did not show a statistically significant difference for in-hospital or 30-day mortality with antipsychotic treatment compared with placebo. One trial (N=566) found that neither 30day nor 90-day mortality were different between ziprasidone (up to 40 mg daily) or haloperidol (up to 20 mg daily) and placebo (Girard et al. 2018; see Table C-7). In addition, a post-hoc analysis found that rates of QTc prolongation with the antipsychotic medications were quite low (2% of doses held for QTc prolongation with ziprasidone as compared with 1% with haloperidol and placebo) (Stollings et al. 2024). However, 89% of the sample had hypoactive delirium, and results may not be applicable to patients with hyperactive delirium. An additional trial (N=1,000), in which 54% of the sample had hypoactive delirium, found no difference in 90-day mortality or in days alive and out of the hospital at 90 days (Andersen-Ranberg et al. 2022) although mortality was slightly less in the haloperidol group at 1 year follow-up (44.7% in the haloperidol group versus 51.6%, P=0.045) (Mortensen et al. 2024). Adverse events did not differ between patients receiving antipsychotics and placebo in the same studies, although few events were reported. The study of olanzapine and haloperidol reported only extrapyramidal symptoms; these occurred with haloperidol and not with olanzapine, although the difference was not statistically significant (Skrobik et al. 2004). One observational study in ICU patients found that late treatment (>48 hours) with any antipsychotic was associated with a decrease in 10-day mortality (adjusted HR 0.30, 95% CI 0.10–0.88), although a post hoc subgroup analysis excluding comatose patients found no difference in mortality (Thom et al. 2018). Another observational study showed no effect of antipsychotic treatment on mortality as compared with placebo (17.4% vs. 18.3%, P=0.87) (Weaver et al. 2017).

Study Risk of Bias			
N analyzed	Comparison	Mortality	Adverse events
Study: Andersen-	Haloperidol	90-day: 36.3% vs. 43.3%,	Serious adverse reaction in ICU:
Ranberg et al. 2022	vs. placebo	adjusted RR 0.84, 95% Cl	2.2% vs. 1.9 %, adjusted RR 1.20,
RoB: NR		0.72–0.98	95% CI 0.33–5.45
N: 1,000			
Study: Devlin et al.	Quetiapine	In hospital: 11% vs. 17%,	Any drug-related AE: 28% vs. 11%,
2010	vs. placebo	<i>P</i> =1.0	<i>P</i> =0.4
RoB: Low			EPS, SAEs, and WAEs: 0 vs. 0
N: 36			events
Study: Girard et al.	Ziprasidone	30-day: HR 1.07, 95% CI 0.77–	EPS: 1 vs. 1; 1 vs. 1 event
2018	vs. placebo;	1.47; HR 1.03, 95% CI 0.73–	Dystonia: 0 vs. 0; 1 vs. 0 events
RoB: Low	haloperidol	1.46	
N: 566	vs. placebo	90-day: HR 1.02, 95% CI 0.79–	
		1.30; HR 1.17, 95% CI 0.99–	
		1.40	

Table C-7. Mortality and adverse events of antipsychotics versus other interventions to treat delirium in the ICU

Study Risk of Bias N analyzed	Comparison	Mortality	Adverse events
Study: Skrobik et	Olanzapine	NR	EPS: 0% vs. 13% <i>, P=</i> 0.15
al. 2004	vs.		
RoB: High	haloperidol		
N: 73			

AE=adverse event; CI=confidence interval; EPS=extrapyramidal symptoms; HR=hazard ratio; ICU=intensive care unit; N=number; NR=not reported; RoB=risk of bias; RR=relative risk; SAE=serious adverse event; WAE=withdrawal due to adverse event.

Source. Andersen-Ranberg et al. 2022; Devlin et al. 2010; Girard et al. 2018; Skrobik et al. 2004.

Three trials in general hospital inpatients (*N*=282) did not show a statistically significant difference in mortality between patients treated with second-generation antipsychotics and those given haloperidol (RR 1.08, 95% CI 0.55–2.09, I^2 =0%) (Jain et al. 2017; Maneeton et al. 2013; van der Vorst et al. 2020). In a placebo-controlled trial of 42 patients, four died in the quetiapine group and three in the placebo group (Tahir et al. 2010). A pooled analysis of three trials of second-generation antipsychotics compared with haloperidol did not find a significant difference in incidence of any adverse effect (*N*=293; 12% vs. 17%, RR 0.74, 95% CI 0.43–1.29, I^2 =0%) (Grover et al. 2011; Jain et al. 2017; van der Vorst et al. 2020). Sedation and extrapyramidal symptoms were the most common side effects reported. Study withdrawal due to adverse events also did not differ significantly in a pooled analysis of three trials (*N*=254; 8.0% vs. 13%, RR 0.60, 95% CI 0.25–1.45, I^2 =0%) (Han and Kim 2004; Maneeton et al. 2013; van der Vorst et al. 2020). Comparisons of second-generation antipsychotics with each other, and quetiapine with placebo also did not find significant difference in adverse events (Breitbart et al. 1996; Kim et al. 2010; Lee et al. 2005; Tahir et al. 2010). These were very small trials, with inadequate statistical power to assess differences.

In a large palliative care study (N=247; Agar et al. 2017), mortality for patients receiving antipsychotics was reported to be greater than for those receiving placebo, with the difference significant for haloperidol. Median survival for patients receiving placebo was 26 days, compared with 16 days for haloperidol (HR 1.73, 95% Cl 1.20–2.50) and 17 days for risperidone (HR 1.29, 95% Cl 0.91–1.84). Both antipsychotic groups had worse symptoms on the Extrapyramidal Symptom Rating Scale compared with placebo (risperidone MD 0.73, 95% Cl 0.09–1.37, P=0.03 and haloperidol MD 0.79; 95% Cl 0.17–1.41, P=0.01). An observational study of four antipsychotics in a cancer treatment hospital found a statistically significant difference in rates of any adverse event between drugs (P=0.009), with the lowest rate for risperidone (4.8%) and highest for olanzapine (43%) (Boettger et al. 2015). Extrapyramidal symptoms were highest with haloperidol (19% for parkinsonism, P=0.012 compared with second-generation antipsychotics). Among patients received olanzapine, 29% experienced an increase in sedation, which was not seen with other antipsychotics (P=0.001 across drugs).

Information on intravenous haloperidol, which is commonly used to treat agitation in critical care settings, suggests that the risks of catatonia, extrapyramidal side effects, QTc prolongation, and torsade are low (Beach et al. 2020). However, this systematic review was not limited to patients with delirium.

Effect of antipsychotic medications on other outcomes

Patients in the ICU given quetiapine spent less time agitated than those given placebo in one small trial (6 hours vs. 36 hours with Sedation Agitation Score [SAS] \geq 5, *P*=0.02) (Devlin et al. 2010). The same trial suggested less use of rescue haloperidol and sedatives by various measures in patients given scheduled quetiapine, but differences were not statistically significant in this trial of 36 patients. Rates of rescue haloperidol use appeared lower in patients given olanzapine than those given scheduled haloperidol in the other small ICU trial, but again, differences were not statistically significant (39% vs. 53%, *P*=0.26) (Skrobik et al. 2004). In the large placebo-controlled trial of haloperidol (Andersen-Ranberg et al. 2022) no differences were noted in the use of restraint or in receipt of rescue medications, including propofol, α_2 agonist, benzodiazepine, or open-label antipsychotic medication.

In a trial of risperidone, haloperidol, and placebo in palliative care patients, fewer individuals needed rescue midazolam in the placebo group than in the combined risperidone and haloperidol groups, with differences statistically significant on each study day (Agar et al. 2017).

Grading of the Overall Supporting Body of Research Evidence for Use of Antipsychotic Agents to Address Neuropsychiatric Disturbances of Delirium

o Magnitude of effect: Minimal to none. Studies using antipsychotic medications, including haloperidol and second-generation antipsychotic medications, were quite consistent in showing minimal to no effects of antipsychotic medication in terms of delirium response or reducing the severity, duration, or associated length of hospital or ICU stay. In a single large study in palliative care patients, use of an antipsychotic medication was associated with more adverse effects and a greater severity of delirium.

o Risk of bias: Moderate to high. Approximately half of studies had a moderate risk of bias with almost all of the remaining studies having a high risk of bias. There were also a number of observational studies that were likely to have biases due to a lack of random assignment. Among the RCTs, factors contributing to risk of bias included inadequate or unclear random assignment or allocation concealment, inadequate masking, and in some studies, problems with attrition or statistical analysis.

o Applicability: The largest number of studies was conducted in the United States, with other studies conducted in a wide range of countries. A broad range of ages were included in the trials, but about half of the studies excluded individuals less than age 65. Men and women were represented in the trials although the proportions of men and women in each study varied and there was more often a predominance of men than women. Most studies did not include information on race or ethnicity, limiting the ability to draw conclusions about demographic applicability. Only three trials included individuals with co-occurring dementia; the other trials did not report this information or excluded patients with dementia. Most studies were done in acute care populations, including post-operative, general medical, and ICU patients with no studies in longer-term care facilities.

o Directness: Direct. The vast majority of studies provided direct information on delirium related outcomes including response, severity, and duration.

o Consistency: Consistent. When information was available from more than one study for a given intervention-control comparison and outcome measure, the findings were consistent. Many of the comparisons and outcomes only had information available from one study, however.

o Precision: Imprecise. Confidence intervals were wide and sample sizes were small for virtually all of the comparisons, yielding significant imprecision in terms of optimal information sizes.

o Dose-response relationship: No available information.

o Confounding factors (including likely direction of effect): The data may be confounded by variations in delirium assessment due to rater training. Individuals with hypoactive delirium may have been less likely to be identified than those with hyperactive delirium, and the response to antipsychotic medications or other treatments may differ. However, the direction of effect from these potential confounding factors is not clear.

o Publication bias: Not identified. There was insufficient information to make a determination due to the small number of trials in each treatment setting.

o Overall strength of research evidence: Low. For many of the outcomes, there was insufficient evidence to identify any effect related to antipsychotic medication treatment of delirium. Where evidence was sufficient, it had a low strength of evidence. These outcomes included response or duration of delirium to haloperidol post-operatively as compared with no treatment, response or severity of delirium to second-generation antipsychotics as compared with first-generation antipsychotics or another second-generation antipsychotic in general inpatient settings, severity of delirium as compared with placebo in palliative care settings, and adverse events either compared with placebo or second-generation antipsychotics.

Statement 9 – Antipsychotic Agents

APA recommends (1C) that antipsychotic agents not be used to prevent delirium or hasten its resolution.

This statement is supported by direct evidence from trials of antipsychotic medications in preventing or treating delirium. Studies of treatment are discussed in more detail in Appendix C, Statement 8, and generally show minimal or no effects of medication, including findings of well-designed, large-scale, multicenter trials like the Agents Intervening against Delirium in Intensive Care Unit (AID-ICU) trial (Andersen-Ranberg et al. 2022) and the Modifying the Impact of ICU-Associated Neurological Dysfunction–USA (MIND-USA) trial (Girard et al. 2018). Although haloperidol has been most often assessed, second-generation antipsychotics including risperidone, olanzapine, and quetiapine have also failed to show consistent treatment benefits for patients with delirium.

Use of Antipsychotic Medications for the Prevention of Delirium

The Pacific Northwest EPC reviewed the literature for studies that assessed the use of antipsychotics in preventing delirium, mostly in post-operative and ICU settings and commonly with haloperidol. Overall, the evidence was not sufficiently consistent and compelling that antipsychotics effectively prevent

incident delirium or reduce delirium duration, hospital/ICU length of stay, or mortality and other adverse events.

Overview of study characteristics

Fourteen studies (*N*=4,449 subjects, range 37 to 1,796) compared an antipsychotic medication with placebo or no treatment (Abdelgalel 2016; Abraham et al. 2021; Al-Qadheeb et al. 2016; Fukata et al. 2014; Hollinger et al. 2021; Kalisvaart et al. 2005; Khan et al. 2018; Y. Kim et al. 2019; Larsen et al. 2010; Mokhtari et al. 2020; Prakanrattana and Prapaitrakool 2007; Schrijver et al. 2018; Thanapluetiwong et al. 2021; van den Boogaard et al. 2018; Wang et al. 2012). The risk of bias was low in six trials, moderate in eight trials, and high in one trial. Studies were conducted in various countries with four in the United States, three in The Netherlands, two in Thailand, and one each in China, Egypt, Iran, Japan, South Korea, and Switzerland. In seven of the studies, participants were limited to older adults, and the mean age was ≥65 years in nine of the trials. Six trials had a predominance of men, and two trials had a predominance of women; in the remaining seven trials the proportion of men and women was similar. Only two trials reported the race or ethnicity of participants and, in both, almost all participants were White. In ten of the trials, the presence of delirium excluded a subject from participation, but five trials did not report whether participants had delirium at baseline. One trial included patients with cooccurring dementia whereas nine trials specifically excluded individuals with dementia or severe dementia.

Eight trials (N=1,979) assessed antipsychotics compared with placebo or no treatment to prevent delirium among post-operative patients (Fukata et al. 2014; Hollinger et al. 2021; Kalisvaart et al. 2005; Khan et al. 2018; Larsen et al. 2010; Mokhtari et al. 2020; Prakanrattana and Prapaitrakool 2007; Wang et al. 2012). Three trials enrolled adults undergoing cardiac, thoracic, or neurological surgeries (1 trial of each) with expected ICU stays (Khan et al. 2018; Mokhtari et al. 2020; Prakanrattana and Prapaitrakool 2007); one enrolled older adults undergoing noncardiac surgeries who were admitted to an ICU (Wang et al. 2012); three enrolled older adults undergoing elective orthopedic or abdominal surgeries (Fukata et al. 2014; Kalisvaart et al. 2005; Larsen et al. 2010); and one enrolled older adults undergoing a variety of elective and emergency surgeries (Hollinger et al. 2021). Haloperidol dosing and route of administration varied widely among the studies. It was given intravenously in three trials (a bolus of 0.5 mg, followed by intravenous (IV) infusion of 0.1 mg/hour for up to 7 days [Wang et al. 2012]; 2.5 mg once daily for 3 days [Fukata et al. 2014]; 5 mcg/kg pre-operatively [Hollinger et al. 2021]) and orally (0.5 mg 3 times a day) in two studies (Kalisvaart et al. 2005; Khan et al. 2018). The study of a single preoperative dose of haloperidol also had a ketamine arm and a combination (haloperidol/ketamine) arm (Hollinger et al. 2021). Aripiprazole was given as 15 mg orally daily for 7 days in a single study (Mokhtari et al. 2020). Two studies evaluated single doses of second-generation antipsychotics (olanzapine 5 mg pre-operatively and risperidone 1 mg oral disintegrating tablets on regaining consciousness) (Larsen et al. 2010; Prakanrattana and Prapaitrakool 2007, respectively).

Concerning patients in the ICU, five trials (*N*=1,673) assessed antipsychotics to prevent delirium (Abdelgalel 2016; Abraham et al. 2021; Al-Qadheeb et al. 2016; Y. Kim et al. 2019; van den Boogaard et al. 2018). One large trial (*N*=1,439) accounted for 86% of these patients, a study from the Netherlands with low risk of bias that compared 6 mg/day of IV haloperidol with placebo (van den Boogaard et al.

2018). There were two other placebo-controlled trials of IV haloperidol, with disparate doses (2.5 mg bolus if needed, then 12 mg/day to 48 mg/day [Abdelgalel 2016] or 4 mg/day [Al-Qadheeb et al. 2016]). Two small trials (*N*=106) administered 12.5 mg/day to 25 mg/day of oral quetiapine (Abraham et al. 2021; Y. Kim et al. 2019); one had high risk of bias (*N*=71; Abraham et al. 2021).

Two studies examined patients in a general inpatient unit (Schrijver et al. 2018; Thanapluetiwong et al. 2021). One trial with a low risk of bias, conducted in the Netherlands, assessed patients (N=245) ages 70 and older who were at risk for delirium and randomly assigned to haloperidol or placebo 1 mg orally twice daily for a maximum of 14 doses (Schrijver et al. 2018). In the other trial, conducted in Thailand, patients (N=122) ages 65 and older were randomly assigned to quetiapine 12.5 mg or placebo once daily at bedtime for a maximum 7-day duration (Thanapluetiwong et al. 2021).

Effect of antipsychotic medications on delirium incidence

In a pooled analysis of all eight trials, antipsychotics reduced the incidence of post-operative delirium significantly (*N*=1,796; 16% vs. 28%, RR 0.60, 95% CI 0.44–0.81, I²=57%), but there was significant heterogeneity in the findings and study designs (see Figure C-6) (Fukata et al. 2014; Hollinger et al. 2021; Khan et al. 2018; Kalisvaart et al. 2005; Larsen et al. 2010; Mohktari et al. 2020; Prakanrattana and Prapaitrakool 2007; Wang et al. 2012). A subgroup analysis by first- versus second-generation drugs was significant (*P*=0.008 for interaction), with the studies of haloperidol showing a smaller, but still significant, reduction in risk (17% vs. 22%, RR 0.77, 95% CI 0.62–0.97, I²=0%) compared with the studies of second-generation drugs (14% vs. 39%, RR 0.36, 95% CI 0.26–0.4, I²=0%). A subgroup analysis of the post-operative setting (ICU vs. non-ICU) was not significant. Delirium-free days were reported in two studies of patients admitted to the ICU post-operatively—one of aripiprazole and one of haloperidol, both given for seven days (Mokhtari et al. 2020; Wang et al. 2012). Neither study reported a difference between antipsychotic and placebo groups on this measure.

Figure C-6. Delirium incidence with antipsychotics in surgical patients post-operatively.

Antipsychotic Generation and Author, Year	Setting	Drug & Dose	Incidence Measure	Assessment Time (days)	Treatment n/N	Control n/N		Risk Ratio (95% Cl)
FGA								
Khan, 2018	ICU	Haloperidol 1.5 mg/day	CAM	NR	15/68	19/67	-++-	0.78 (0.43, 1.40
Wang, 2012	ICU	Haloperidol 2.4 mg/day	CAM-ICU	7 days	35/229	53/228	-	0.66 (0.45, 0.97
Fukata, 2014	Non-ICU	Haloperidol 2.5 mg/day	NEECHAM	7	20/59	25/60	+++	0.81 (0.51, 1.30
Hollinger, 2021	Non-ICU	Haloperidol 1 mcg/kg x 1 preop	DOS, NuDESC,	3 days	3/45	4/44	•	0.73 (0.17, 3.09
Kalisvaart, 2005	Non-ICU	Haloperidol 1.5 mg/day	CAM	14	32/212	36/218	-	0.91 (0.59, 1.42
Subgroup					105/613	137/617		0.77 (0.62, 0.97
(l ² = 0.0%, p = 0.862	2)							
SGA								
Mohktari, 2020	ICU	Aripiprazole 15 mg/day	CAM-ICU and RASS	7 days	4/20	11/20 -		0.36 (0.14, 0.95
Prakanrattan, 2007	ICU	Risperidone 1 mg x 1 dose	CAM-ICU	Discharge	7/63	20/63		0.35 (0.16, 0.77
Larsen 2010	Non-ICU	Olanzapine 5 mg x 1 dose	CAM, DRS, MMSE	8	28/196	82/204	-	0.36 (0.24, 0.52
Subgroup					39/279	113/287		0.36 (0.26, 0.49
(l ² = 0.0%, p = 0.998	3)							
P-value for interaction	on: p = 0.008							
Overall					144/892	250/904		0.60 (0.44, 0.81
(l ² = 57.1%, p = 0.02	22)						· ·	
						.12	5 1	8
						Favors tr	eatment	Favors control

CAM=Confusion Assessment Method; CAM-ICU=Confusion Assessment Method for the Intensive Care Unit; CI=confidence interval; DOS=Delirium Observation Screening; DRS=Delirium Rating Scale; FGA=first-generation antipsychotic; ICU=intensive care unit; MMSE=Mini-Mental State Evaluation; NEECHAM=Neelon-Champagne Confusion Scale; NR=not reported; NuDESC=Nursing Delirium Screening Scale; RASS=Richmond Agitation and Sedation Scale; SGA=secondgeneration antipsychotic.

Source. Fukata et al. 2014; Hollinger et al. 2021; Khan et al. 2018; Kalisvaart et al. 2005; Larsen et al. 2010; Mohktari et al. 2020; Prakanrattan and Prapaitrakool 2007; Wang et al. 2012.

In ICU patients, the five placebo-controlled trials did not show a statistically significant effect of antipsychotic treatment on delirium incidence (34% vs. 36%, RR 0.90, 95% CI 0.69–1.17, I^2 =38%) (Abdelgalel 2016; Abraham et al. 2021; Al-Qadheeb et al. 2016; Y. Kim et al. 2019; van den Boogaard et al. 2018). Almost all the evidence was about haloperidol (*N*=1,567). The two small trials of quetiapine (*N*=106; Abraham et al. 2021; Y. Kim et al. 2019) suggested a decrease in delirium incidence with quetiapine compared with placebo. However, statistical significance was borderline (46% vs. 71%, RR 0.66, 95% CI 0.45–0.98, I^2 =0%), and incidence in the control groups differed between trials (78% in a study with high risk of bias [Abraham et al. 2021] vs. 55% in a smaller trial with low risk of bias [Y. Kim et al. 2019]).

Among general inpatient populations, no significant difference in the incidence of delirium was noted either with haloperidol (OR 1.43, 95% CI 0.72–2.78 [Schrijver et al. 2018]) or with quetiapine (8.8% vs. 14% at day 7, P=0.381 [Thanapluetiwong et al. 2021]) as compared with placebo.

Effect of antipsychotic medications on delirium duration

Four trials (*N*=1,085) reported on duration of delirium in post-operative patients who developed it (Fukata et al. 2014; Kalisvaart et al. 2005; Khan et al. 2018; Larsen et al. 2010). Overall, the antipsychotics did not reduce the duration compared with controls (MD 0.35, 95% CI 1.49–0.78, I²=85%), although there is a high degree of heterogeneity in the analysis. One trial reported a large significant benefit with haloperidol (-6.4 days, 95% CI -9.5 to -3.3 days) when measured at 14 days after surgery (Kalisvaart et al. 2005), whereas the other three measured at 4, 7, and 8 days after surgery and found no effect(Fukata et al. 2014; Khan et al. 2018; Larsen et al. 2010).

Two small trials in ICU patients reported delirium duration and did show a difference with treatment. Delirium episodes for patients given haloperidol (Al-Qadheeb et al. 2016) or quetiapine (Y. Kim et al. 2019) were a day and a half shorter than for those given placebo (MD -1.51 days, 95% Cl -2.09 to -0.93, $I^2=0\%$).

Among general inpatients, neither haloperidol (median 4 days vs. 3 days, *P*=0.37 [Schrijver et al. 2018]) nor quetiapine (*N*=13; median 3 days vs. 4 days, *P*=0.557 [Thanapluetiwong et al. 2021]) was associated with a change in the duration of delirium relative to placebo.

Effect of antipsychotic medications on delirium severity

Two trials (*N*=925) reported on the severity of delirium in post-operative patients, but data were not combinable (Kalisvaart et al. 2005; Larsen et al. 2010). Olanzapine, given as a single pre-operative dose, resulted in a greater total severity score on the DRS-R-98 scale on the first day it was diagnosed (16.4 vs. 14.5, *P*=0.02) (Larsen et al. 2010). Haloperidol, given orally for up to 6 days post-operatively, resulted in a significantly lower maximum score on the same scale compared with placebo (14.4 vs. 18.4, *P*=0.001) (Kalisvaart et al. 2005). Although these differences were statistically significant, the absolute differences are small on a 0 to 45 scale.

Among general inpatients, one trial did not find a significant effect of haloperidol on severity of delirium as measured by the DRS-R-98 and Delirium Observation Screening Scale (DOSS) (Schrijver et al. 2018).

Effect of antipsychotic medications on length of stay

In post-operative patients, the length of stay in the ICU was not different between antipsychotic and placebo groups in four studies (MD -0.07 days, 95% CI -0.17–0.02, I²=0%) (Khan et al. 2018; Mokhtari et al. 2020; Prakanrattana and Prapaitrakool 2007; Wang et al. 2012). A subgroup analysis by antipsychotic generation (2 trials of haloperidol, 1 each of aripiprazole and risperidone) did not show a significant effect. The overall length of hospital stay was also not different between treatment and control groups in four studies, one of risperidone and three of haloperidol (MD -0.61 days, 95% CI -1.77–0.55, I²=50%) (Kalisvaart et al. 2005; Khan et al. 2018; Prakanrattana and Prapaitrakool 2007; Wang et al. 2012). A subgroup analysis by whether the patients were in the ICU or not was not significant.

For non-surgical patients in an ICU setting, three placebo-controlled trials (Abdelgalel 2016; Al-Qadheeb et al. 2016; van den Boogaard et al. 2018) did not show a difference in length of ICU stay with haloperidol (MD -0.08, 95% CI -0.66–0.50, I²=46.5%). Two trials of quetiapine (1 with high risk of bias) were associated with a statistically significant decrease in the length of ICU stay with treatment, and the magnitude of the difference was large (RR -4.2 days, 95% CI -8.3–0.14, I²=19%) (Abraham et al. 2021; Y. Kim et al. 2019). Antipsychotic treatment did not have a statistically significant effect on hospital stay in the four trials reporting it (MD -1.6 days, 95% CI -4.0–0.92, I²=75%) (Abdelgalel 2016; Abraham et al. 2021; Y. Kim et al. 2019; van den Boogaard et al. 2018). The pooled treatment effect showed substantial heterogeneity, which did not improve for haloperidol when it was analyzed separately from quetiapine (I²=88% for the 2 haloperidol trials pooled). However, the two quetiapine trials together showed a large and statistically significant decrease in hospital length of stay with treatment, without statistical heterogeneity (MD -5.6 days, 95% CI -10.63 to -0.59, I²=0%).

Among general inpatients, the overall length of hospital stay did not differ between treatment and placebo groups for either haloperidol (Schrijver et al. 2018) or quetiapine (Thanapluetiwong et al. 2021).

Effect of antipsychotic medications on mortality and adverse events

Mortality was not reported in six of the seven post-operative trials. A moderate risk of bias study of haloperidol in older patients who had undergone noncardiac surgeries, but were admitted to an ICU, reported that 28-day mortality was slightly greater in the placebo group but not statistically significant (0.9% vs. 2.6%, RR 0.33, 95% CI 0.07–1.6) (Wang et al. 2012). Although heterogeneously reported, no study found differences between groups on adverse events reported.

Mortality was not affected by antipsychotic treatment in the five ICU trials; 17% of treated patients and 17% of untreated patients died (RR 0.97, 95% CI 0.78–1.20, I^2 =0%). The largest study reported mortality at 28 days (van den Boogaard et al. 2018), whereas the shorter trials assessed earlier time points (Abraham et al. 2021; Al-Qadheeb et al. 2016; Y. Kim et al. 2019) or did not report assessment time (Abdelgalel 2016). A subgroup analysis on the basis of specific antipsychotic (haloperidol or quetiapine) did not show a significant effect (*P*=0.403 for interaction). The large Dutch trial (*N*=1,439; van den Boogaard et al. 2018) reported no significant differences between haloperidol and placebo in episodes of QTc prolongation or in six specific extrapyramidal symptoms, although they did not compare an overall measure of adverse events across groups. They reported that only three of their 1,439 patients had a serious adverse event. A smaller placebo-controlled trial of haloperidol found no significant

differences in serious adverse events or withdrawals due to adverse events (Al-Qadheeb et al. 2016), and one of quetiapine (Y. Kim et al. 2019) observed no adverse events in either group.

Among general inpatient populations, no differences in mortality were noted between treatment and placebo groups for either haloperidol (Schrijver et al. 2018) or quetiapine (Thanapluetiwong et al. 2021). In terms of adverse events, rates were comparable for haloperidol and placebo (14% vs. 16%, *P*=0.57) (Schrijver et al. 2018). In the trial of quetiapine as compared with placebo, no adverse events were reported (Thanapluetiwong et al. 2021).

Information on intravenous haloperidol, which is commonly used to treat agitation in critical care settings, suggests that the risks of catatonia, extrapyramidal side effects, QTc prolongation, and torsade are low (Beach et al. 2020). However, this systematic review was not limited to patients with delirium.

Effect of antipsychotic medications on other outcomes

A study of haloperidol in thoracic surgery patients measured cognitive changes using the Repeatable Battery for the Assessment of Neuropsychological Status (Khan et al. 2018). At the first clinic follow-up, only 18 patients of 135 randomized completed the assessment. Patients in the placebo group improved, whereas those in the haloperidol group did not (percentile change scores haloperidol: median 13, IQR 0-24; placebo: median -2, IQR -18–0; *P*=0.05).

Among ICU patients, a study with 68 participants found that haloperidol reduced the percent of hours spent agitated (0% vs. 2%, P=0.008), as measured by a SAS of 5 or more (where a SAS score of 1 indicates coma) (Al-Qadheeb et al. 2016). This study also used sedative treatment for all patients, with titration to a SAS score of 3. Another trial (N=35; Y. Kim et al. 2019) found no effect of quetiapine on hours spent agitated (6% vs. 5%, P=0.54) using a RASS score greater than +2 (where -5 is unarousable).

Four of the trials in ICU patients reported rescue medication use, but only one suggested an effect of antipsychotic treatment on its use. The largest study found no difference in number of days and dose of additional open-label haloperidol between patients treated with 6 mg/day scheduled haloperidol and those given placebo (van den Boogaard et al. 2018). Two other trials did not show differences in the use of dexmedetomidine, other sedatives, or non-study antipsychotics between treatment groups (Al-Qadheeb et al. 2016; Y. Kim et al. 2019). The final trial showed lower doses of midazolam and propofol in patients treated with haloperidol than in those given placebo (*P*<0.05) but no statistically significant differences between treatment arms in the number of patients given these drugs (Abdelgalel 2016).

In a general inpatient population, there was no effect of haloperidol as compared with placebo on hospital readmission within 6 months (Schrijver et al. 2018). Furthermore, the large haloperidol trial from the Netherlands (Rood et al. 2019; van den Boogaard et al. 2018) did not show statistically significant differences in ICU readmission.

Quality of life was only assessed in one study and did not show statistically significant differences between patients treated with haloperidol and those given placebo as measured by the SF-36 at 6 months (Rood et al. 2019; van den Boogaard et al. 2018).

Use of Antipsychotic Medications as a Risk Factor for Delirium

Although delirium risk factors were not part of the scope for the systematic review for this guideline, a targeted search of the recent literature found some studies that assessed pharmacological risk factors for delirium, including prior or in-hospital treatment with antipsychotics. A systematic review and metaanalysis that included post-operative, mixed medical/surgical, and ICU populations found haloperidol did not significantly increase the risk of delirium (OR 0.96, 95% CI 0.72–1.28) (Reisinger et al. 2023). Conversely, several other observational studies of first- and second-generation antipsychotic medications noted an association between use of an antipsychotic and delirium risk in post-operative (Kang et al. 2019), emergency (Kennedy et al. 2022), and medical/surgical patients (Aloisi et al. 2019) as well as patients with and without dementia (Aloisi et al. 2019). Thus, it is not clear whether antipsychotic medications may contribute to delirium or whether individuals who receive an antipsychotic medication for behavioral issues have previously unrecognized delirium.

Grading of the Overall Supporting Body of Research Evidence for Use of Antipsychotic Agents in the Prevention or Treatment of Delirium

o Magnitude of effect: Minimal to Low. The magnitude of effect differed with the setting and the outcome. In post-operative patients, there was a benefit of antipsychotic medication in reducing the incidence of delirium but little or no effect on the duration or severity of delirium. In contrast, in ICU patients, there was a small effect on the duration of delirium but no difference in delirium incidence. In general inpatients, there was no effect of antipsychotic on delirium incidence, duration, or severity.

o Risk of bias: Moderate. For individual studies, one had a high risk of bias, eight had a moderate risk of bias, and six had a low risk of bias. For studies with a moderate or high risk of bias, they sometimes used an analytic method other than an intent-to-treat analysis or comparable approach. In addition, some studies did not report on the baseline characteristics of the treatment groups or assess for their comparability.

o Applicability: Only five studies were conducted in the United States or Canada with the remaining studies conducted in a wide range of countries. The trials included a mix of ages and included men as well as women; however, most studies did not include information on race or ethnicity. Individuals with dementia were excluded in about half of studies, but the presence of dementia was not reported in many studies. Most studies were done in acute care populations, including post-operative, general medical, and ICU patients with no studies in longer-term care facilities.

o Directness: Direct. The vast majority of studies provided direct information on delirium related outcomes including incidence, severity, and duration.

o Consistency: Inconsistent. A number of the comparisons and outcomes only had information available from one study. However, when information was available from more than one study for a given intervention-control comparison and outcome measure, the findings were inconsistent in different settings and, in some instances, inconsistent within a specific setting of care.

o Precision: Variable. For post-operative patients, delirium incidence, severity, and duration had precise measures; however, for all other settings and outcomes, the measures were imprecise.

o Dose-response relationship: No available information.

o Confounding factors (including likely direction of effect): There was significant variation in the protocols used in these studies, which likely contributed to the heterogeneity of results. The data may be confounded by variations in delirium assessment due to rater training. Individuals with hypoactive delirium may have been less likely to be identified than those with hyperactive delirium and the response to antipsychotic medications or other treatments may differ. However, the direction of effect from these potential confounding factors is not clear.

o Publication bias: Not identified. There was insufficient information to make a determination due to the small number of trials in each treatment setting.

o Overall strength of research evidence: Low to moderate. The strength of research evidence was moderate for the incidence of delirium in ICU settings and in post-operative patients; however, for other settings and outcomes, the strength of research evidence was low.

Statement 10 – Benzodiazepines

APA *recommends* (1C) that benzodiazepines not be used in patients with delirium or who are at risk for delirium, including those with pre-existing cognitive impairment, unless there is a specific indication for their use.

This statement is supported by direct evidence from trials of benzodiazepines in preventing or treating delirium as well as indirect evidence that benzodiazepines may serve as a risk factor for the development of delirium. Benzodiazepines have also been used as a comparison condition in studies of other sedating medications, such as dexmedetomidine. These studies are described further in Appendix C, Statements 11 and 12.

Overview of study characteristics

In the studies that examined use of benzodiazepines to prevent delirium, eight RCTs (Aizawa et al. 2002; Hassan et al. 2021; He et al. 2018; Kurhekar et al. 2018; Silva-Jr et al. 2019; Spence et al. 2020; Sultan 2010; Yu et al. 2017) were included from a systematic review (Wang et al. 2023). Studies did not require a DSM or clinical diagnosis of delirium for inclusion, and sample sizes ranged from 40 to 800 participants. All but one of the studies included individuals over age 60, most of the studies involved non-cardiac surgery, and five compared use of a benzodiazepine with dexmedetomidine. There was a predominance of men in three trials and between 40% and 60% women in four trials. One trial did not report information on sex, and none of the trials reported information on race or ethnicity. Two trials excluded patients with delirium at baseline, and one trial excluded patients with dementia; the other trials did not report whether participants had delirium or dementia at baseline.

Three studies were identified that examined use of benzodiazepines to treat delirium (Breitbart et al. 1996; Hui et al. 2017; Yapici et al. 2011). In one study with a moderate risk of bias that was conducted in Turkey, participants had undergone elective coronary artery bypass graft surgery, valve replacement, or both and had failed at least one attempt at extubation (Yapici et al. 2011). Interventions included midazolam (n=34) and dexmedetomidine (n=38). The mean age of the sample was 60 years, and 63%

were female. Information on race, ethnicity, or dementia was not reported. In a moderate risk of bias trial conducted in the United States (*N*=90; analyzed *N*=58), participants who experienced an episode of agitation were given a single dose of lorazepam or placebo, in addition to ongoing treatment with haloperidol (Hui et al. 2017). The mean age of participants was 65 years, 47% were female, and 76% were White. In another small study (*N*=30) in the United States that was limited to inpatients with AIDS, the effects of lorazepam were compared with haloperidol and chlorpromazine (Breitbart et al. 1996). This study had a moderate risk of bias. The mean age of the participants was 39, 23% were female, 57% were Black, and participants with a diagnosis of dementia were excluded.

Use of Benzodiazepines for the Prevention of Delirium

In its systematic literature review, the Pacific Northwest EPC identified a cluster crossover trial that examined the use of benzodiazepines as a pharmacological approach to the prevention of delirium (Spence et al. 2020). This large Canadian trial (*N*=800) compared restricted intra-operative benzodiazepine use with liberal intra-operative use in post-operative cardiac surgery patients. Midazolam was the most often administered benzodiazepine. Investigators found no difference in incident delirium (18% vs. 14%, RR 1.24, 95% CI 0.90–1.71), length of ICU stay (median 24 days vs. 24 days, *P*=0.148), hospital stay (median 7 days vs. 7 days, *P*=0.393), or in-hospital mortality (1.2% vs. 1%, *P*=0.801).

A subsequent systematic review assessed effects of benzodiazepines on post-operative delirium and intra-operative awareness (Wang et al. 2023). For the RCTs taken together, there was no significant association of perioperative benzodiazepine use with post-operative delirium (*N*=1,352; RR 1.43, 95% CI 0.90–2.27, I^2 =72%, *P*=0.13; very low quality of evidence). In subgroup analysis, the studies that compared benzodiazepines with dexmedetomidine showed worse outcomes with benzodiazepines (RR 1.83, 95% CI 1.24–2.72, I^2 =13%, *P*=0.002), whereas the other studies showed possible benefits of benzodiazepines in reducing post-operative delirium (*P*=0.02). Among six observational studies that included sufficient data for meta-analysis, perioperative benzodiazepine use appeared to be associated with a greater likelihood of development of delirium (*N*=3,269; OR 2.93, 95% CI 1.96–4.36, I^2 =34%, *P*<0.00001; very low quality of evidence).

Use of Benzodiazepines for the Treatment of Delirium

In post-operative patients who had undergone elective coronary artery bypass graft surgery, valve replacement or both, dexmedetomidine (0.3–0.7 μ g/kg/hour IV) was compared with midazolam (0.05–0.2 mg/kg/hour IV) in effects on delirium and assistance with weaning from mechanical ventilation (Yapici et al. 2011). When assessed at 60 hours after surgery, patients who received dexmedetomidine had significantly lower rates of delirium than patients who received midazolam (2.7% vs. 21%, *P*<0.05).

The Pacific Northwest EPC identified one palliative care trial that treated patients for delirium using benzodiazepines (Hui et al. 2017). Delirium severity, measured by the change in MDAS score from baseline to 8 hours, in agitated patients did not show a statistically significant difference between patients given a single dose of lorazepam or placebo (MD 2.1, 95% Cl -1.0–5.2). Mean duration of stay in the palliative care unit was 6 days in each group (*P*=0.35). Overall survival did not differ significantly between lorazepam and placebo (mean 68 hours vs. 73 hours, HR 1.2, 95% Cl 0.7–2.2). Changes in

specific extrapyramidal symptoms and most adverse events also showed no difference between lorazepam and placebo, although there was no aggregate measure of harms. Drowsiness was greater with lorazepam. Agitation 8 hours after treatment, measured by a RASS score of 1 to 4, occurred in fewer patients treated with lorazepam than placebo (3.8% vs. 31%, *P*=0.001), and they required less rescue treatment with haloperidol (median 2.0 mg vs. 4.0 mg, *P*=0.009).

In another trial that assessed the effects of 6 days of antipsychotic medication or benzodiazepine in inpatients with AIDS, all six patients who received lorazepam showed no improvement (mean DRS score 18.33 [SD 2.58] at baseline to 17.33 [SD 4.18] on day 2; *P*<0.63) and experienced treatment limiting adverse effects (Breitbart et al. 1996). In contrast, treatment with antipsychotic medication reduced symptoms of delirium from baseline to day 2 (mean 20.45 [SD 3.45] at baseline to 12.45 [SD 5.87], *P*<0.001 for haloperidol; mean 20.62 [SD 3.88] at baseline to 12.08 [SD 6.5], *P*<0.001 for chlorpromazine).

Use of Benzodiazepines as a Risk Factor for Delirium

Although delirium risk factors were not part of the scope for the systematic review for this guideline, a targeted search of the recent literature found multiple observational and database studies that assessed whether use of benzodiazepines is a risk factor for delirium. Interpretation of such studies is challenging because a benzodiazepine may be prescribed to a patient who is exhibiting behavioral changes due to unrecognized delirium. In addition, benzodiazepines, like alcohol, can have stimulant-like as well as sedative-like effects (Holdstock and de Wit 1998) making it important to consider dose-related and patient-specific variability in responses.

Findings on the effects of benzodiazepines on the incidence of delirium are mixed. A systematic review and meta-analysis of studies that assessed medication-related incident delirium among heterogenous populations (e.g., ICU, surgical, mixed populations) found that the use of benzodiazepines had no effect on the development of delirium in four prospective cohort studies (N=1,345; adjusted OR 0.94, 95% CI 0.63–1.41) (Reisinger et al. 2023). Two studies of surgical patients also showed no association with postoperative delirium. In one large study (N=1,266; Wang et al. 2021), midazolam given immediately before surgery did not increase risk of delirium post-operatively (OR 0.91, 95% CI 0.65–1.29, P=0.67). Another study of non-cardiac surgery patients in Thailand (N=249; lamaroon et al. 2020) found no association of pre-operative benzodiazepine use with post-operative delirium in a multivariate predictor model (adjusted RR 1.41, 95% CI 0.66–3.01, P=0.37). Data from the 2014 to 2017 National Hospital Ambulatory Medical Care Survey found no differences in the use of sedatives, which were primarily benzodiazepines, in patients with and without delirium who were ages 65 and older and visited the emergency department (Kennedy et al. 2022).

In contrast, many other studies do show an association between benzodiazepine use and delirium. For example, one study of ICU patients (*N*=520), which was included in the Reisinger et al. systematic review (2023), showed a significant association between benzodiazepines and incident delirium (Burry et al. 2017). In addition, there was a dose–response relationship with higher benzodiazepine doses associated with increased delirium risk, leading the authors to conclude that benzodiazepines do present a strong risk of increased delirium in ICU settings (Burry et al. 2017). Furthermore, a predictive

algorithm among ICU patients (H. Zhang et al. 2021) found use of benzodiazepines significantly and independently predicted development of delirium (N=304; OR 4.503, RR 5.503, P=0.013). Study authors also observed a substantially higher rate of benzodiazepine use in patients who were assessed as having delirium versus those who did not (65.2% vs 23.7%) (H. Zhang et al. 2021). Similarly, perioperative use of benzodiazepines in 250 ICU patients more than doubled the risk of delirium (adjusted OR 2.26, P=0.029) and was significantly more prevalent in patients with delirium versus without (44.3% vs 19.1%, P<0.001) (Chaiwat et al. 2019). ICU patients treated with midazolam specifically (N=9,348) also had more than double the odds of developing delirium (OR 2.54, 95% CI 2.31–2.79, P<0.001) compared with patients not treated with midazolam (Shi et al. 2022). Finally, a multicenter study of 69 ICUs (Pun et al. 2021) reported a 59% higher risk of delirium with benzodiazepine infusion in patients with COVID-19 (OR 1.59, 95% CI 1.33–1.91, P<0.0001). In surgical populations (N=32,734; Vacas et al. 2022), a predictive model found that post-operative benzodiazepine use increased the risk of incident delirium more than threefold (OR 3.52, 95% CI 3.06–4.06, P<0.001). Another study on adults ages 70 and older undergoing major elective surgery (N=560; Duprey et al. 2022) also found post-operative use of benzodiazepines was associated with an increased risk of delirium (adjusted HR 3.23, 95% Cl 2.10–4.99). In emergency settings, one study found that older adults (75 years and older) who received benzodiazepines prior to being hospitalized (N=472; Silva et al. 2021) had a clinically but not statistically significant increase in the risk of incident delirium compared with patients who did not receive benzodiazepines (37.3% vs 6.5%, adjusted OR 3.85, 95% CI 0.77–15.19). In addition, another study of older adults (65 years and older) treated with benzodiazepines in the emergency department (N=7,927; Lee et al. 2022) found benzodiazepine use increased the odds of delirium by 1.37 (95% Cl 1.13–1.65).

Grading of the Overall Supporting Body of Research Evidence for Use of Benzodiazepines in the Prevention or Treatment of Delirium

o Magnitude of effect: Minimal to low. Although findings are mixed, most analyses suggest that benzodiazepines are associated either with no benefit or with slightly worse outcomes related to delirium.

o Risk of bias: Moderate to high. Factors that tended to contribute to the moderate to high risk of bias included inadequate or poorly described procedures for randomization and masking as well as potential for selective reporting.

o Applicability: Studies were predominantly conducted in older patients. Many studies did not include sufficient detail to determine whether the study demographic characteristics were representative of usual clinical populations. Most studies were done in acute care populations, particularly post-operative patients, which limits the generalizability of results.

o Directness: Direct. The studies provided direct information on delirium related outcomes including incidence and severity.

o Consistency: Inconsistent. A number of the comparisons and outcomes only had information available from one study. However, when information was available from more than one study, the findings were inconsistent.

o Precision: Imprecise. Confidence intervals were wide, and sample sizes were small for virtually all of the comparisons, yielding significant imprecision in terms of optimal information sizes.

o Dose-response relationship: No available information.

o Confounding factors (including likely direction of effect): There was significant variation in the protocols used in these studies, which likely contributed to the heterogeneity of results. The data may be confounded by variations in delirium assessment due to rater training. Individuals with hypoactive delirium may have been less likely to be identified than those with hyperactive delirium and the response to benzodiazepines or other treatments may differ. However, the direction of effect from these potential confounding factors is not clear.

o Publication bias: Not identified. There was no evidence of publication bias in studies that examined the incidence of delirium. There was insufficient information to make a determination due to the small number of trials in each treatment setting for other outcome measures.

o Overall strength of research evidence: Low. The strength of research evidence was low due to the small number of studies, the lack of consistency in the findings, and the significant risk of bias in many of the studies.

Statement 11 – Dexmedetomidine to Prevent Delirium

APA *suggests* **(2B)** that dexmedetomidine be used rather than other sedating agents to prevent delirium in patients who are undergoing major surgery or receiving mechanical ventilation in a critical care setting.

The Pacific Northwest EPC conducted a systematic literature review of pharmacological preventions for delirium that involved the use of dexmedetomidine. Evidence consistently pointed to a significant reduction in incident delirium with dexmedetomidine in both post-operative and ICU populations.

Overview of study characteristics

In post-operative patients, 42 trials (*N*=9,184) assessed dexmedetomidine to prevent delirium in the post-operative period (Chang et al. 2018; Chen et al. 2021; Djaiani et al. 2016; Hassan et al. 2021; He et al. 2018; Hu et al. 2020; Huyan et al. 2019; J.A. Kim et al. 2019; Lee et al. 2018, 2019; X. Li et al. 2017; Li et al. 2020; Likhvantsev et al. 2021; X. Liu et al. 2016; Y. Liu et al. 2016; Maldonado et al. 2009; Massoumi et al. 2019; Mei et al. 2018; B. Mei et al. 2020; Momeni et al. 2021; Park et al. 2014; Shehabi et al. 2009; Sheikh et al. 2018; Shi et al. 2019¹, 2020; Shokri and Ali 2020; Shu et al. 2017; Soh et al. 2020; Su et al. 2016; Sun et al. 2019²; Susheela et al. 2017; Tang et al. 2018; C. Tang et al. 2020; Turan et al. 2020; van Norden et al. 2021; Wu et al. 2016; Xin et al. 2021; Xuan et al. 2018; Yang et al. 2015; Yu et al. 2017; Zhang et al. 2020; Zhao et al. 2020). In four trials, dexmedetomidine was given prior to surgery (He et al. 2018; Huyan et al. 2019; J.A. Kim et al. 2019; Shu et al. 2017) and was continued during surgery

¹ Shi et al. 2019 was identified as part of the systematic review by the Pacific Northwest Evidence-Based Practice Center but was subsequently retracted.

² Sun et al. 2019 was identified as part of the systematic review by the Pacific Northwest Evidence-Based Practice Center but was subsequently retracted.

in three of those trials (Huyan et al. 2019; J.A. Kim et al. 2019; Shu et al. 2017). In two trials, dexmedetomidine was given prior to surgery and continued both during the surgery and after the surgery (Hassan et al. 2021; Zhao et al. 2020). In eight trials, dexmedetomidine was begun during surgery and continued during the post-operative period (Lee et al. 2019; X. Li et al. 2017; Likhvantsev et al. 2021; Soh et al. 2020; C. Tang et al. 2020; Turan et al. 2020; van Norden et al. 2021; Yang et al. 2015). In the remaining trials, dexmedetomidine was given either during surgery (Chen et al. 2021; Djaiani et al. 2016; Hu et al. 2020; Lee et al. 2018; Li et al. 2020; Y. Liu et al. 2016; Mei et al. 2018; B. Mei et al. 2020; Sheikh et al. 2018; Shi et al. 2019, 2020; Tang et al. 2018; Xin et al. 2021; Yu et al. 2017; Zhang et al. 2020; Sheikh et al. 2018; Shi et al. 2019, 2020; Tang et al. 2018; Xin et al. 2021; Yu et al. 2016; Maldonado et al. 2009; Massoumi et al. 2019; Momeni et al. 2021; Park et al. 2014; Shehabi et al. 2009; Shokri and Ali 2020; Su et al. 2016; Sun et al. 2019; Susheela et al. 2017; Wu et al. 2016; Xuan et al. 2018).

28 trials compared dexmedetomidine with normal saline or usual care (Chen et al. 2021; He et al. 2018; Hu et al. 2020; Huyan et al. 2019; J.A. Kim et al. 2019; Lee et al. 2018, 2019; X. Li et al. 2017; Li et al. 2020; Likhvantsev et al. 2021; Y. Liu et al. 2016; Massoumi et al. 2019; Momeni et al. 2021; Shi et al. 2019, 2020; Shu et al. 2017; Soh et al. 2020; Su et al. 2016; Sun et al. 2019; Tang et al. 2018; C. Tang et al. 2020; Turan et al. 2020; van Norden et al. 2021; Wu et al. 2016; Xin et al. 2021; Xuan et al. 2018; Yang et al. 2015; Zhang et al. 2020; Zhao et al. 2020), and 16 trials made head-to-head comparisons between dexmedetomidine and another medication such as propofol or midazolam (Chang et al. 2018; Djaiani et al. 2016; Hassan et al. 2021; He et al. 2018; Lee et al. 2018; X. Liu et al. 2016; Maldonado et al. 2009; Mei et al. 2018; B. Mei et al. 2020; Park et al. 2014; Shehabi et al. 2009; Sheikh et al. 2018; Shokri and Ali 2020; Susheela et al. 2017; C. Tang et al. 2020; Yu et al. 2017). Two trials included both a placebo and an active intervention arm that was compared with dexmedetomidine (He et al. 2018; Lee et al. 2018). Cardiac surgery was performed in 17 trials (Djaiani et al. 2016; Hassan et al. 2021; X. Li et al. 2017; Likhvantsev et al. 2021; X. Liu et al. 2016; Maldonado et al. 2009; Massoumi et al. 2019; Momeni et al. 2021; Park et al. 2014; Shehabi et al. 2009; Sheikh et al. 2018; Shi et al. 2019; Shokri and Ali 2020; Shu et al. 2017; Susheela et al. 2017; Turan et al. 2020; van Norden et al. 2021), orthopedic surgery in five trials (Y. Liu et al. 2016; Mei et al. 2018; B. Mei et al. 2020; Xuan et al. 2018; Zhang et al. 2020), and the remaining trials enrolled participants having noncardiac, nonorthopedic major surgery.

Of the 27 studies in post-operative patients that compared dexmedetomidine with normal saline or usual care, sample sizes ranged from 60 to 798 with 6,642 participants overall. There was a low risk of bias in 13 studies and a moderate risk of bias in 14 studies. Most of these studies were conducted in China (16), with four in South Korea, two in the United States, and one each in Belgium, Germany, Iran, Russia, and Taiwan. In 16 of the studies, the sample was limited to older adults whereas in the other 11 studies the sample included adults of all ages. Mean age was reported in 25 studies and was 65 years or greater in 16 of the studies. There was a predominance of men in 10 trials, a predominance of women in three trials, and between 40% and 60% women in 13 trials. One trial did not report information on the sex of participants. In the single trial that reported race or ethnicity, 92% of participants were White. Five trials excluded patients with delirium at baseline, but the other 22 trials did not report whether participants had delirium at baseline. Thirteen trials excluded patients with dementia; the remaining 14 trials did not report on dementia status.

Of the 18 studies in post-operative patients that compared dexmedetomidine with another active intervention, sample sizes ranged from 12 to 432 with 3,262 participants overall. There was a low risk of bias in three studies whereas 14 studies had a moderate risk of bias and one had a high risk of bias. Studies were conducted in various countries with six done in China, three in the United States, two in Egypt, two in South Korea, and one each in Australia, Canada, India, Pakistan, and Taiwan. In 11 of the studies, the sample was limited to older adults whereas in the other seven studies the sample included adults of all ages. Mean age was reported in 17 studies and was 65 years or greater in 10 of the studies. There was a predominance of men in five trials and between 40% and 60% women in 11 trials. Two trials did not report information on the sex of participants. None of the trials reported information on race or ethnicity. Four trials excluded patients with delirium at baseline, but the other 14 trials did not report whether participants had delirium at baseline. Nine trials excluded patients with dementia; the remaining nine trials did not report on dementia status.

In ICU patients, the Pacific Northwest EPC identified nine trials (*N*=1,559) of dexmedetomidine to prevent delirium (Abdelgalel 2016; Jakob et al. 2012; Li et al. 2019; MacLaren et al. 2015; Ruokonen et al. 2009; Shu et al. 2019; Skrobik et al. 2018; Winings et al. 2021). One publication (Jakob et al. 2012) included two distinct trials—the PRODEX trial comparing dexmedetomidine with the anesthetic propofol, and MIDEX trial comparing dexmedetomidine patients (*N*=998, 70%). One trial included both haloperidol as an active comparator and a third group given placebo (Abdelgalel 2016). Another compared treatment only with placebo (Skrobik et al. 2018), and the other three used midazolam or propofol as comparators (Li et al. 2019; MacLaren et al. 2015; Shu et al. 2019). A tenth study, with a high risk of bias, compared midazolam and propofol in 120 patients on mechanical ventilation (Chen 2020). In most studies, all patients were on mechanical ventilation, with two trials that included a mix of patients who were and were not mechanically ventilated (Li et al. 2019; Skrobik et al. 2018). Studies with placebo arms did allow use of nonstudy sedative medications.

Of the nine studies of dexmedetomidine in ICU patients, there was a low risk of bias in three studies and a moderate risk of bias in six. Studies were conducted in various countries with two done in China, two in the United States, two in Europe (one of which included Russia), and one each in Egypt, Canada, and Finland. In one of the studies, the sample was limited to older adults whereas in seven studies the sample included adults of all ages. Mean age was reported in seven studies and was 65 years or greater in three of the studies. There was a predominance of men in seven trials and between 40% and 60% women in two trials. None of the trials reported information on race or ethnicity. One trial excluded patients with delirium at baseline, and three trials excluded patients with dementia; the other trials did not report whether participants had delirium or dementia at baseline.

Effect of dexmedetomidine on delirium incidence

In post-operative patients, there was a significant reduction in incident delirium with dexmedetomidine that was maintained even when looking only at noncardiac surgery populations and at dexmedetomidine administration either during or after surgery. Head-to-head comparisons with specific medications (e.g., haloperidol, propofol, midazolam, clonidine, opioids) generally also revealed a lower incidence with dexmedetomidine in post-operative and ICU populations.

Regarding incidence of delirium in post-operative patients, the pooled analysis of dexmedetomidine versus saline or usual care favored dexmedetomidine in the prevention of delirium (28 trials, *N*=6,449; 12.5% vs. 19.1%, RR 0.63, 95% CI 0.50–0.78, I^2 =64.8%) (see Figure C-7)³. The effect of dexmedetomidine was also significant when trials limited enrollment to noncardiac patients (19 trials, *N*=4,372; 11.2% vs. 20.6%, RR 0.56, 95% CI 0.46–0.69, I^2 =42.3%) and when administration of dexmedetomidine was limited to either intra-operative or post-operative administration only (13 trials, *N*=2,269, 13.8% vs. 23.7%, RR 0.57, 95% CI 0.42–0.76, I^2 =57.2%; 7 trials, N=2,271, 12.0% vs. 20.8%, RR 0.68, 95% CI 0.47–0.99, I^2 =49.2%, respectively). One trial (*N*=346), not included in the pooled analysis due to lack of reporting overall incidence data, reported a lower incidence of delirium with dexmedetomidine on post-operative days 1 through 5 (*P*<0.05 each day) versus normal saline and no incident delirium on post-operative days 6 and 7 (Huyan et al. 2019).

Two trials (Abdelgalel 2016; Skrobik et al. 2018) compared dexmedetomidine with placebo in ICU patients (1 also including a comparison with haloperidol as discussed in the Overview of Study Characteristics section [Abdelgalel 2016]). Delirium incidence was significantly lower with treatment, and the magnitude of effect was large (16% vs. 45%, RR 0.38, 95% CI 0.22–0.65, I²=0%).

³ Pooled analysis conducted as part of the Pacific Northwest Evidence-Based Practice Center's systematic review included two studies (Shi et al. 2019; Sun et al. 2019) that were subsequently retracted.

Nuthor, Year	Setting	Type of Surgery				
Chen, 2021		Type of Surgery	Dexmedetomidine Dose	n/N	n/N	(95% CI)
	Intraop only	Noncardiac	0.5 µg/kg/h	7/78	14/78	0.50 (0.21, 1.1)
le, 2018	Intraop only	Noncardiac	Bolus + 0.4 µg/kg/h	6/30	15/30	0.40 (0.18, 0.8
łu, 2020	Intraop only	Noncardiac	Bolus + 0.1 µg/kg/h	15/90	32/87	0.45 (0.26, 0.7
.A.Kim, 2019	Intraop only	Noncardiac	0.5 µg/kg/h	15/60	15/60 -	1.00 (0.54, 1.8
.ee, 2018	Intraop only	Noncardiac	Bolus + 0.2 to 0.7 µg/kg/h	9/95	27/109	0.38 (0.19, 0.7
.ee, 2019	Intraop + postop	Noncardiac	1 µg/kg/h	9/100	6/101	1.52 (0.56, 4.10
(.Li, 2017	Intraop + postop	Cardiac	0.1 to 0.6 µg/kg/h	7/142	11/143	0.64 (0.26, 1.6
i, 2020 ⁶	Intraop only	Noncardiac	Bolus + 0.5 µg/kg/h	17/309	32/310 -	0.53 (0.30, 0.9
ikhvantsev, 2021	Intraop + postop	Cardiac	0.4 to 1.4 µg/kg/h	6/84	16/85	0.38 (0.16, 0.9
Y. Liu, 2016	Intraop only	Noncardiac	0.2 to 0.4 µg/kg/h	15/99	43/98	0.35 (0.21, 0.5
Aassoumi, 2019	Postop only	Cardiac	0.2 to 0.7 µg/kg/h	4/44	9/44	0.44 (0.15, 1.34
Momeni, 2021	Postop only	Cardiac	0.4 µg/kg/h	31/177	33/172	0.91 (0.59, 1.4)
shi, 2019	Intraop only	Cardiac	0.4 to 0.6 µg/kg/h	33/84	21/80	1.50 (0.95, 2.34
Shi, 2020	Intraop only	Noncardiac	0.5 µg/kg/h	4/53	6/53	0.67 (0.20, 2.2
Shu, 2017	Intraop only	Cardiac	Bolus + 0.5 µg/kg/h	4/30	7/30	0.57 (0.19, 1.7
Soh, 2020	Intraop + postop	Cardiac	0.4 µg/kg/h	2/54	7/54	0.29 (0.06, 1.3
Su, 2016	Postop only	Noncardiac	0.1 µg/kg/h	32/350	79/350	0.41 (0.28, 0.5
Sun, 2019	Postop only	Noncardiac	0.1 µg/kg/h	33/281	38/276	0.85 (0.55, 1.3)
ang, 2018	Intraop only	Noncardiac	Bolus + 0.3 µg/kg/h	8/54	12/52	0.64 (0.29, 1.44
C.Tang, 2020	Postop only	Noncardiac	2.5 µg/ml (PCA)	5/22	10/26	0.59 (0.24, 1.4)
uran, 2020	Intraop + postop	Cardiac	0.1 to 0.4 µg/kg/h	67/398	46/396	➡ 1.45 (1.02, 2.05)
Vu, 2016	Postop only	Noncardiac	0.1 µg/kg/h	2/38	3/38	0.67 (0.12, 3.7
(in, 2021	Intraop only	Noncardiac	0.5 µg/kg/h then 0.4 µg/kg/h	3/30	10/30	0.30 (0.09, 0.9
(uan, 2018	Postop only	Noncardiac	0.1 µg/kg/h	30/227	64/226 -	0.47 (0.32, 0.65
/ang, 2015	Intraop + postop	Noncardiac	0.2 to 0.7 µg/kg/h	2/39	5/40	0.41 (0.08, 1.9
Zhang, 2020	Intraop only	Noncardiac	0.5 µg/kg/h	20/120	36/120 -	0.56 (0.34, 0.9
Zhao, 2020	Preop + postop	Noncardiac	Bolus then 100, 200, or 400 µg	13/108	4/105	3.16 (1.06, 9.3
an Norden, 2021	Intraop + postop	Cardiac + Noncardiad	c 0.7 µg/kg/h then 0.4 µg/kg/h	5/28	14/32	0.41 (0.17, 0.9
Overall				404/3224	615/3225	0.63 (0.50, 0.7
l ² = 64.8%, p = 0.00	00)					 Detector (0.000)
					0.0625	1 16

Figure C-7. Delirium incidence with dexmedetomidine versus usual care or normal saline in surgical patients post-operatively.

Note. Pooled analysis conducted as part of the Pacific Northwest Evidence-Based Practice Center's systematic review included two studies (Shi et al. 2019; Sun et al. 2019) that were subsequently retracted.

Cl=confidence interval; h=hour; intraop=intra-operative; n/N=number; PCA=patient-controlled anesthesia; postop=post-operative.

Source. Chen et al. 2021; He et al. 2018; Hu et al. 2020; J.A. Kim et al. 2019; Lee et al. 2018, 2019; X. Li et al. 2017; Li et al. 2020; Likhvantsev et al. 2021; Y. Liu et al. 2016; Massoumi et al. 2019; Momeni et al. 2021; Shi et al. 2019, 2020; Shu et al. 2017; Soh et al. 2020; Su et al. 2016; Sun et al. 2019; Tang et al. 2018; C. Tang et al. 2020; Turan et al. 2020; van Norden et al. 2021; Wu et al. 2016; Xin et al. 2021; Xuan et al. 2018; Yang et al. 2015; Zhang et al. 2020; Zhao et al. 2020.

In head-to-head trials in post-operative patients (see Figure C-8), treatment with dexmedetomidine resulted in a significantly lower incidence of delirium than propofol (7 trials, *N*=1,032; 11.1% vs. 23.6%, RR 0.51, 95% CI 0.35–0.74, I²=25%) [Djaiani et al. 2016; X. Liu et al. 2016; Maldonado et al. 2009; Mei et al. 2018; B. Mei et al. 2020; Sheikh et al. 2018; Susheela et al. 2017]), midazolam (4 trials, *N*=282; 8.5% vs. 36.2%, RR 0.27, 95% CI 0.15–0.48, I²=0% [Hassan et al. 2021; He et al. 2018; Maldonado et al. 2009; Yu et al. 2017]), an opioid (2 trials, *N*=441; 10.2% vs. 23%, RR 0.50, 95% CI, 0.30–0.84, I²=0% [Park et al. 2014; Shehabi et al. 2009]), or clonidine (1 trial, *N*=286; 8.3% vs. 16.2%, RR 0.51, 95% CI 0.27–0.99 [Shokri and Ali 2020]). In each of these trials, dexmedetomidine and the comparison medication were added to a regimen of anesthesia medications that was standardized for the trial.

Control Drug Class Treatment Type of Treatment Control Risk Ratio and Author, Year Setting Surgery Dexmedetomidine Dose Control Drug & Dose n/N n/N (95% CI) Anesthetic Djaiani, 2016 Cardiac Bolus + 0.2 to 0.7 µg/kg/h Propofol 25 to 50 µg/kg/min 16/91 29/92 Postop 0.56 (0.33, 0.95) X. Liu, 2016 Propofol 5 to 50 µg/kg/min Postop Cardiac 0.2 to 1.5 µg/kg/h 0/29 2/32 0.22 (0.01, 4.40) Maldonado, 2009 Postop Cardiac Bolus + 0.2 to 0.7 µg/kg/h Propofol 25 to 50 µg/kg/min 1/30 15/30 0.07 (0.01, 0.47) Sheikh, 2018 Intraop only Cardiac ± Bolus + 0.2 to 0.6 µg/kg/h Propofol 0.25 to 1.0 µg/kg/h 1/30 7/30 0.14 (0.02, 1.09) Susheela, 2017 Intraop + postop Cardiac 0.1 to 1.0 µg/kg/h Propofol 25 to 100 µg/kg/min 2/3 2/3 1.00 (0.32, 3.10) Mei, 2018 Intraop only NoncardiacBolus + 0.1 to 0.5 µg/kg/h Propofol 0.8 to 1.0 µg/ml 11/148 24/148 0.46 (0.23, 0.90) B. Mei, 2020 Intraop only NoncardiacBolus + 0.1 to 0.5 µg/kg/h Propofol 0.8 to 1.0 µg/ml 26/183 43/183 0.60 (0.39, 0.94) Subgroup 57/514 122/518 0.51 (0.35, 0.74) (l² = 24.9%, p = 0.191) Benzodiazepine 2/35 8/35 Hassan, 2021 Intraop + postop Cardiac 0.4 to 0.7 µg/kg/h Midazolam 0.02 to 0.08 µg/kg/h 0.25 (0.06, 1.09) Maldonado, 2009 Postop Cardiac Bolus + 0.2 to 0.7 µg/kg/h Midazolam 0.5 to 2.0 mg/h 1/30 15/30 0.07 (0.01, 0.47) He. 2018 Intraop only NoncardiacBolus + 0.4 µg/kg/h Midazolam 0.03 mg/kg 6/30 18/30 0.33 (0.15, 0.72) Yu. 2017 Intraop only Noncardiac Bolus + 0.2 to 0.7 µg/kg/h Midazolam Bolus + 0.02 to 0.08 µg/kg/h3/46 10/46 0.30 (0.09, 1.02) Subgroup 12/141 51/141 0.27 (0.15, 0.48) (l² = 0.0%, p = 0.470) Opioid Park, 2014 Remifentanil 1,000 to 2,500 µg/h 6/67 Postop Cardiac Bolus + 0.2 to 0.8 µg/kg/h 17/75 0.40 (0.17, 0.94) Shehabi, 2009 Postop Cardiac 0.1 to 0.7 µg/kg/h Morphine 10 to 70 µg/kg/h 13/152 22/147 0.57 (0.30, 1.09) Subgroup 19/219 39/222 0.50 (0.30, 0.84) $(I^2 = 0.0\%, p = 0.504)$ Sedative Shokri, 2020 Postop Cardiac 0.2 to 1.4 µg/kg/h Clonidine bolus + 1 to 2 µg/kg/h 12/144 23/142 0.51 (0.27, 0.99) 0.0078125 128 Favors control Favors treatment

Figure C-8. Delirium incidence with dexmedetomidine versus propofol, midazolam, and opioids in surgical patients.

C82

Cl=confidence interval; h=hour; intraop=intra-operative; min=minute; postop=post-operative.

Source. Djaiani et al. 2016; Hassan et al. 2021; He et al. 2018; X. Liu et al. 2016; Maldonado et al. 2009; Mei et al. 2018; B. Mei et al. 2020; Park et al. 2014; Shehabi et al. 2009; Sheikh et al. 2018; Shokri and Ali 2020; Susheela et al. 2017; Yu et al. 2017.

Head-to-head comparisons in eight trials in ICU patients (see Figure C-9) showed a significantly lower incidence of delirium with dexmedetomidine treatment, with a moderate magnitude of effect (12% vs. 19%, RR 0.66, 95% CI 0.50–0.86, I²=9.4%) (Abdelgalel 2016; Jakob et al. 2012; Li et al. 2019; MacLaren et al. 2015; Ruokonen et al. 2009; Shu et al. 2019; Winings et al. 2021). The specific comparator, whether haloperidol, midazolam, or propofol, did not have a statistically significant effect on this result (P=0.51 for interaction). Only two relatively small individual studies showed a significant difference between medications, one of haloperidol (Abdelgalel 2016) and the other of midazolam (Li et al. 2019). The study comparing sedation with midazolam and propofol did not show a significant difference in delirium incidence between the medications (17% vs. 13%, P=0.61) (Chen 2020).

Figure C-9. Delirium incidence with dexmedetomidine versus other drugs in intensive care unit patients.

Author, Year	Dexmedetomidine Dose	Control & Dose	Control Drug Class	Treatment n/N	Control n/N			Risk Ratio (95% CI)
Jakob, 2012 PRODEX	0.2 to 1.4 µg/kg/hour	Propofol 0.3 to 4.0 mg/kg/hour	Anesthetic	22/246	31/247	-	+	0.71 (0.42, 1.20)
Winings, 2021	0.48 µg/kg/hour (mean)	Propofol 24.6 µg/kg/minute (mean)	Anesthetic	8/28	10/29	-	•	0.83 (0.38, 1.79)
Abdelgale I, 2016	0.2 to 0.7 µg/kg/hour	Haloperidol 0.5 to 2 mg/hour	Antipsychotic	3/30	10/30		4	0.30 (0.09, 0.98)
Jakob, 2012 MIDEX	0.2 to 1.4 µg/kg/hour	Midazolam 0.03 to 0.2 mg/kg/hour	Benzodiazepine	28/247	33/250	+	•	0.86 (0.54, 1.38)
MacLaren, 2015	0.15 to 1.5 µg/kg/hour	Midazolam 1 to 10 mg/hour	Benzodiazepine	1/11	5/12		+	0.22 (0.03, 1.59)
Shu, 2019	0.2 to 0.7 µg/kg/hour	Midazolam 0.05 to 0.10 mg/kg/hour	Benzodiazepine	0/40	4/40		+-	0.11 (0.01, 2.00)
LI, 2019	0.8 µg/kg/hour	Midazolam 0.06 mg/kg/hr or Propofol 0.5 to 2 mg/kg/hour	Benzodiazepine or Anesthetic	18/64	34/62	-	•	0.51 (0.33, 0.81)
Ruokonen, 2020	0.25 to 1.4 µg/kg/hour	Midazolam 0.04 to 0.2 mg/kg/hr or Propofol 0.8 to 4 mg/kg/hour	Benzodiazepine or Anesthetic	7/41	8/44		+	0.94 (0.37, 2.36)
Overall				87/707	135/714		>	0.66 (0.50, 0.86)
(l ² = 9.4%, p = 0.356)								
						.0078125	1	128
					Fa	vors treatment	Favors con	irol

CI=confidence interval; MIDEX=midazolam vs. dexmedetomidine; PRODEX=propofol vs. dexmedetomidine. *Source*. Abdelgalel 2016; Jakob et al. 2012; Li et al. 2019; MacLaren et al. 2015; Ruokonen et al. 2009; Shu et al. 2019; Winings et al. 2021.

Effect of dexmedetomidine on delirium duration

Among post-operative patients who developed delirium, the use of dexmedetomidine was associated with a shorter duration of symptoms compared with no dexmedetomidine (7 trials, *N*=240; MD -0.44 days, 95% CI -0.80 to -0.08, I^2 =42.9%). There was no indication of publication bias on the basis of funnel plot analysis. In one placebo-controlled trial of dexmedetomidine in ICU patients, the duration of patients' first delirium episode was similar with or without dexmedetomidine (median 2.0 days vs. 2.2 days, *P*=0.73) (Skrobik et al. 2018).

In head-to-head trials in post-operative patients, a pooled analysis found a significantly shorter duration of delirium with dexmedetomidine than with propofol (2 trials, *N*=105; MD -0.78 days, 95% CI -1.30 to - 0.26, I^2 =0%) (Djaiani et al. 2016; Maldonado et al. 2009). In a single study each, dexmedetomidine also resulted in significantly shorter delirium duration than midazolam (*N*=60; MD -3.40 days, 95% CI -6.74 to -0.06 [Maldonado et al. 2009]) and clonidine (*N*=35; MD -2.31, 95% CI -2.79 to -1.83 [Shokri and Ali 2020]). However, a pooled analysis of two trials that compared dexmedetomidine versus the opioids, remifentanil (*N*=23; Park et al. 2014) and morphine (*N*=35; Shehabi et al. 2009), did not find a significant difference in duration of delirium between the medications (MD 0.88 days, 95% CI -2.17–3.93, I^2 =40%).

Effect of dexmedetomidine on delirium severity

The vast majority of studies in post-operative or ICU patients did not report information on the severity of delirium. One study assessed the severity of delirium using the Intensive Care Delirium Screening Checklist (ICDSC) and found no difference in maximum scores in post-operative patients treated with dexmedetomidine as compared with usual care (P=0.24) (Likhvantsev et al. 2021).

Effect of dexmedetomidine on length of stay

Dexmedetomidine tended to be associated with shorter length of stay in the ICU and the hospital in post-operative patients, although in ICU patients, this effect was mixed. For example, a large, significant decrease in ICU length of stay was observed when compared with haloperidol, but outcomes were inconsistent when comparing dexmedetomidine with propofol or midazolam.

A pooled analysis of 13 trials (N=3,685)⁴ in post-operative patients showed that dexmedetomidine resulted in a significant but very small difference in ICU stays (1.9 hours) compared with usual care or normal saline (MD -0.08 days, 95% Cl, -0.13 to -0.02, I²=69.1%) (Chen et al. 2021; Lee et al. 2019; X. Li et al. 2017; Li et al. 2020; Likhvantsev et al. 2021; Massoumi et al. 2019; Momeni et al. 2021; Shi et al. 2019; Soh et al. 2020; Su et al. 2016; Turan et al. 2020; van Norden et al. 2021; Wu et al. 2016). A subgroup analysis by the timing of the intervention (i.e., post-operative vs. intra-operative) or type of surgery (cardiac vs. noncardiac) did not explain the statistical heterogeneity. However, heterogeneity was greatest in the pooled analysis of cardiac trials (I²=81.9%) on the basis of the subgroup analysis. A pooled analysis of 15 trials⁵ in post-operative patients found significantly shorter hospital stay with dexmedetomidine than with usual care or normal saline (N=5,053; MD -0.96 days, 95% Cl -1.56 to -0.37,

⁴ Pooled analysis conducted as part of the Pacific Northwest Evidence-Based Practice Center's systematic review included one study (Shi et al. 2019) that was subsequently retracted.

⁵ Pooled analysis conducted as part of the Pacific Northwest Evidence-Based Practice Center's systematic review included two studies (Shi et al. 2019; Sun et al. 2019) that were subsequently retracted.

I²=95.4%) (Chen et al. 2021; Huyan et al. 2019; Lee et al. 2019; X. Li et al. 2017; Li et al. 2020; Likhvantsev et al. 2021; Momeni et al. 2021; Shi et al. 2019; Soh et al. 2020; Su et al. 2016; Sun et al. 2019; Turan et al. 2020; van Norden et al. 2021; Wu et al. 2016; Xuan et al. 2018). Stratified analyses by the timing of the intervention and by surgery type did not explain the statistical heterogeneity.

A pooled analysis of three trials of dexmedetomidine versus propofol in post-operative patients found shorter ICU stays with dexmedetomidine (*N*=303; MD -2.93 days, 95% CI -5.36 to -0.51, I²=94%) (Djaiani et al. 2016; Maldonado et al. 2009; Sheikh et al. 2018). ICU stays were also shorter with dexmedetomidine compared with clonidine (*N*=286; MD -0.30, 95% CI -0.42 to -0.18) on the basis of a single trial in cardiac surgery (Shokri and Ali 2020). When dexmedetomidine was compared with the opioids, remifentanil (Park et al. 2014) or morphine (Shehabi et al. 2009), the differences were very small and not significantly different (*N*=441; MD 0.11 days, 95% CI -0.23–0.46, I²=46%). There was also no difference in length of ICU stay between post-operative dexmedetomidine and midazolam on the basis of one cardiac surgery trial (*N*=60; MD -1.10 days, 95% CI -2.22–0.02) (Maldonado et al. 2009).

The difference in pooled length of hospital stay in post-operative patients was large and favored dexmedetomidine versus propofol (*N*=605; MD -3.14 days, 95% CI -8.95 to -0.30, I²=95%) (Chang et al. 2018; Djaiani et al. 2016; Maldonado et al. 2009; Mei et al. 2018; Susheela et al. 2017). As with the finding for ICU length of stay, a pooled analysis of the two opioid trials found a very small, non-significant difference in hospital stay compared with dexmedetomidine (*N*=441; MD 0.06 days, 95% CI - 0.60–0.73, I²=0%) (Park et al. 2014; Shehabi et al. 2009). There was also no difference between dexmedetomidine and midazolam on hospital stay on the basis of one small trial (*N*=60; MD -1.80 days, 95% CI -3.61–0.01) (He et al. 2018). One small trial also compared dexmedetomidine plus IV acetaminophen with propofol plus IV acetaminophen, and although the absolute difference in length of hospital stay was large, it was not statistically significant (*N*=12; 10.33 days vs. 5.33 days, *P*>0.05) (Susheela et al. 2017).

All nine trials of dexmedetomidine in non-post-operative ICU patients reported ICU length of stay. Compared with other medications (antipsychotic, benzodiazepine, or anesthetic), dexmedetomidine was associated with shorter ICU stays; however, the magnitude of effect was small, and statistical heterogeneity was high (7 trials; MD -1.98 days, 95% CI -3.66–0.31, I²=72%) (see Figure C-10). However, separating these analyses by comparator medication resulted in different findings depending on which medication was being compared with dexmedetomidine. There was a large, significant decrease in ICU length of stay with dexmedetomidine compared with haloperidol in a low risk of bias study of 60 patients (MD -3.40 days, 95% CI -3.79 to -3.01) (Abdelgalel 2016). Comparisons of dexmedetomidine with propofol or midazolam resulted in different findings, depending on study size and risk of bias. In two smaller trials (N=211) with moderate risk of bias, comparing dexmedetomidine with either propofol or midazolam, dexmedetomidine showed a large, significant benefit (MD -3.84 days, 95% CI -6.51 to -1.16) (Li et al. 2019; Ruokonen et al. 2009). However, the larger PRODEX and MIDEX trials (N=998) with low risk of bias (Jakob et al. 2012) and two additional trials (MacLaren et al. 2015; Winings et al. 2021) did not show statistically significant differences between dexmedetomidine and midazolam (MD 2.14 days, 95% CI -1.04–5.33) or propofol (MD -0.69, 95% CI -2.74–1.35). The two placebo-controlled trials (Abdelgalel 2016; Skrobik et al. 2018) suggested a moderate decrease in ICU stay with dexmedetomidine

treatment, but the difference was not statistically significant (MD -2.02, 95% CI -6.56–2.53). A trial comparing midazolam to propofol found that ICU length of stay was similar between groups (5.7 days vs 5.6 days, *P*=0.75) (Chen 2020).

Trial	Class	Dexmedetomidine	Control			Mean Difference (95% CI)	N	Assessment
Antipsychotic								
Ab de Igale I, 2016	Antipsychotic	Bolus + 0.2 to 0.7 µg/kg/hou	r Haloperidol bolus + 0.5 to 2 mg/hour	•		-3.40 (-3.79, -3.01)	60	NR
Subtotal (P = .%, p =	NA)			0 :		-3.40 (-3.79, -3.01)		
Benzodiazepine or A	nesthesia							
LI, 2019	Benzodiazepine or Anesthesia	0.8 µg/kg/hour	Midazolam 0.06 mg/kg/hour or Propolol 0.5 to 2 mg/kg/hour	-		-5.20 (-7.44, -2.96)	126	D/C
Ruckonen, 2009	Benzodiazepine or Anesthesia	0.25 to 1.4 µg/kg/hour	Midazdam 0.04 to 0.2 mg/kg/hour or Propolol 0.8 to 4 mg/kg/hour	· •		-2.47 (-4.70, -0.25)	85	30 days
Subtotal (P=65.1%,)	p = 0.091)			\diamond		-3.84 (-6.51, -1.16)		
Benzodiazepine								
MaoLaren, 2016	Benzodiazepine	0.15 to 1.5 µg/kg/hour	Midazolam 1 to 10 mg/hour		•	3.53 (-6.84, 13.91)	23	D/C
Jakob, 2012 MIDEX	Benzodiazepine	0.2 to 1.4 µg/kg/hour	Midazolam 0.03 to 0.2 mg/kg/hour		-	2.00 (-1.34, 5.34)	500	D/C
Subtotal (P=0.0%, p	= 0.783)			\leq	>	2.14 (-1.04, 5.33)		
Anesthesia								
la kob, 2012 PRODEX	Anesthesia	0.2 to 1.4 µg/kg/hour	Propofol 0.3 to 4.0 mg/kg/hour	- 11		-0.90 (-3.13, 1.34)	498	D/C
Winings, 2021	Anesthesia	0.48 µg/kg/hour (mean)	Propofol 24.6 µg/kg/minute (mean)			0.35 (-4.69, 5.39)	57	NR
Subtotal (P=0.0%, p	= 0.657)			\diamond		-0.69 (-2.74, 1.35)		
Overall (I*=71.8%, p	* 0.002)			\diamond		-1.98 (-3.66, -0.31)		
				Ţ				
				7.5 0	14	4		
				Favors Intervention	Favors Control			

Figure C-10. Length of intensive care unit stay with dexmedetomidine versus other drugs in intensive care unit patients.

Cl=confidence interval; D/C=discharge; NA=not applicable; NR=not reported.

Source. Abdelgalel 2016; Jakob et al. 2012; Li et al. 2019; MacLaren et al. 2015; Ruokonen et al. 2009; Winings et al. 2021.

For hospital length of stay, the PRODEX and MIDEX trials found no difference between dexmedetomidine and either midazolam or propofol (Jakob et al. 2012). In PRODEX, patients given dexmedetomidine stayed for a median 25 days compared with 28 days for propofol (P=0.76), whereas in MIDEX it was 35 days for dexmedetomidine and 27 days for midazolam (P=0.37) (Jakob et al. 2012). A small trial with high risk of bias showed no difference in hospital stays between dexmedetomidine and propofol (18 days vs. 17 days, P=0.63) (Winings et al. 2021). Another small trial with low risk of bias found shorter hospital stays with dexmedetomidine than with haloperidol (6.2 days vs. 13.5 days, P<0.001) (Abdelgalel 2016). The placebo-controlled trials (both with low risk of bias) had conflicting findings, with one reporting a statistically significant decrease in hospital stay with dexmedetomidine treatment (N=60; mean 6.2 days vs. 15.5 days, P<0.05 [Abdelgalel 2016]), whereas another reported no difference (N=100; median 27 days vs. 29 days, P=0.48 [Skrobik et al. 2018]).

Effect of dexmedetomidine on mortality and adverse events

Mortality outcomes did not differ between administration of dexmedetomidine versus placebo or a medication comparator.

Regarding mortality in post-operative populations, a pooled analysis⁶ indicated that mortality was not affected by dexmedetomidine when compared with normal saline (12 trials, *N*=4,107; 0.9% vs. 2.0%, RR 0.59, 95% CI 0.33–1.03, I^2 =0% [Chen et al. 2021; Lee et al. 2019; X. Li et al. 2017; Li et al. 2020; Likhvantsev et al. 2021; Massoumi et al. 2019; Momeni et al. 2021; Soh et al. 2020; Su et al. 2016; Sun et al. 2019; Turan et al. 2020; van Norden et al. 2021]), propofol (2 trials, *N*=479; 0.8% vs. 0.4%, RR 1.61, 95% CI 0.20–12.98, I^2 =0% [Djaiani et al. 2016; Mei et al. 2018]), an opioid (1 trial, *N*=299; 1.3% vs. 2.7%, RR 0.48, 95% CI 0.09–2.60 [Shehabi et al. 2009]), or clonidine (1 trial, *N*=286; 1.4% vs. 5.6%, RR 0.25, 95% CI 0.05–1.14 [Shokri and Ali 2020]).

In ICU patients, mortality across seven trials also did not differ between dexmedetomidine and other treatments (20% vs. 18%, RR 1.12, 95% CI 0.89–1.39, I²=0%), and the specific medication comparison did not affect this finding (*P*=0.62 for interaction) (Abdelgalel 2016; Jakob et al. 2012; Li et al. 2019; MacLaren et al. 2015; Ruokonen et al. 2009; Winings et al. 2021). Results were similar for dexmedetomidine compared with placebo (19% vs. 18%, RR 1.09, 95% CI 0.57–2.08, I²=0%) (Abdelgalel 2016; Skrobik et al. 2018).

In terms of other adverse events in post-operative patients, dexmedetomidine as compared with normal saline was associated with an increased risk of hypotension requiring treatment (10 trials⁶, *N*=4,004; 23.1% vs. 15.4%, RR 1.50, 95% Cl 1.32–1.70, l^2 =0%) (Hu et al. 2020; Lee et al. 2019; Shi et al. 2020; Su et al. 2016; Sun et al. 2019; Turan et al. 2020; Wu et al. 2016; Xuan et al. 2018; Yang et al. 2015; Zhang et al. 2020). Post-operative bradycardia requiring treatment was not increased, on the basis of nine trials⁶ (*N*=3,038; 6.5% vs. 5.6%, RR 1.27, 95% Cl 0.83–1.95, l^2 =35%) (Lee et al. 2019; X. Li et al. 2017; Shi et al. 2020; Su et al. 2016; Sun et al. 2019; Turan et al. 2020; Wu et al. 2016; Yang et al. 2015; Zhang et al. 2020; Su et al. 2016; Sun et al. 2019; Turan et al. 2020; Wu et al. 2016; Yang et al. 2017; Shi et al. 2020; Su et al. 2016; Sun et al. 2019; Turan et al. 2020; Wu et al. 2016; Yang et al. 2015; Zhang et al. 2020; Su et al. 2016; Sun et al. 2019; Turan et al. 2020; Wu et al. 2016; Yang et al. 2015; Zhang et al. 2020; Su et al. 2016; Sun et al. 2019; Turan et al. 2020; Wu et al. 2016; Yang et al. 2015; Zhang et al. 2020).

⁶ Pooled analysis conducted as part of the Pacific Northwest Evidence-Based Practice Center's systematic review included one study (Sun et al. 2019) that was subsequently retracted.

A pooled analysis of two trials found no difference in risk of post-operative bradycardia (*N*=123; 15% vs. 4.8%, RR 2.87, 95% CI 0.80–10.34, I^2 =0%) or hypotension (18.3% vs. 19.0%, RR 1.02, 95% CI 0.51–2.04, I^2 =0%) between dexmedetomidine and propofol (Chang et al. 2018; X. Liu et al. 2016, respectively). However, a pooled analysis of two opioid trials (*N*=441; Park et al. 2014; Shehabi et al. 2009) found an increased risk of post-operative bradycardia (16.0% vs. 7.7%, RR 2.03, 95% CI 1.08–3.83, I^2 =22%) but a decreased risk of hypotension (21.5% vs. 35.1%, RR 0.61, 95% CI 0.45–0.83, I^2 =0%) with dexmedetomidine as compared with opioids (i.e., remifentanil, morphine).

Two post-operative trials, one of dexmedetomidine compared with placebo (van Norden et al. 2021) and the other of dexmedetomidine compared with sufentanil (Zhao et al. 2020), reported no difference between groups in post-operative bradycardia episodes; it was unclear if treatment was required for these episodes. Another trial reported that the total number of neurological complications was less with dexmedetomidine (26.3% vs. 43.8%, P=0.031), although there was no difference in severe neurological complications (11.3% vs. 20.0%, P=0.191) (Chen et al. 2021).

Most trials of dexmedetomidine in ICU patients (see Figure C-11) reported hypotension and bradycardia, although some trials did not define these terms. Taken together, six trials (*N*=1,210) did not show a statistically significant difference in hypotension between dexmedetomidine and midazolam (Jakob et al. 2012; MacLaren et al. 2015; Shu et al. 2019), propofol (Jakob et al. 2012), or haloperidol (Abdelgalel 2016) (19% vs. 15%, RR 1.34, 95% CI 0.96–1.88, I²=41%), but findings were inconsistent across the three midazolam trials. The MIDEX trial (Jakob et al. 2012), with low risk of bias, found a higher risk of hypotension (not defined) with dexmedetomidine than midazolam (*N*=497; 21% vs. 12%, RR 1.78, 95% CI 1.17–2.71), whereas smaller trials with moderate risk of bias did not.

Control Drug Class and Author, Year	Dexmedetomidine Dose	Control Drug & Dose	Treatment n/N	Control n/N			Risk Ratio (95% CI)
Anesthetic							
Jakob, 2012 PRODEX	0.2 to 1.4 µg/kg/hour	Propofol 0.3 to 4.0 mg/kg/hour	32/246	33/247	-+	1	0.97 (0.62, 1.53)
Winings, 2021	0.48 µg/kg/hour (mear	n)Propofol 24.6 µg/kg/minute (mean)	17/28	13/29	+	-	1.35 (0.82, 2.24)
Subgroup			49/274	46/276			1.13 (0.81, 1.58)
(l ² = 0.0%, p = 0.321)					ſ		
Antipsychotic							
Abdelgalel, 2016	0.2 to 0.7 µg/kg/hour	Haloperidol 0.5 to 2 mg/hour	4/30	3/30		<u> </u>	1.33 (0.33, 5.45)
Subgroup			4/30	3/30	\langle		1.33 (0.33, 5.45)
(I ² = 0.0%, p = NA)					ſ		
Benzodiazepine							
Jakob, 2012 MIDEX	0.2 to 1.4 µg/kg/hour	Midazolam 0.03 to 0.2 mg/kg/hour	51/247	29/250	ŀ	*	1.78 (1.17, 2.71)
MacLaren, 2015	0.15 to 1.5 µg/kg/hour	Midazolam 1 to 10 mg/hour	10/11	6/12	ŀ	*	1.82 (1.00, 3.30)
Shu, 2019	0.2 to 0.7 µg/kg/hour	Midazolam 0.05 to 0.10 mg/kg/hou	r 1/40	6/40			0.17 (0.02, 1.32)
Subgroup			62/298	41/302	4		1.46 (0.75, 2.83)
(l ² = 59.4%, p = 0.076)						Í I I	
P-value for interaction: p =	0.5676						
Overall			115/602	90/608			1.34 (0.96, 1.88)
(I ² = 41.3%, p = 0.120)							
					.015625 1	I	64
				Favor	s treatment	Favors of	ontrol

Figure C-11. Hypotension incidence with dexmedetomidine versus other drugs in intensive care unit patients.

Cl=confidence interval; MIDEX=midazolam vs. dexmedetomidine; NA=not applicable; PRODEX=propofol vs. dexmedetomidine. *Source*. Abdelgalel 2016; Jakob et al. 2012; MacLaren et al. 2015; Shu et al. 2019; Winings et al. 2021.

The pattern was similar for bradycardia: MIDEX showed a higher risk with dexmedetomidine than midazolam (degree of bradycardia was not defined), but a pooled estimate across any comparator (midazolam, propofol, or haloperidol) did not show a difference (14% vs. 8.6%, RR 1.51, 95% CI 0.88–2.59, I²=50%). In both MIDEX and PRODEX, the frequency of serious adverse events was comparable among the treatment groups (Jakob et al. 2012), and withdrawals due to adverse events did not differ between dexmedetomidine and midazolam or propofol (10% vs. 9.5%, RR 1.06, 95% CI 0.74–1.53, I²=0%) (Jakob et al. 2012; Ruokonen et al. 2009).

Hypotension, bradycardia, and 28-day mortality were infrequent in the trial comparing midazolam and propofol and did not show a significant difference between groups (Chen 2020). One small placebocontrolled trial (*N*=60) reported a large, statistically significant increase in bradycardia with dexmedetomidine (27% vs. 3%, *P*<0.05), defined as a heart rate of 50 beats per minute or less, 60 or less if it required intervention (Abdelgalel 2016). Authors also noted a decrease in respiratory tract infections (6.7% vs. 33%, *P*<0.05) (Abdelgalel 2016). The study used noninvasive ventilation (NIV), and authors attributed the increase in respiratory infections in the placebo arm to more frequent NIV failure, requiring intubation that increased the risk of hospital-acquired infections. The other placebo-controlled trial reported bradycardia and hypotension only if they required interrupting treatment and found no differences between patients given dexmedetomidine and placebo (Skrobik et al. 2018).

Effect of dexmedetomidine on other outcomes

Regarding other miscellaneous outcomes in post-operative patients, a pooled analysis of three postoperative trials (*N*=989; Lee et al. 2019; Massoumi et al. 2019; Su et al. 2016) found no significant differences in antipsychotic use between dexmedetomidine and normal saline (2.0% vs. 2.8%, RR 0.68, 95% CI 0.14–3.41, I²=0%), but dexmedetomidine was associated with significantly less antipsychotic use post-operatively than propofol (2 trials, *N*=213; 9.9% vs. 22.1%, RR 0.48, 95% CI 0.26–0.88, I²=0% [Djaiani et al. 2016; Maldonado et al. 2009]). One trial (*N*=79; Yang et al. 2015) reported significantly less agitation post-operatively with dexmedetomidine compared with normal saline (10.3% vs. 30%, *P*=0.029), whereas another trial (*N*=108; Soh et al. 2020) reported less acute kidney injury with dexmedetomidine versus normal saline (14% vs. 32%, RR 0.41, 95% CI 0.19–0.91).

In ICU patients in the PRODEX trial, the number of people receiving rescue sedation was higher with dexmedetomidine than propofol, with borderline statistical significance (73% vs. 64%, *P*=0.05). The MIDEX trial showed no difference in rescue sedation between dexmedetomidine and midazolam (44% vs. 45%, *P*=0.72). A third small trial with high risk of bias did not show a statistically significant difference compared with propofol (Winings et al. 2021), whereas a fourth with low risk of bias showed less rescue sedation with dexmedetomidine than with haloperidol (Abdelgalel 2016).

Grading of the Overall Supporting Body of Research Evidence for Use of Dexmedetomidine in the Prevention of Delirium

o Magnitude of effect: Variable. In post-operative patients, there was a small effect of dexmedetomidine relative to placebo in reducing the incidence of delirium whereas in ICU patients, typically receiving mechanical ventilation, there was a large effect of dexmedetomidine relative to placebo. When compared with other sedating medications, dexmedetomidine had a moderate to large

effect in reducing delirium incidence in post-operative patients but a small magnitude of effect in ICU patients. Duration of delirium was less often studied, and the magnitude of effect was minimal.

o Risk of bias: Moderate. Approximately half of the studies had a moderate risk of bias, with all but one of the remaining studies having a low risk of bias. Factors that most often influenced the risk of bias were inadequate reporting of information on allocation concealment and masking.

o Applicability: Studies were conducted in a wide range of countries with a substantial number conducted in China. Only a small proportion of the studies were conducted in the United Sates or Canada, which may limit applicability. Approximately half of the studies included older adults whereas the other studies included adults of all ages. Although many of the studies included comparable proportions of men and women, other studies had a preponderance of men enrolled. Race and ethnicity were rarely reported, which makes it difficult to determine whether study demographic characteristics were representative of usual clinical populations. Studies were done in post-operative patients and ICU settings, which is consistent with the settings in which dexmedetomidine would be used clinically.

o Directness: Direct. The studies provided direct information on delirium related outcomes including incidence and duration as well as on adverse events including mortality.

o Consistency: Consistent. For the key outcome, the finding of a reduced incidence of delirium was consistent in both post-operative and ICU patients and in placebo-controlled and head-to-head comparisons.

o Precision: Variable. For the key outcome of delirium incidence, the findings were precise in postoperative comparisons with placebo and with other sedating medications. For other outcomes, findings were imprecise.

o Dose-response relationship: No available information.

o Confounding factors (including likely direction of effect): The data may be confounded by variations in delirium assessment due to rater training. Individuals with hypoactive delirium may have been less likely to be identified than those with hyperactive delirium and the response to sedating treatments may differ. However, the direction of effect from these potential confounding factors is not clear.

o Publication bias: Not identified. For the outcome of delirium incidence in post-operative patients who received dexmedetomidine or placebo, there was no evidence of publication bias.

o Overall strength of research evidence: Moderate. The strength of the research evidence was moderate for the key outcome of delirium incidence. Pooled analyses were on the basis of a large number of trials and a large total number of participants. Findings were generally consistent in both post-operative and ICU patients and in placebo-controlled and head-to-head comparisons, increasing the confidence in the strength of evidence.

Statement 12 – Dexmedetomidine in Patients with Delirium

APA *suggests* **(2C)** that when patients with delirium are sedated for mechanical ventilation in a critical care setting, dexmedetomidine be used rather than other sedating agents.

Evidence for this statement comes from three studies that examined the effects of dexmedetomidine and other sedating agents in patients with delirium, each of which had 100 patients or fewer (Bakri et al. 2015; Liu et al. 2018; Yapici et al. 2011). However, all reported results favoring dexmedetomidine in terms of faster delirium resolution and fewer days with delirium. A very small trial of clonidine, which is also an α_2 -adrenergic receptor agonist, showed no difference from placebo (Hov et al. 2019). Indirect evidence for this statement is provided by studies of dexmedetomidine on reducing the incidence and duration of delirium (see Statement 11).

Overview of study characteristics

Three trials conducted in post-operative patients compared the effects of different sedating medications to treat delirium (Bakri et al. 2015; Liu et al. 2018; Yapici et al. 2011). One low risk of bias study that was conducted in China compared dexmedetomidine, sufentanil, and the combination given as a bolus followed by 2 dose-groups for maintenance of sufentanil (Liu et al. 2018). The population was young patients (N=100; age 20–40 years, mean 31 years, race/ethnicity not reported) who developed delirium post-operatively (surgical types not reported). The study reported outcomes only up to 8 hours after initiation of treatment (Liu et al. 2018). A second study with a moderate risk of bias was conducted in Turkey and compared dexmedetomidine with midazolam in patients (N=72) who had delirium and had failed extubation attempts following cardiac surgery (Yapici et al. 2011). Patients in this study had a mean age 60, and 62.5% were female. No information was given on race, ethnicity, or presence of dementia. A third trial, conducted in Saudi Arabia, enrolled patients who had undergone trauma surgery and required ICU admission (Bakri et al. 2015). This study had a moderate risk of bias and compared continuous infusion of dexmedetomidine (n=32), ondansetron (n=32), and haloperidol (n=32). Patients in this study had a mean age 31, and 9% were female; race and ethnicity were not reported.

Two trials conducted in ICU patients compared the effects of different sedating medications to treat delirium (Liu et al. 2021; Reade et al. 2016). One trial with a low risk of bias was done in Australia in patients (*N*=71) with agitated delirium and compared dexmedetomidine treatment with placebo (Reade et al. 2016). The median age of this sample was 57 years, and 24% were female. Race and ethnicity were not reported, and participants with dementia were excluded. One retrospective cohort study, with a moderate risk of bias, was conducted in China and compared dexmedetomidine (*n*=118) with olanzapine (*n*=145) in patients who were age \geq 75 (Liu et al. 2021). Race and ethnicity were not reported, but 23% of the sample was female and 10.6% had dementia.

Effect of dexmedetomidine on delirium response

A study of post-operative patients compared dexmedetomidine, sufentanil, and the combination of dexmedetomidine and sufentanil using two different doses of sufentanil (Liu et al. 2018). Sufentanil alone and the two combination groups had significantly fewer patients with a response at 8 hours compared with dexmedetomidine alone (64% vs. 84% vs. 92% vs. 84%, *P*<0.05) (Liu et al. 2018). In patients who had undergone trauma surgery and had a subsequent ICU admission, there was no

significant difference in the proportion of patients with delirium in the dexmedetomidine group as compared with the ondansetron or haloperidol groups (Bakri et al. 2015). Also, in the ICU study of patient with agitated delirium, baseline delirium resolved more quickly in patients who received dexmedetomidine as compared with placebo (median 23 hours vs. 40 hours, *P*=0.01), and they had fewer study days with delirium present (median 1 day vs. 3 days, *P*=0.02) (Reade et al. 2016).

Effect of dexmedetomidine on length of stay

Only one study examined effects of dexmedetomidine on length of stay in patients with delirium. Although the median length of stay was shorter in ICU patients treated with dexmedetomidine as compared with placebo, the difference was not significant for either the ICU stay (median 2.9 days vs. 4.1 days after randomization, P=0.09) or hospital stay (median 8.5 days vs. 9.5 days, P=0.96) (Reade et al. 2016). In ICU patients age \geq 75, hospital length of stay was greater in patients treated with dexmedetomidine as compared with those treated with olanzapine (mean 9.30 [SD 4.90] vs. 8.83 [SD 3.34], P<0.001) (Liu et al. 2021).

Effect of dexmedetomidine on mortality and adverse events

Limited information was available from these studies on adverse events, including mortality. In the study of post-operative patients who received dexmedetomidine, sufentanil, or the combination, an increase in respiratory distress was noted in the combination groups (8% vs. 32% vs. 64% vs. 36%, P<0.05) (Liu et al. 2018). In the study of agitated patients in an ICU setting, rates of bradycardia and agitation did not differ significantly between groups (Reade et al. 2016). In terms of mortality, no patient died after receiving placebo, whereas one treated patient died in the ICU (P>0.99) and two in the hospital (P=0.50) (Reade et al. 2016). Cause of death and association with treatment were not reported. In ICU patients \geq 75 years, there was no significant difference found in mortality between patients who received olanzapine and those who received dexmedetomidine (24.5% vs. 21.4%) (Liu et al. 2021).

Effect of dexmedetomidine on other outcomes

In terms of other outcomes, the trial that compared dexmedetomidine with midazolam in patients following cardiac surgery found that, at 2.5 days post-operation, the proportion of patients who were able to be weaned from mechanical ventilation was significantly greater in the dexmedetomidine group (97% vs. 79%, RR 1.17, 95% CI 1.01–1.36) (Yapici et al. 2011). In post-operative trauma patients, there was no difference in the proportion of patients needed "rescue" treatment with haloperidol between the group that received dexmedetomidine and the group who received a standard dose of haloperidol (11% vs. 3%; P=0.03) (Bakri et al. 2015). In addition, dexmedetomidine and haloperidol groups did not differ in the amount of rescue haloperidol that was needed (P=0.07) (Bakri et al. 2015).

Grading of the Overall Supporting Body of Research Evidence for Use of Dexmedetomidine in the Treatment of Delirium

o Magnitude of effect: Low to moderate. The magnitude of effect of varied with the outcome and the comparison condition but was clinically significant in terms of response of delirium and in the proportion of patients who were able to be weaned from mechanical ventilation in one study.

o Risk of bias: Low to moderate. The risk of bias was low in two studies and moderate in one study. In one study, there was insufficient description of randomization and masking procedures, and it was unclear whether the groups were comparable at baseline.

o Applicability: Studies were done in various countries, but none were done in the United States or Canada, which may limit applicability. In addition, the study populations were younger than typical patients with delirium. The proportion of women was low in most of the studies, but other demographic features were not well delineated. Studies were done in post-operative patients and ICU settings, which is consistent with the settings in which dexmedetomidine would be used clinically.

o Directness: Direct. The studies provided direct information on delirium related outcomes including response as well as providing limited information on adverse events including mortality.

o Consistency: Consistent. The finding of a better response of delirium and/or better outcome with dexmedetomidine compared with placebo or other sedating medications was consistent in both post-operative and ICU patients.

o Precision: Imprecise. The studies used proportions for a number of the measures, and there was significant imprecision in terms of optimal information sizes.

O Dose-response relationship: No available information.

O Confounding factors (including likely direction of effect): The data may be confounded by variations in delirium assessment due to rater training. Although one study was limited to agitated patients, in the other studies, individuals with hypoactive delirium may have been less likely to be identified than those with hyperactive delirium. However, the direction of effect from these potential confounding factors is not clear.

O Publication bias: Not identified. Publication bias was not able to be assessed due to the small number of trials and differences in comparators.

O Overall strength of research evidence: Low. The studies had a low to moderate risk of bias and were generally consistent in their findings; however, only a small number of studies were available, and they had significant variations in design and outcome measures that were used.

Statement 13 – Melatonin and Ramelteon

APA suggests (2C) that melatonin and ramelteon not be used to prevent or treat delirium.

This suggestion is determined on the basis of a systematic literature review conducted by the Pacific Northwest EPC, which focused on pharmacological approaches to prevention and treatment of delirium. The literature review mostly included prevention studies, which generally reported small or no effect of melatonin or ramelteon on delirium incidence or related outcomes (e.g., duration of delirium, severity of illness). A subsequent systematic review was consistent in showing a lack of effectiveness of ramelteon in prevention of delirium (Dang et al. 2023). The two treatment studies identified in the Pacific Northwest EPC review also failed to show that melatonin or ramelteon effectively treat delirium in terms of time to delirium resolution, delirium severity, mortality, adverse events, rescue medication, and use of restraints (Lange et al. 2021; Thom et al. 2019). A subsequent systematic review (Beaucage-Charron et al. 2023) also suggested that further evidence was needed before using these medications to treat delirium.

Overview of study characteristics

Eighteen studies (N=2,293; range 50 to 452) assessed effects of sleep-related medications in the prevention of delirium (Abbasi et al. 2018; Azuma et al. 2018; Bellapart et al. 2020; de Jonghe et al. 2014; Ford et al. 2020; Gandolfi et al. 2020; Gupta et al. 2019; Hatta et al. 2014b, 2017; Jaiswal et al. 2018, 2019; Javaherforoosh Zadeh et al. 2021; Lawlor et al. 2020; Mahrose et al. 2021; Nishikimi et al. 2018; E.S. Oh et al. 2021; Sharaf et al. 2018; Sultan 2010). There was a low risk of bias in five studies, a moderate risk of bias in eleven studies, and a high risk of bias in two studies. Studies were conducted in various countries including four trials in Japan, three trials each in Egypt and the United States, two trials each in Australia and Iran, and one trial each in Brazil, Canada, India, and The Netherlands. Seven of the studies limited enrollment to individuals age 65 or older, and eleven studies had a mean or median age greater than 65 years, whereas other studies included a broader range of adult participants. Six studies had a predominance of men, two studies had a predominance of women, nine studies had similar numbers of men and women, and one study did not report on the sex of participants. The majority of studies (N=15) did not report information on race or ethnicity. One study included 92% White participants, another included 74% White and 15% Black participants, and, in a third trial, all participants were Asian. In seven studies, individuals with delirium at baseline were excluded, whereas information on delirium at baseline was not described in the other 11 studies. Six studies excluded individuals with dementia, three studies included individuals with dementia (range 6.7% to 25% of the sample), and nine studies did not report this information.

In post-operative patients, nine trials (N=1,190) compared a sleep-related medication with placebo or no treatment, with four trials of melatonin 3 mg/day (de Jonghe et al. 2014; Ford et al. 2020; Javaherforoosh Zadeh et al. 2021; Sharaf et al. 2018), one of 5 mg/day (Mahrose et al. 2021), one of 5 mg the night before surgery and 5 mg pre-operatively (Sultan 2010), and three of ramelteon 8 mg/day (Gupta et al. 2019; Jaiswal et al. 2019; E.S. Oh et al. 2021). Six trials began treatment prior to surgery and continued for 2 to 7 days after (de Jonghe et al. 2014; Ford et al. 2020; Jaiswal et al. 2019; Javaherforoosh Zadeh et al. 2021; Mahrose et al. 2021; E.S. Oh et al. 2021), whereas two trials gave 2 pre-operative doses only --12 hours and then 60 minutes prior to surgery (Gupta et al. 2019) and the night before and then 90 minutes prior to surgery (Sultan 2010). One study enrolled older adults undergoing any type of surgery requiring more than 1 hour of anesthesia (Gupta et al. 2019), three enrolled older adults undergoing orthopedic surgeries (de Jonghe et al. 2014; E.S. Oh et al. 2021; Sultan 2010), and three enrolled patients undergoing elective cardiac or pulmonary surgeries requiring an ICU admission post-operatively (Ford et al. 2020; Jaiswal et al. 2019; Sharaf et al. 2018). One of the studies (of older patients undergoing hip arthroplasty under spinal anesthesia) also compared melatonin with midazolam 7.5 mg oral and 100 mcg clonidine given twice pre-operatively with no post-operative administration (Sultan 2010). A subsequent RCT, which was not included in the Pacific Northwest EPC meta-analysis, compared ramelteon 8 mg oral or placebo for six nights (1 pre-operative night and 5

consecutive post-operative nights) in patients age 65 or older who were undergoing elective surgery under general anesthesia (Kinouchi et al. 2023).

Regarding ICU populations, five trials (*N*=531) compared the effect of a sleep-related medication with placebo or usual care in preventing development of delirium, with three trials of melatonin (3–10 mg/day [Abbasi et al. 2018; Bellapart et al. 2020; Gandolfi et al. 2020]), one of ramelteon 8 mg/day (Nishikimi et al. 2018), and one of suvorexant 15 to 20 mg/day (Azuma et al. 2018). A subsequent Australian multicenter RCT, which was not included in the Pacific Northwest EPC meta-analysis, compared melatonin 4 mg to placebo for 14 consecutive nights or until discharge (Wibrow et al. 2022). In ICU patients with a diagnosis of delirium, one retrospective cohort study compared 77 ICU patients treated with ramelteon to 245 patients not given a sleep-related medications (Thom et al. 2019).

In mixed inpatient samples, one trial (*N*=69) compared the effect of 3 mg of melatonin nightly with placebo in individuals age 65 or older (Jaiswal et al. 2018). Another RCT (*N*=67) compared the effect of up to 7 days of 8 mg of ramelteon nightly with placebo in patients age 65 to 89 (Hatta et al. 2014b). A third trial (*N*=72), also in patients age 65 to 89, compared 15 mg of suvorexant every night for 3 days with placebo (Hatta et al. 2017). Among palliative care patients, one trial randomized 60 patients with advanced cancer to 3 mg/day of melatonin or placebo for up to 28 days (Lawlor et al. 2020).

Effect of sleep-related medications on delirium incidence

All nine trials in post-operative patients reported delirium incidence, with four trials using the CAM-ICU instrument, three using the CAM, one the DOSS with DSM-5, and one using the Abbreviated Mental Test (score >8). Assessment time was 3 days to 9 days after surgery. A pooled analysis of incidence of delirium found a small, but significant difference for sleep-related medications compared with placebo (N=1,190; RR 0.62, 95% CI 0.40–0.96, I²=63.5%) (see Figure C-12). A subgroup analysis by type of surgery (cardiac vs. noncardiac) did not indicate significant effects. However, a subgroup analysis by specific medication (melatonin vs. ramelteon) showed a statistically significant difference for melatonin (6 trials, N=902; RR 0.53, 95% CI 0.29–0.97, I²=75%) but not ramelteon (4 trials, N=288; RR 0.82, 95% CI 0.51– 1.32). A subgroup analysis by whether the medication was given only pre-operatively or continued postoperatively again found no significant effect for continuing post-operatively (7 trials, N=988; 22% vs. 25%, RR 0.73, 95% CI 0.48–1.13, I²=60%) but did find a significant reduction for the pre-operatively-only group (7% vs. 22%, RR 0.30, 95% Cl 0.14–0.66, $l^2=0\%$). However, the *P*-value for the subgroup interaction was not statistically significant (P=0.177). A subsequent placebo-controlled trial of ramelteon showed no significant difference in the likelihood of delirium between the groups (Cox proportional HR 1.40, 95% CI 0.40–4.85, χ^2 =0.29, df=1, P=0.60) (Kinouchi et al. 2023). In addition to these placebo-controlled trials, a trial of older patients undergoing hip arthroplasty under spinal anesthesia (Sultan 2010) also compared melatonin with midazolam and clonidine, finding that significantly fewer patients developed delirium by day 3 in the melatonin group compared with all of the other groups (9.4% vs. 44% midazolam vs. 37% clonidine).

Figure C-12. Delirium incidence with sleep-related medications in surgical patients post-operatively.

					Assessme	ent			
Type of Surgery	Timing of			Incidence	Time	Treatmen	t Control		Risk Ratio
and Author, Year	Administration	Treatment	Control	Measure	(days)	n/N	n/N		(95% CI)
Cardiac									
Ford, 2020	Preop + postop	Melatonin	Placebo	CAM or CAM-ICU	7 days	21/98	21/104	+	1.06 (0.62, 1.82
Jaiswal, 2019	Preop + postop	Ramelteon	Placebo	CAM-ICU	9 days	19/59	22/58	•	0.85 (0.52, 1.39
Javaherforoosh Zadeh, 2021	Preop + postop	Melatonin	Placebo	CAM-ICU	2 days	3/30	14/30		0.21 (0.07, 0.67
Mahrose, 2021	Preop + postop	Melatonin	Dexmedetomidine	CAM-ICU	5 days	6/55	15/55	_	0.40 (0.17, 0.95
Sharaf, 2018	Preop + postop	Melatonin	Placebo	ICDSC	3 days	2/25	7/25	+	0.29 (0.07, 1.24
Subgroup						51/267	79/272		0.57 (0.33, 1.00
(l ² = 60.1%, p = 0.036)									
Noncardiac									
E.S. Oh, 2021	Preop + postop	Ramelteon	Placebo	DSM-V	3 days	3/33	2/38	+•	1.73 (0.31, 9.72
de Jonghe, 2014	Preop + postop	Melatonin	Placebo	DSM-IV, DOSS	8 days	55/186	49/192	-	1.16 (0.83, 1.61
Gupta, 2019	Preop only	Ramelteon	Placebo	CAM	3 days	2/50	6/50	+	0.33 (0.07, 1.57
Sultan, 2010	Preop only	Melatonin	No treatment	AMT Score <8	3 days	5/53	16/49		0.29 (0.11, 0.73
Subgroup						65/322	73/329		0.67 (0.27, 1.65
(l ² = 69.8%, p = 0.017)							1		
P-value for interaction (metare	gression): p = 0.68	1							
Overall						116/589	152/601		0.62 (0.40, 0.96
(l ² = 63.5%, p = 0.004)								0	
							0.0625	1 16	
							Favors treatment	Favors control	

AMT=Abbreviated Mental Test; CAM=Confusion Assessment Method; CAM-ICU=Confusion Assessment Method for the Intensive Care Unit; CI=confidence interval; DOSS=Delirium Observation Screening Scale; DSM-IV=*Diagnostic and Statistical Manual of Mental Disorders*, 4th Edition; ICDSC=Intensive Care Delirium Screening Checklist; n/N=number; preop=pre-operative; postop=post-operative.

Source. de Jonghe et al. 2014; Ford et al. 2020; Gupta et al. 2019; Jaiswal et al. 2019; Javaherforoosh Zadeh et al. 2021; Mahrose et al. 2021; E.S. Oh et al. 2021; Sharaf et al. 2018; Sultan 2010.

Three trials of sleep-related medications in ICU patients reported delirium incidence, with a large, but not statistically significant difference favoring active treatment (13% vs. 22%, RR 0.56, 95% CI 0.30–1.05, I^2 =22%) (Abbasi et al. 2018; Azuma et al. 2018; Nishikimi et al. 2018). Ramelteon was the only individual medication for which the effect on delirium incidence was statistically significant, and again the magnitude of difference was large (24% vs. 47% for placebo, RR 0.53, 95% CI 0.29–0.96). A subsequent large (*N*=841; Wibrow et al. 2022) RCT of prophylactic melatonin in ICU patients showed no difference in delirium-free assessments compared with placebo (79.2% vs. 80% respectively, *P*=0.547).

In general inpatient populations, as compared with placebo, the effect of sleep-related medications on delirium incidence was not statistically significant in the pooled analysis, but the absolute difference was moderate, and statistical heterogeneity was high (9.8% vs. 20%, RR 0.34, 95% CI 0.03–3.40, I²=82%) (see Figure C-13). A subgroup analysis of the two trials with mixed inpatient and ICU patients resulted in a very different estimate of effect than the study that was limited to inpatients. The two trials with mixed inpatient and ICU patient samples assessed ramelteon and suvorexant and showed a large, significant reduction in delirium incidence as compared with placebo (2.9% vs. 27%, RR 0.11, 95% CI 0.03–0.45, I²=0%) (Hatta et al. 2014b, 2017). The study with only inpatients found a moderate but non-significant increase in incidence with melatonin as compared with placebo (21% vs. 9.1%, RR 2.30, 95% CI 0.77–6.92) (Jaiswal et al. 2018). The suvorexant trial (Hatta et al. 2017) reported a subgroup analysis, which found no effect on delirium incidence in patients with a Clinical Dementia Rating score of 0.5 or higher. However, the trial was underpowered to make this comparison, including just 18 patients with mild cognitive impairment by this definition.

Among palliative care patients, a trial of melatonin as compared with placebo did not show a statistically significant difference in the incidence of delirium (37% vs. 33%, *P*=0.79) (Lawlor et al. 2020).

Setting and Author, Year	Risk of Bias	Drug & Dose	Incidence Measure	Assessment Time	Treatment n/N	Control n/N			Risk Ratio 95% CI)
ICU and Inpatient									
Hatta, 2014	Moderate	Ramelteon 8mg/day	DSM-IV and DRS-R-98	7 days	1/33	11/34		0.0	9 (0.01, 0.69)
Hatta, 2017	Moderate	Suvorexant 15 mg/day	y DSM-5 and DRS-R-98	7 days	1/36	8/36		0.1	3 (0.02, 0.95)
Subgroup					2/69	19/70		0.1	1 (0.03, 0.45)
(I ² = 0.0%, p = 0.84	2)								
Inpatient									
Jaiswal, 2018	Moderate	Melatonin 3 mg/day	CAM and chart review	NR	9/43	4/44		2.3	80 (0.77, 6.92)
Subgroup					9/43	4/44		2.3	0 (0.77, 6.92)
(I ² = 0.0%, p = NA)								-	
P-value for interacti	ion: p = 0.185								
Overall					11/112	23/114		> 0.3	4 (0.03, 3.40)
(l² = 82.1%, p = 0.0	02)								
							.015625 1	64	
						F	avors treatment	Favors control	

Figure C-13. Delirium incidence with sleep-related medications versus placebo in inpatients.

CAM=Confusion Assessment Method; CI=confidence interval; DRS-R-98=Delirium Rating Scale-Revised-98; DSM-IV=*Diagnostic and Statistical Manual of Mental Disorders*, 4th Edition; DSM-5=*Diagnostic and Statistical Manual of Mental Disorders*, 5th Edition; ICU=intensive care unit; NA=not applicable; NR=not reported. *Source*. Hatta et al. 2014b, 2017; Jaiswal et al. 2018.

Effect of sleep-related medications on delirium duration

The duration of delirium in surgical patients was reported in four trials, all of which continued the medication post-operatively (de Jonghe et al. 2014; Ford et al. 2020; Jaiswal et al. 2019; E.S. Oh et al. 2021). The duration of delirium had a range of 1 days to 3 days in the sleep-related medication groups, and 1 day to 2 days in the placebo groups, with a pooled MD of 0.18 days (95% CI -0.23–0.59, I²=13%). Subgroup analyses of specific medication and risk of bias were not significant.

In ICU patients treated with sleep-related medications to prevent delirium, the duration of delirium did not differ between treated and untreated patients in the three trials, with a pooled MD of -0.86 days (95% CI -1.88–0.16 days, I²=0%). The other two studies did not report data needed to pool, and individually they did not show differences in delirium outcomes between melatonin and placebo (Bellapart et al. 2020; Gandolfi et al. 2020). In ICU patients with a diagnosis of delirium, treatment did not shorten time to resolution of delirium and coma (adjusted HR 1.05, 95% CI 0.54–2.01) (Thom et al. 2019).

In general medical inpatients with delirium (N=28), the number of CAM-positive days (4.5 days vs. 5 days, P=0.18) did not differ for participants who received 5 mg of melatonin as compared with those who received placebo (Lange et al. 2021).

Effect of sleep-related medications on delirium severity

Two trials in post-operative populations reported on the severity of delirium with no significant differences between groups (Ford et al. 2020; E.S. Oh et al. 2021), but the data were too heterogeneous to pool. In cardiac surgery patients the median MDAS score was 9 (IQR 3–26, with possible score values of 0 to 30) in the melatonin group, and 8.5 (IQR 3–22) in the placebo group (P=0.22) (Ford et al. 2020). The proportion of patients who experienced episodes of severe delirium (MDAS>13) was not significantly different between groups (43% vs. 29%, P=0.33) (Ford et al. 2020). A study in older orthopedic patients found similar DRS-R-98 scores between participants treated with ramelteon as compared with placebo (19.7 vs. 19.0, P=0.56) (E.S. Oh et al. 2021). One trial reported severity of delirium was statistically significantly different between melatonin and placebo (P=0.003), but the data were not shown (Javaherforoosh Zadeh et al. 2021). Another trial reported duration of delirium was significantly shorter in the group that received melatonin plus dexmedetomidine as compared with those that received dexmedetomidine alone (24.5 hours vs. 48.0 hours, P=0.001) (Mahrose et al. 2021).

In general medical inpatients with delirium (N=28) as determined by the CAM, improvement in MDAS scores, between baseline and the mean of 5 daily posttreatment scores, did not differ between melatonin 5 mg and placebo (2.5 points vs. 2.2 points on a 30-point scale, P=0.41) (Lange et al. 2021). In a subsequent RCT of general medical inpatients (N=120) conducted by the same investigators, there was no significant difference in the severity of delirium as measured by the MDAS (4.9 [SD 7.6] with melatonin 5 mg vs. 5.4 [SD 7.2] with placebo; P=-0.42) (Lange et al. 2024). Among palliative care patients treated with melatonin as compared with placebo, there was no difference in delirium severity measured by the Nu-DESC scale over 3 days (P=0.19) (Lawlor et al. 2020).

Effect of sleep-related medications on length of stay

Length of ICU stay was reported in two trials of post-operative patients. One trial reported a statistically significantly shorter length of ICU stay with melatonin versus placebo (mean of 3.83 days vs. 4.00 days, P=0.04) (Javaherforoosh Zadeh et al. 2021). Another trial showed no differences between groups (median of 4 days each, P=0.349) (Jaiswal et al. 2019).

Length of hospital stay was reported in three trials of post-operative patients (de Jonghe et al. 2014; Ford et al. 2020; Jaiswal et al. 2019). The length of stay was significantly shorter in one trial of melatonin in older patients undergoing hip surgery (de Jonghe et al. 2014), significantly longer with melatonin in adult cardiac surgery patients (Ford et al. 2020), and not significantly different in a trial of ramelteon in patients undergoing pulmonary thromboendarterectomy (Jaiswal et al. 2019). The pooled estimate did not find a significant difference (MD 0.11 days, 95% CI -1.40–1.62, I^2 =82%). A subgroup analysis by medication did not find a significant effect. A subgroup analysis by type of surgery (cardiac/pulmonary vs. orthopedic) found a significant reduction in the orthopedic trial (MD -1.50 days, 95% CI -2.82 to -0.18) and a significant increase in the cardiac/pulmonary trials (MD 0.94 days, 95% C -1.40–1.62, I^2 =0%). However, the *P*-value for the interaction was not statistically significant (*P*=0.187).

Taken together, four studies of sleep-related medications did not show an effect of treatment on the length of stay in ICU patients, but the pooled effect showed substantial heterogeneity (MD -0.79 days, 95% CI, -2.72–1.14, I²=90%) (Abbasi et al. 2018; Azuma et al. 2018; Gandolfi et al. 2020; Nishikimi et al. 2018). Ramelteon differed from the other medications, showing a significant effect on ICU length of stay for treatment compared with placebo (median 4.6 days vs. 5.9 days, *P*=0.028 in a multivariate model) (Nishikimi et al. 2018). A subsequent large study of melatonin showed no effect on ICU length of stay (median: 5 days vs 5 days, *P*=0.135) or hospital length of stay (median: 14 days vs 12 days, *P*=0816) compared with placebo (Wibrow et al. 2022). Another study of 137 ICU patients (Abbasi et al. 2018) showed no effect of melatonin treatment on time spent in the hospital compared with placebo (18.1 days vs. 18.6 days, *P*=0.85).

Effect of sleep-related medications on mortality and adverse events

Three trials in post-operative patients reported on mortality during hospitalization (de Jonghe et al. 2014; Ford et al. 2020; Jaiswal et al. 2019), and one also reported 90-day mortality (de Jonghe et al. 2014). Overall, mortality was not different between the groups either during hospitalization (5% vs. 7%, RR 0.98, 95% CI 0.38–2.54, I²=0%) or at 90 days (21% vs. 21%, RR 0.98, 95% CI 0.67–1.45) (de Jonghe et al. 2014).

Among 428 ICU patients, three trials reported deaths—two trials using melatonin (Abbasi et al. 2018; Gandolfi et al. 2020) and one ramelteon (Nishikimi et al. 2018). The trials showed no effect of sleeprelated medications on mortality, either in the individual trials or in pooled analysis (9.8% vs. 9.8%, RR 1.01, 95% CI 0.57–1.79, I^2 =0%) (Abbasi et al. 2018; Gandolfi et al. 2020; Nishikimi et al. 2018). In a subsequent trial of melatonin compared with placebo, there was no significant difference in mortality at 90 days (15.5% vs 15.6%, *P*=0.948) (Wibrow et al. 2022). In addition, in ICU patients with a diagnosis of delirium, there was no statistically significant effect on mortality, and the estimate was imprecise (adjusted HR 0.31, 95% CI 0.07–1.32) (Thom et al. 2019). In terms of mortality in inpatients, the suvorexant trial included 72 patients, none of whom died in either the suvorexant or placebo group (Hatta et al. 2017).

Only one of the post-operative trials reported adverse events related to the study medications: nausea (5 ramelteon vs. 2 placebo), hypotension (2 ramelteon vs. 1 placebo), and dizziness (1 ramelteon vs. 2 placebo) (E.S. Oh et al. 2021). Logistic regression analysis for risk of any adverse event as a function of assignment to ramelteon was not significant (P=0.95).

One trial in 203 ICU patients did not show a significant difference in adverse events between melatonin and placebo (27% vs 35%, *P*=0.27) (Gandolfi et al. 2020). In another trial that compared melatonin with placebo in ICU patients, no serious adverse events were reported in either group (Wibrow et al. 2022). In general medical inpatients with delirium as determined by the CAM, adverse events were similar between melatonin-treated and untreated patients (Lange et al. 2021). In another trial of melatonin as compared with placebo in general medical inpatients, one subject who received melatonin withdrew because of nausea (Jaiswal et al. 2018).

The placebo-controlled ramelteon trial (Hatta et al. 2014b) reported no adverse events in any patient in a mixed group of ICU and general inpatients.

One trial of suvorexant in ICU patients reported that no patient in either group had an adverse event that investigators judged was attributable to the study medication (Azuma et al. 2018). There were no serious adverse events and no statistically significant differences in somnolence, headache, or dizziness between suvorexant and placebo in a mixed group of ICU and general inpatients, but events were few (0 to 6 per outcome [Hatta et al. 2017]).

Serious adverse events occurred in 67% of palliative care patients given melatonin and 57% given placebo (P=0.43), but these were not considered related to study medications (Lawlor et al. 2020).

Effect of sleep-related medications on other outcomes

Two trials of melatonin in post-operative patients reported on outcomes related to cognition, with no difference in cognitive decline (defined as Telephone Interview for Cognitive Status-Modified score <32) at discharge (Ford et al. 2020) or at 90 days post discharge (de Jonghe et al. 2014; Ford et al. 2020). One of these also reported on Katz Index of Independence in Activities of Daily Living scores at 90 days, again finding no difference between groups (de Jonghe et al. 2014). One of these trials also reported that anxiety and depression scores did not differ between groups (Ford et al. 2020).

Several trials reported on use of rescue medication in trials of sleep-related medications. Two trials in post-operative patients, one of melatonin and one of ramelteon, reported on use of other medications such as antipsychotics and benzodiazepines and found no differences between groups (de Jonghe et al. 2014; Jaiswal et al. 2019).

In ICU patients, the mean cumulative dose of rescue haloperidol did not differ between individual who were given melatonin and those given placebo, according to an analysis adjusted for baseline characteristics in one trial (Abbasi et al. 2018). The other melatonin trial did not show differences in the

use of rescue sedatives, antipsychotics, or α_2 agonists (Gandolfi et al. 2020). An additional trial in ICU patients showed no effect of suvorexant on rescue dexmedetomidine dose (Azuma et al. 2018).

In general medical inpatients with delirium, rates of rescue medication and restraint use were comparable between patients treated with melatonin and untreated patients (Lange et al. 2021).

Grading of the Overall Supporting Body of Research Evidence for Use of Melatonin or Ramelteon in the Prevention or Treatment of Delirium

o Magnitude of effect: Minimal to small. Most outcomes showed no effect of melatonin or ramelteon. For some subgroup analyses, a small effect was present but typically did not reach statistical significance and was not consistent in other outcomes or patient groups.

o Risk of bias: Moderate. The majority of studies (*N*=11) had a moderate risk of bias with five studies having a low risk of bias and two with a high risk of bias. The predominant reasons for an increased risk of bias were related to inadequate allocation concealment and masking as well as problems with attrition and differences in treatment groups at baseline.

o Applicability: Studies were conducted in a wide range of countries, with only four trials conducted in the United States or Canada. Approximately half of the studies were limited to older individuals, but the remaining studies included a range of adult ages. A mix of men and women were represented in the studies, but few studies reported information on race or ethnicity. Individuals with delirium at baseline were excluded in about half of studies, but the others did not describe whether delirium was present at baseline. In terms of co-occurring dementia, half of studies did not report this information and of the remaining studies, only one-third included patients with dementia. The majority of studies were in post-operative patients with a smaller number of studies in ICU or inpatient samples.

o Directness: Direct. The studies provided direct information on delirium related outcomes including incidence and duration as well as providing limited information on adverse events including mortality.

O Consistency: Consistent. The majority of studies show minimal to no effect of melatonin or ramelteon on prevention or treatment of delirium.

O Precision: Imprecise. Many of the studies were small with sizable confidence intervals, and there was significant imprecision in terms of optimal information sizes.

o Dose-response relationship: No available information.

o Confounding factors (including likely direction of effect): The data may be confounded by variations in delirium assessment due to rater training. Several of the studies had differences in the treatment and control groups at baseline as well as evidence of differential attrition. However, the direction of effect from these potential confounding factors is not clear.

o Publication bias: Not identified. Publication bias was not able to be assessed due to the small number of trials and differences in comparators.

o Overall strength of research evidence: Low. The studies had a moderate risk of bias and were generally consistent in their findings; however, many of the studies were small and several studies had differences in the treatment and control groups at baseline as well as evidence of differential attrition. Only a few studies were available that assessed the effects of melatonin or ramelteon on treatment of delirium.

Transitions of Care

Statement 14 – Medication Review at Transitions of Care

APA *recommends* **(1C)** that, in patients with delirium or who are at risk for delirium, a detailed medication review, medication reconciliation, and reassessment of the indications for medications, including psychotropic medications, be conducted at transitions of care within the hospital.

This recommendation is determined on the basis of a targeted review of the literature on the impact of medication interventions during transitions of care for patients with or at risk for delirium.

Medication review, reconciliation, and reassessment are critical because inappropriate short- or longterm psychotropic medication use may lead to unnecessary exposure to potential adverse effects of medications (e.g., increased mortality, development and worsening of cardiometabolic abnormalities, risk of falls), polypharmacy, and increased healthcare spending (Johnson et al. 2017; Lambert et al. 2021). Additionally, adults ages 65 and older are highly vulnerable to adverse effects from psychotropic medications (Ćurković et al. 2016). For instance, antipsychotic use in older adults has been linked to an increased risk of mortality, hip fracture, falls, urinary infections, cerebrovascular events (e.g., stroke, seizures), and pneumonia (Ćurković et al. 2016; Johnson et al 2017). This is especially concerning considering a recent review found that healthcare professionals perceive antipsychotics as effective for delirium but do not perceive them as having enough of a risk to limit their prescribing practices (Jaworksa et al. 2022).

Approximately one-quarter to one-half of ICU patients who received an antipsychotic medication for delirium were continued on the medication with transition to a lower acuity setting of care (Dixit et al., 2021; Flurie et al. 2015; Lambert et al. 2021). The highest rate of antipsychotic continuation was among patients in a community hospital of mixed ICU patients, whereas the lowest rate was among patients in a surgical ICU. In one study of the patients who continued on antipsychotics following transfer from the ICU, 61% were assessed for inappropriate antipsychotic continuation and almost two-thirds of this group (64%) were determined to have been continued on the medication inappropriately (Flurie et al. 2015).

A small number of trials were conducted at transitions of care and assessed the effects of multicomponent pharmacological interventions, such as medication review, medication reconciliation, and reassessment of the need for psychotropic medication. Findings support the use of medication-related interventions in this context. One trial conducted in the Netherlands assessed the effects of medication review on length of delirium, length of stay, mortality, and discharge destination among 93 patients (van Velthuijsen et al 2018). Duration of delirium in patients who underwent medication review was shorter than in controls (8.56 days vs 15.47 days). Patients who were taking up to 6 medications and who had a medication review had significantly shorter episodes of delirium than controls (MD 15.46 days, *P*<0.001). There were no differences between medication review patients and controls for length of stay, in-hospital mortality, or discharge destination.

In patients 70 years and older hospitalized for trauma, an individual pharmacotherapy management program appeared to effectively prevent complicating delirium, which the authors defined as "delirium necessitating further investigations as laboratory parameters, cranial computed tomography or magnetic resonance imaging, and/or psychiatric consultation" (*N*=404; Drewas et al. 2022). The pharmacotherapy management program was largely comprised of an electronic medication review and individualized recommendations on the basis of identified medication risks and interdisciplinary consensus. Use of the intervention was associated with a 90% reduction in risk of complicating delirium (OR 0.09, 95% CI 0.01–0.7, *P*=0.03) (Drewas et al. 2022). A Cochrane review of multi-component nonpharmacological interventions for delirium in non-ICU hospitalized patients (Burton et al. 2021) also found a small but favorable effect of medication review on reducing the risk of delirium (OR 0.81, 95% CI 0.21–3.02).

Several other intervention trials did not look at delirium-related outcomes but did report significant improvements in unnecessary exposure to psychotropic medication. One trial explored the use of a multi-component intervention to reduce high-risk medications in adults ages 70 and older (N=70) in acute medical care or surgical units who were at risk for delirium (Adeola et al. 2018). The intervention included technology-assisted medication review as well as formulary and policy changes, best practice alerts, and prescriber education. Medication review included the use of electronic pharmacy surveillance and alerts for pharmacist review of high-risk medications, which were to be followed by dose reduction, medication discontinuation, medication switching, or (when appropriate) continuation of the medication after conducting a risk-benefit assessment with the prescribing healthcare professional. High-risk medications targeted for intervention were zolpidem, diphenhydramine, lorazepam, methocarbamol, hydroxyzine, diazepam, cyclobenzaprine, carisoprodol, and meperidine. Investigators found that the proportion of patients who received at least one high-risk medication decreased from 45.6% to 31.3% and mean number of doses decreased for seven of the nine high-risk medications. Of the 6,645 electronic pharmacy surveillance alerts that were triggered and responded to, 31% resulted in a change to the medication (i.e., a discontinuation, dose reduction, or switch). The intervention also included discharge reconciliation, in which 21,956 best practice alerts were generated—38% of which resulted in the high-risk medication being discontinued.

A quality improvement trial designed to reduce inappropriate continuation of second-generation antipsychotics among patients with delirium discharged from the ICU (*N*=358) found that use of an electronic medication review and handoff tool was associated with reduced antipsychotic continuation at ICU discharge (78.7% continued pre-intervention vs 66.7% post-intervention, *P*=0.012) (Kram et al. 2019). Finally, one study included medical ICU patients who had been prescribed antipsychotics for delirium and assessed antipsychotic continuation before and after introduction of a medication tapering bundle intervention (D'Angelo et al. 2019). The bundle intervention, which included medication education and an antipsychotic discontinuation algorithm, was associated with a significant decrease in antipsychotic continuation (27.9% vs 17.7%, OR 0.56, 95% CI 0.31–0.99, *P*<0.05) and lower odds of antipsychotic continuation (OR 0.47, 95% CI 0.26–0.86, *P*=0.014) at ICU discharge (D'Angelo et al. 2019).

Grading of the Overall Supporting Body of Research Evidence for Medication Review at Transitions of Care

In the absence of a detailed systematic review on the medication review at transitions of care for patients with delirium, no grading of the body of research evidence is possible.

Statement 15 – Follow-up Planning at Transitions of Care

APA *recommends* **(1C)** that, when patients with delirium are transferred to another setting of care, plans for follow-up include:

- continued assessments for persistence of delirium;
- detailed medication review, medication reconciliation, and reassessment of the indications for medications, including psychotropic medications;
- assessment of consequences of delirium (e.g., post-traumatic symptoms, cognitive impairment); and
- psychoeducation about delirium for patients and their care partners.

This recommendation is determined on the basis of a targeted review of the literature on follow-up care for patients with delirium following transition to another care setting or discharge home.

Medication Review, Reconciliation, and Reassessment

As discussed in the evidence for Statement 14, a detailed medication review and medication reconciliation is important at transitions of care, including transfer of patients to other care settings. A systematic review of medication reconciliation studies showed reductions in medication discrepancies at transitions of care, although the quality of the evidence was low (Redmond et al. 2018). More recently, a cluster randomized trial in Canada examined the benefits of electronic retrieval of outpatient medication information in facilitating medication reconciliation in 3,491 discharged patients and also found a reduction in medication discrepancies (Tamblyn et al. 2019). Although studies have not found differences in other outcomes, such as risks of adverse medication effects, follow-up has usually been limited to 30 days of discharge (McDonald et al. 2022; Redmond et al. 2018; Tamblyn et al. 2019). Furthermore, other guidelines support reviewing medications to reduce those that are associated with higher risks of adverse effects in older individuals (American Geriatrics Society Beers Criteria[®] Update Expert Panel 2023).

Multiple retrospective studies suggest that a significant fraction of individuals with in-hospital delirium are discharged on an antipsychotic or sedative medication without receiving instructions to taper or discontinue the medication. In three studies of ICU patients who were on an antipsychotic medication for delirium when transitioned out of the ICU, 21% to 61% remained on the medication when discharged from the hospital (Boncyk et al. 2021; Dixit et al. 2021; Flurie et al. 2015). One retrospective chart review of 691 patients older than 65 who were prescribed an antipsychotic during hospital stay (i.e., ICU, general medical, and surgical patients) found approximately 30% were discharged on the antipsychotic (Johnson et al. 2017). Of those, 82% had a diagnosis of delirium. Only approximately 12% of patients

with delirium who were discharged on an antipsychotic received instructions to discontinue the antipsychotic (Johnson et al. 2017). In another study about half of patients (49%) discharged from an ICU on an antipsychotic medication received instructions in their discharge letter regarding tapering their medication, following up with a neurologist, seeking a psychiatric consultation, or explaining conditions in which their antipsychotic dose should be increased (Lambert et al. 2021).

Detailed medication review, medication reconciliation, and reassessment of the need for psychotropics may be able to decrease patients' exposure to inappropriate continuation of medication after transitions of care (Adeola et al. 2018; D'Angelo et al. 2019; Kram et al 2019; Stuart et al. 2020; see Appendix C, Statement 14). Although use of an electronic medication review and handoff tool reduced prescribing of antipsychotic medications on transitioning from the ICU, it was not associated with a reduced odds of antipsychotic prescribing at hospital discharge (OR 0.97, 95% CI 0.57–1.65) in one study (Kram et al. 2019). In contrast, other studies show benefits of medication-related interventions at discharge. For example, a cluster randomized trial in Canada used a software product aimed at identifying deprescribing opportunities in 5,698 hospitalized participants ages 65 and older who were taking at least five medications per day (McDonald et al. 2022). Although the primary outcome of adverse medication effects after discharge was no different between groups, rates of deprescribing were greater for individuals in the intervention group when compared with medication reconciliation alone (55.4% vs. 29.8%) (McDonald et al. 2022). In another Canadian study that used an interrupted time series analysis in 15,932 patients ages 66 and older (18,405 hospital discharges), the proportion of patients who received a prescription for a benzodiazepine, antipsychotic, or gastric acid suppressant declined from 16.3% to 13.4% with implementation of electronic medication reconciliation (Welk et al. 2021). For patients newly treated in the hospital with a benzodiazepine or antipsychotic medication, there was a small but significant decline in the proportion who returned to the hospital with a fracture or fall within 90 days of discharge (Welk et al. 2021). A study of 158 ICU patients prescribed antipsychotics for delirium had a significant decrease in antipsychotic prescribing at hospital discharge (32.9% vs 7.6%, P<0.001) following a pharmacist-led antipsychotic discontinuation protocol for delirium (Stuart et al. 2020). A medication tapering bundle intervention (D'Angelo et al. 2019) was also associated with significantly lower odds of antipsychotic continuation at hospital discharge (OR 0.40, 95% CI .018-0.89, P=0.024).

Continued Assessment for Persistence and Consequences of Delirium

In support of helping patients achieve better recovery, practice guidelines and consensus statements recommend continued assessment of cognitive and physical functioning at the next level of care following transition or at home/in the community following hospital discharge (Guthrie et al. 2018; Mikkelsen et al. 2020). Ongoing cognitive assessment for persistence of delirium after discharge is crucial because delirium is a powerful predictor of new-onset dementia compared with patients without delirium (OR 11.9, 95% CI 7.29–19.6, *P*<0.001) (Pereira et al. 2021). In a prospective survey of ICU patients (median age 65), the 171 patients with delirium (18.7%) had higher scores on a questionnaire of cognitive failures at 18 months post-discharge compared with those without delirium (van den Boogaard et al. 2012). Of 821 adults with respiratory failure or shock in a medical or surgical ICU, persistent cognitive impairment occurred and persisted in at least one-third of patients (Pandharipande et al.

2013). In addition, global cognitive impairment and worse executive function were found in patients with longer durations of delirium (*P*<0.05 or less at 3 and 12 months for both measures) (Pandharipande et al. 2013). Persistence of delirium in the months following discharge is also associated with greater rates of emergency visits, hospitalization, or death (Cole et al. 2017). Further, a meta-analysis of 23 studies among surgical and nonsurgical populations found a significant association between delirium and cognitive decline at 3 or more months following the delirium episode (Hedges g=0.45, 95% CI 0.34–0.57, *P*<0.001) (Goldberg et al. 2020). Over the long term (e.g., 24 to 36 months), ongoing cognitive assessment may be useful for monitoring disease course and fluctuations in symptoms (Cole and McCusker 2016). Physically, patients who develop delirium during hospitalization are at risk of greater functional decline and disability than hospitalized patients without delirium (Wilson et al. 2020).

In addition to post-discharge assessment of cognition, other long-term consequences of delirium can include anxiety, depression, PTSD, and lower quality of life (Bolton et al. 2021; Ramnarain et al. 2023; Wilson et al. 2020). Assessing for PTSD is particularly important for ICU patients with delirium, who in some studies demonstrate an increased risk of PTSD for up to 1 year following ICU stay (Bolton et al. 2021). For example, in 556 adults (median age 62) who had been hospitalized in an ICU with respiratory failure and/or shock, depression occurred in 36% and PTSD in 5% at 3- and 12-months post-discharge (Rengel et al. 2021). In an observational multicenter study in Norway, univariate analysis suggested that adult ICU patients (N=273) were more likely to exhibit evidence of post-traumatic stress at 3 months (as measured by the Impact of Event Scale-Revised [IES-R]) if they experienced delirium during the ICU stay although this was no longer significant on multivariable analysis (Friberg et al. 2023). Delirium was also associated with an increased risk of PTSD symptoms (as measured by the PTSD checklist—civilian version) on univariate and multivariable analyses in 205 patients with a nontraumatic intracerebral hemorrhage (Griffin et al. 2023). An Australian prospective cohort study of 103 adults who were mechanically ventilated in an ICU found that the 36% of patients with delirium were more likely to have symptoms of PTSD at 12 months on the IES-R (Bulic et al. 2020). A study of 198 adult patients who had stayed at least 4 days in an ICU in South Wales and visited an ICU follow-up clinic found that increased rates of PTSD as measured by the UK-Post-Traumatic Stress Syndrome 14-Questions Inventory were associated with a diagnosis of delirium as well as lower age, lower illness severity, and pre-illness psychopathology (Battle et al. 2017). However, other studies do not show an increased risk of PTSD with delirium as compared with ICU patients without delirium, although both groups show increased rates of PTSD and other psychiatric symptoms after discharge (Weidman et al. 2022; Wolters et al. 2016). Collectively, this evidence underscores the need for continued assessment post discharge to monitor patients for changes in functioning and, where possible, inform the use of interventions to help slow physical, cognitive, and psychosocial decline.

Little research has examined the quality of documentation of patients with delirium at discharge. The impact of follow-up interventions after delirium or critical care hospitalization has also been insufficiently studied (Schofield-Robinson et al. 2018). One retrospective chart review among Canadian patients with probable or definite delirium during hospitalization (*N*=110; Chuen et al. 2021) found only about one-quarter (25.4%) included instructions for follow-up care (e.g., cognitive assessment, specialist appointment). Other studies also suggest significant gaps in documentation at discharge (Johnson et al.

2017; Lambert et al. 2021) in patients who have experienced delirium in the hospital. This suggests post discharge care may be suboptimal for many patients and could benefit from strategies to ensure that quality standards are met.

Psychoeducation About Delirium

Caregivers and family could also help play a role in ensuring patients receive recovery-enhancing interventions. A recent literature review on interventions to support recovery from delirium found that strategies increasing the chances of long-term recovery include physical activities, such as rehabilitation and exercise programs to improve functioning and reduce frailty; cognitive activities, such as reality orientation, memory exercises, and cognitive stimulation; and emotional strategies, such as discussing any negative emotions about their delirium experience with a trusted person (O'Rourke et al. 2021).

Caregiver and family education are a necessary aspect of quality post discharge care for patients with delirium. A recent systematic literature review found families often do not receive enough information about delirium from healthcare professionals but that they would like to be more informed and included in helping to recognize and monitor for delirium in their loved one (Shrestha and Fick 2020). Desired information includes content about delirium etiology, pathologies, treatments, disease course, and nonpharmacological interventions to prevent and manage illness (Shrestha and Fick 2020). Studies suggest that, when properly educated, families can be reliable informants and can accurately identify and describe in detail the patient's delirium symptoms (Shrestha and Fick, 2020).

Finally, a small randomized controlled feasibility trial (*N*=35) pilot tested a transition-to-home model of care for older adults with delirium and their caregivers (Khan et al. 2022). The model included a multicomponent intervention that involved assessment for diagnosis of a cognitive disorder, medication review, patient and family education, assessment of functioning, and setting health goals. The intervention demonstrated feasibility but resulted in no differences in 30-day readmission or emergency department visits between intervention and control patients.

More research is needed to understand the effects of other caregiver- or family-led delirium interventions following release from the hospital. The TRAnsport and DElirium in older people (TRADE) project is currently being pilot tested in Germany and aims to determine the effects of a complex caregiver intervention both during hospital stay and after discharge (e.g., to home, to rehabilitation) on outcomes of delirium incidence and cognitive functioning (Leinert et al. 2021). Included in the intervention is education about nonpharmacological intervention strategies that can be implemented by families at home, such as supporting orientation, adapting communication, and promoting exercise. Positive findings from this and similar studies could lead to increased efforts to incorporate caregivers and family in the dissemination of post discharge interventions.

Grading of the Overall Supporting Body of Research Evidence for Follow-up Planning at Transitions of Care

In the absence of a detailed systematic review on follow-up planning at transitions of care for patients with delirium, no grading of the body of research evidence is possible.

Appendix D. Evidence Tables for Individual Studies Supporting Guideline Statements

Common exclusion criteria of studies were patients or relatives refusal, patients with known allergy to any of the studied drugs, contraindication to drugs, prior or chronic use of sedatives, sympathetic renal impairment, alcohol and/or substance abuse, patients with known psychiatric disorders or on antipsychotic medications, patients with epilepsy or Parkinson's disease, pregnancy, inability to communicate or complete assessments, or life expectancy ≤ 6 months (except for studies focused on end of life care).

Author (year); trial	Study characteristics	Study protocol including numbers of participants, interventions, duration,	Study population including main inclusion	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
name Abbasinia et al. (2021)	Design: RCT Setting: ICU Country: Iran Funding: None	and follow-up Randomized N: 60 Analyzed N: 60 Intervention (N=30): Video tutorial before surgery and HELP protocol after surgery; HELP consisted of reorientation, therapeutic activities, reduced use and doses of psychoactive drugs, early mobilization, promotion of sleep, maintenance of adequate hydration and nutrition, and provision of vision and hearing adaptations. Control (N=30): Usual care Duration: During ICU stay	and exclusion criteria Inclusion: Age ≥18 years, candidate for CABG, and alert at the time of admission Exclusion: Being admitted due to infectious disease, deterioration of the patient's condition after surgery, or history of previous major surgery	Mean (SD) age: 57.7 (10.24) Female %: 45 Race %: NR Delirium %: NR Function: NR Dementia %: NR Postop %: 100 Cancer %: NR	Main outcomes: There were no significant differences in the rate of delirium episodes and mean scores of RASS between both groups in the 2 nd (p=0.301, p=0.125) and 3 rd days (p=0.389, p=0.057) after surgery. However, the mean duration of ICU stays after surgery was significantly lower in the intervention group compared with the control group (p=0.042).	Moderate
Avendano- Cespedes et al. (2016); MID-Nurse-P	Design: RCT Setting: Inpatient Country: Spain Funding: Government	Follow-up (days): 3, Discharge Randomized N: 50 Analyzed N: 50 Intervention (N=21): Multi-component nurse-led intervention of risk factor analysis and interventions for identified risk factors; provided within first 24 hours of admission and daily until discharge Control (N=29): Usual care Duration: During hospitalization	Inclusion: Age ≥65 years hospitalized patients Exclusion: Severe cognitive decline	Mean (SD) age: 86 (5.5) Female %: 48 Race %: NR Delirium %: 18 Pfeiffer's SPMSQ (0-10 errors): 4.5 Dementia %: "severe" cognitive decline excluded	Overall attrition: 0% Main outcomes: Delirium prevalence (33.3% vs. 48.3%) and incidence (14.3% vs. 41.4%, p=0.039) were reduced in the intervention group vs. control group. Total delirium severity was lower in the intervention group vs. control group (35.0 vs. 65.0, p=0.040). Mortality was not	Moderate

Multi-Component Interventions

Nonpharmacological Interventions for Prevention of Delirium

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
		Follow-up (days): 16		Postop %: NR Cancer %: NR	different between the groups (19.0% vs. 17.2%). Overall attrition: 0%	
Boockvar et al. (2020); HELP-LTC	Design: RCT Setting: Nursing homes Country: U.S. Funding: Mixed	Randomized N: 219 Analyzed N: 219 Intervention (N=114): Long-term care facility adapted HELP; a multi- component intervention targeting delirium risk factors of cognitive impairment, immobility, dehydration, and malnutrition; delivered by certified nursing assistants Control (N=105): Usual care Duration: During acute illness Follow-up (days): 7, 30	Inclusion: Care homes residents who were suspected of having onset of acute illness or change in condition within the prior 24-48 hours Exclusion: Receiving hospice care or not determined to have a change in condition after further screening	Mean (SD) age: 81.7 (1.1) Female %: 65.3 Race %: -Caucasian: 33.3 -Black/African American: 35.2 -Asian: NR -Hispanic: 29.7 -Other: 1.8 Delirium %: NR Mean (SD) physical function, ADL: 15.2 (0.7) Non-Alzheimer's dementia %: 52.5 Alzheimer's disease %: 10.5 Postop %: NR Cancer %: NR Hospitalized in the past 12 months %: 60.7	Main outcomes: Delirium symptoms declined over the course of the episode (mean CAM-S=3.63 at start vs. 3.27 at end). Overall, 33.8% of the total sample experienced incident delirium. After adjusting for baseline cognitive function, no significant differences were found in delirium or delirium severity between the groups (CAM-S=3.6 for the intervention group vs. 2.8 for the control group). Hospitalization was not significantly different between the groups. Attrition at follow-up: 11% vs. 21%	High
Boustani et al. (2012); Khan et al. (2013); e- CHAMPS trial	Design: RCT Setting: Inpatient Country: U.S. Funding: Government	Randomized N: 424 Analyzed N: 424 Intervention (N=199): Clinical decision support system to alert physicians to the presence of cognitive impairment, recommend early referral to a geriatrician, and suggest discontinuation of the use of urinary catheters, physical restraints, and anticholinergic drugs Control (N=225): Usual care	Inclusion: Age ≥65 years, hospitalized, with cognitive impairment Exclusion: Those with aphasia	Mean (SD) age: 77.2 (8.1) Female %: 65.7 Race %: -Caucasian: NR -Black/African American: 59.5 -Asian: NR -Other: NR Delirium %: 30.6 Mean (SD) Charlson Comorbidity Index: 2.1 (1.9)	Main outcomes: No difference was found in the incidence of delirium (33.7% vs. 31.1%, p=0.78). Similar results were found when analyzing those with delirium at baseline only (data NR). Attrition: NR	Moderate

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
		Duration: During hospitalization Follow-up (days): Until discharge, 30		Dementia %: NR Mean (SD) SPMSQ: 5.1 (2.7) Postop %: NR Cancer %: NR		
Caplan et al. (2006); The REACH-OUT trial	Design: RCT Setting: Inpatient Country: Australia Funding: Government	Randomized N: 104 Analyzed N: 70 Intervention (N=70): Home rehabilitation service provided by a hospital-based multidisciplinary outreach service made up of nurses, physiotherapists, occupational therapists, and doctors Control (N=34): Usual care in geriatric rehabilitation ward in hospital Intervention duration: Mean of 20 visits Control duration: During hospitalization Follow-up (days): 30, 182	Inclusion: Patients with a LOS >6 days who were referred for geriatric rehabilitation, expected to return home, and lived reasonably independent after rehabilitation Exclusion: Patients who lived in a nursing home	Mean (SD) age: 83.9 (7.55) Female %: 62.5 Race %: NR Delirium %: NR Mean (SD) FIM: 76.44 (21.17) Dementia %: 25 Postop %: NR Cancer %: NR Mean (SD) number of medications: 5.66 (3.22)	Main outcomes: Lower odds of delirium were found in the home rehabilitation group vs. in the usual care group (OR 0.17, 95% CI 0.03 to 0.65). Attrition: 24% vs. 26%	Moderate
Chen et al. (2011); mHELP	Design: Non- RCT Setting: Inpatient Country: Taiwan Funding: Government	Randomized N: 189 Analyzed N: 179 Intervention (N=107): mHELP consisting of early mobilization, nutritional assistance, and therapeutic (cognitive) activities implemented by a trained nurse; daily Control (N=82): Usual care; daily Duration: During hospitalization Follow-up (days): Unclear	Inclusion: Age ≥65 years, admitted to the 36-bed GI ward, scheduled for elective abdominal surgery, and expected LOS of >6 days Exclusion: Profound sensory impairment or aphasia, intubation or respiratory isolation, severe dementia, coma, or critical condition	Mean (SD) age: 73 (5.71) Female %: 45 Race %: NR Delirium %: NR Mean (SD) MMSE: 26.6 (4.05) Dementia %: "severe" dementia excluded Postop %: 100 Cancer %: 78 Mean (SD) duration of surgery minutes: 214.8 (82.2)	Main outcomes: Delirium rate was significantly lower in the mHELP group (0%) vs. the control group (16.7%) (p<0.001). Attrition: 5% vs. 6%	Moderate
Chen et al. (2017); mHELP	Design: RCT Setting: Postop, abdominal Country:	Randomized N: 377 Analyzed N: 375 Intervention (N=197): mHELP consisting of daily orienting communication, oral and nutritional assistance, and early	Inclusion: Age ≥65 years, admitted to 1 of two 36- bed GI wards of a single hospital, scheduled for elective abdominal	Mean (SD) age: 74 (5.9) Female %: 44 Race %: NR Delirium %: NR Mean (SD) MMSE: 26.9	Main outcomes: POD occurred in 13/196 (6.6%) mHELP participants vs. 27/179 (15.1%) control individuals (RR 0.44 in the	Moderate

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
	Taiwan Funding: Government	mobilization; daily Control (N=180): Usual care; daily Duration: During hospitalization Follow-up (days): Unclear	surgery, and expected LOS >6 days Exclusion: NR	(3.48) Dementia %: NR Postop %: 100 Cancer %: 91 Median (IQR) duration of surgery minutes: 195 (105) vs. 213 (98)* *Not reported overall or with means to be able to calculate	mHELP group) (95% CI 0.23 to 0.83, p=0.008). The intervention group had a shorter median LOS (12.0 days) vs. control group (14.0 days) (p=0.04). Attrition: 3% vs. 2%	
Dong et al. (2020); mHELP	Design: RCT Setting: Inpatient Country: China Funding: Government	Randomized N: 106 Analyzed N: 103 Intervention (N=53): mHELP including delirium and dementia improvement plans and multiple medication management plan; the assessment of delirium risk factors, delirium diagnosis, and multidisciplinary intervention for elderly patients with severe acute pancreatitis Control (N=53): Usual care Duration: During hospitalization Follow-up (days): 14	Inclusion: Age ≥70 years with severe acute pancreatitis and expected hospital stay >2 weeks Exclusion: History of severe acute pancreatitis, coma, dementia, low immune function, or end-stage disease	Mean (SD) age: 76.1 (4.5) Female %: 36 Race %: NR Delirium %: NR Function: NR Dementia %: 0 (excluded) Postop %: NR Cancer %: NR	Main outcomes: The incidence of delirium was 4.00% in the intervention group and 16.98% in the control group; the difference was statistically significant (p=0.033). Attrition: 6% vs. 0%	Moderate
Guo et al. (2016)	Design: RCT Setting: Postop, cancer Country: China Funding: None	Randomized N: 182 Analyzed N: 160 Intervention (N=91): Multi-component, nonpharmacological intervention focusing on general geriatric approaches and supportive nursing care; nursing staff received training and guidance from a geriatric specialist and pre-operatively provided this guidance to the patient. Tools (e.g., calendars, clocks, glasses) were repeatedly offered to accomplish time, place, and character orientation. For patients with endotracheal	Inclusion: Age 65-80 years undergoing tumor resection surgery with a duration of postop stay in the ICU ≥3 days Exclusion: History of CNS disorder or mental illness or MMSE <24 or dementia	Mean (SD) age: 73.5 (5.6) Female %: 59 Race %: NR Delirium %: NR Mean (SD) preop Charlson's Comorbidity Index: 1.6 (0.8) Mean (SD) preop MMSE: 27.2 (1.9) Dementia %: 0 (excluded) Postop %: 100 Cancer %: 100	Main outcomes: Compared with usual care, the intervention group experienced less POD (incidence and duration, p<0.05). Attrition: 11% vs. 13%	Moderate

Author	Study	Study protocol including numbers of	Study population	Sample demographics	Results including main	Risk of
(year); trial	characteristics	participants, interventions, duration,	including main inclusion		outcomes and attrition rates	Bias
name		and follow-up	and exclusion criteria			
		intubation or a tracheostomy,		Mean (SD) LOS minutes: 213		
		communication card and WordPad were		(68)		
		created. Noise was decreased as much as				
		possible, and measures were adopted to				
		create a good sleep-wake cycle. Sleep				
		mask and ear plugs were allocated. If				
		possible, no restraints or indwelling				
		catheters were applied. Bedside MP3				
		players were provided to play light music.				
		Control (N=91): Usual care				
		Duration: During ICU stay				
		Follow-up (days): 1, 2, 3				
Hamzehpour	Design: RCT	Randomized N: 100	Inclusion: Age ≥18 years,	Mean (SD) age: 47.7 (22.6)	Main outcomes: Mean	Moderate
et al. (2018)	Setting: ICU	Analyzed N: 100	GCS >7, with no mental	Female %: 27	Neecham score on 4 th day	
	Country: Iran	Intervention (N=50): Developed on the	illness	Race %: NR	was lower in the control	
	Funding:	basis of the Roy adaptation model for	Exclusion: Those who	Delirium %: NR	group vs. intervention group	
	University	identifying and converting maladaptive	died during the study	Mean GCS: 11.6	(17.40 vs. 20.58, p<0.028) as	
		behaviors (delirium) to adaptive		Dementia %: NR, but	well as on the 4 th night (16.78	
		behaviors in 7 physiological dimensions		excluded mental illness	vs. 21.35, p<0.001).	
		by increasing, decreasing, or adjusting		Postop %: 98	Overall attrition: 0%	
		each trigger		Cancer %: NR		
		Control (N=50): Usual care		Received MV %: 30		
		Duration: During ICU stay				
		Follow-up (days): 7				
Hempenius	Design: RCT	Randomized N: 297	Inclusion: Age ≥65 years,	Mean (SD) age: 77.54 (7.22)	Main outcomes: Delirium	Moderate
et al. (2013;	Setting:	Analyzed N: 260	undergoing elective	Female %: 64	occurred in 31/260 patients	
2016); LIFE	Postop, cancer	Intervention (N=148): Geriatric team	surgery for a solid tumor,	Race %: NR	(11.9%), and there was no	
trial	Country: The	delivered a multi-component	and frail	Delirium %: NR	significant difference on the	
	Netherlands	intervention focused on best supportive	Exclusion: Unable to	Mean (SD) SF-36 Physical	incidence of delirium	
	Funding:	care and the prevention of delirium; a	complete the study	Function Scale: 48.03 (30.53)	between the intervention	
	Government	preop checklist of medical history was	protocol, follow-up	Dementia %: NR	group and the usual care	
		completed, and an individual treatment	schedule before	Mean (SD) MMSE: 26.5	group (9.4% vs. 14.3%, OR	
		plan was drawn up on the basis of		(3.47)	0.63, 95% CI 0.29 to 1.35).	

Author	Study	Study protocol including numbers of	Study population	Sample demographics	Results including main	Risk of
(year); trial	characteristics	participants, interventions, duration,	including main inclusion		outcomes and attrition rates	Bias
name		and follow-up	and exclusion criteria			
		patient-related risk factors.	inclusion, and fill in the	Postop %: 100	There were no differences	
		Control (N=149): Usual care	questionnaires	Cancer %: 100	between the groups for any	
		Duration: During hospitalization			of the outcomes 3 months	
		Follow-up (days): Until discharge			after discharge. The presence	
					of POD was associated with	
					an increased risk of decline in	
					ADL functioning (OR 2.65,	
					95% CI 1.02 to 6.88), an	
					increased use of supportive	
					assistance (OR 2.45, 95% CI	
					1.02 to 5.87), and a decreased	
					chance to return to the	
					independent preop living	
					situation (OR 0.18, 95% CI	
					0.07 to 0.49).	
					Attrition at follow-up: 14% vs.	
					11%	
Hosie et al.	Design: RCT	Randomized N: 72	Inclusion: Age ≥18 years	Mean (SD) age: 71.8 (12.9)	Main outcomes: One-third of	Moderate
(2020);	Setting:	Analyzed N: 65	with advanced (stage 4)	Female %: 44	control site patients (8/25,	
PRESERVE	Palliative	Intervention 1 (N=20): Multi-component	cancer and 1 of the 4-	Race %: NR	32%) became delirious within	
Pilot Study	Country:	intervention consisting of 6 domains:	specialist palliative care	Delirium %: NR	7 days of admissions vs. one-	
	Australia	eating and drinking, sleep, exercise,	inpatient units	Function: NR	fifth (4/20, 20%) at	
	Funding: Mixed	reorientation, vision and hearing, and	Exclusion: NR	Dementia %: NR	intervention and waitlist sites	
		family partnership		Postop %: NR	(p=0.5). Mean (SD) delirium	
		Intervention 2 (N=27): Waitlist		Cancer %: 100	severity (DRS-R-98) scores	
		Control (N=25): No intervention			were 16.8 (12.0) control sites	
		Duration: During admission			vs. 18.4 (8.2) (p=0.6)	
		Follow-up (days): 7			intervention and 18.7 (7.8)	
					(p=0.5) waitlist sites. The	
					intervention caused no	
					adverse events.	
					Attrition: 0% vs. 26% vs. 0%	

Author	Study	Study protocol including numbers of	Study population	Sample demographics	Results including main	Risk of
(year); trial	characteristics	participants, interventions, duration,	including main inclusion		outcomes and attrition rates	Bias
name		and follow-up	and exclusion criteria			
Khan et al.	Design:	Randomized N: 60 (those transferred to	Inclusion: Age ≥65 years,	Mean (SD) age: 74.6 (8.4)	Main outcomes: No	Moderate
(2013);	Subgroup	the ICU for at least 1 day among the	enrolled in the e-	Female %: 52	difference was found in the	
Boustani et	analysis of RCT	original 424 patients enrolled in the e-	CHAMPS trial,	Race %:	incidence of delirium	
al. (2012);	Setting: ICU	CHAMPS trial)	transferred to the ICU	-Caucasian: NR	(intervention: 27% vs. usual	
e-CHAMP	Country: U.S.	Analyzed N: 60	during hospital stay	-Black/African American:	care: 29%, p=0.85).	
trial	Funding:	Intervention (N=30): Clinical decision	Exclusion: Those who	45%	Attrition: NR	
	Government	support system to alert physicians to the	had previously been	-Asian: NR		
		presence of cognitive impairment,	enrolled in any other	-Other: NR		
		recommend early referral to a	study, were aphasic, or	Delirium %: 0% (excluded)		
		geriatrician, and suggest discontinuation	were unresponsive at	Mean (SD) Charlson		
		of the use of urinary catheters, physical	the time of screening	Comorbidity Index: 2.3 (1.8)		
		restraints, and anticholinergic drugs		Mean (SD) APS: 32.4 (17.6)		
		Control (N=30): Usual care		Mean (SD) SPMSQ: 5.0 (2.9)		
		Duration: During hospitalization		Dementia %: NR		
		Follow-up (days): Until discharge, 30		Postop %: NR		
				Cancer %: NR		
				Received MV: 17%		
Moon and	Design: RCT	Randomized N: 134	Inclusion: Age ≥18 years,	Mean (SD) age: 69.7 (13.1)	Main outcomes: Application	Moderate
Lee (2015)	Setting: ICU	Analyzed N: 123	hospitalized for ≥48	Female %: 51.2	of the intervention had no	
	Country: South	Intervention (N=65): Multi-component	hours in the ICU	Race %: NR	significant effect on delirium	
	Korea	intervention of delirium risk monitoring	Exclusion: Persistent	Delirium %: NR	incidence, in-hospital	
	Funding:	and screening cognitive, sensory,	score of -4 or -5 on RASS,	Function: NR	mortality, re-admission to the	
	University	physical, and social changes; cognitive	MMSE-K score of ≤23,	Dementia %: NR	ICU, or ICU LOS. Whereas the	
		assessment and orientation;	admission to isolation	Postop %: NR	risk of 30-day in-hospital	
		environment interventions; and early	ward due to infection, or	Cancer %: NR	mortality was not significantly	
		therapeutic interventions; daily	death or discharge on	Ever used ventilator %: 21.1	lower in the intervention	
		Control (N=69): Usual care; daily	the day of admission		group than in the control	
		Intervention duration: 7 days			group (OR 0.33, 95% CI 0.10	
		Control duration: During hospitalization			to 1.09), a significantly	
		Follow-up (days): 7, 30			decreased 7-day in-hospital	
					mortality was found in the	
					intervention group (HR 0.09,	
					95% CI 0.01 to 0.72).	

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
					Attrition: 8% vs. 9%	
Lapane et al.	Design: RCT	Randomized N: Unclear	Inclusion: Age ≥50	Mean age: 65-85	Main outcomes: Newly	High
(2011);	Setting:	Analyzed N: 3,538	geriatric bed, Medicare	Female %: 70	admitted residents in the	
GRAM	Nursing homes	Intervention (N=1,769): GRAM software	and Medicaid certified	Race %:	intervention homes	
software	Country: U.S.	to identify patients with risk factors for	nursing homes with few	-Caucasian: NR	experienced a lower rate of	
	Funding:	falls and delirium, and when identified,	short-stay residents	-Black/African American: NR	potential delirium onset	
	Government	implementing a resident assessment	Exclusion: NR	-Asian: NR	(adjusted HR 50.42, 95% CI	
		protocol		-Other: 14.5	50.35 to 0.52), overall	
		Control (N=1,769): Usual care		Delirium %: 3	hospitalization (adjusted HR	
		Intervention duration: Within 24 hours		Moderate cognitive	50.89, 95% CI 50.72 to 1.09),	
		of admission for new admissions and		impairment %: 47	and mortality (adjusted HR	
		every 30 days for long-term residents		Severe cognitive	50.88, 95% CI 50.66 to 1.16)	
		Control duration: Unclear		impairment %: 24	than those in usual care	
		Follow-up (days): Unclear		Dementia %: 39	homes. In longer stay	
				Postop %: NR	residents, the effects of the	
				Cancer %: 10	intervention were	
				Taking 6-9 medications at	attenuated.	
				time of intervention %: 30.3	Attrition: NR	
				Taking ≥10 medications at		
				time of intervention %: 56.3		
Lundström	Design: RCT	Randomized N: 400	Inclusion: Age ≥70 years	Mean (SD) age: 80.0 (5.9)	Main outcomes: Delirium was	Moderate
et al. (2005)	Setting:	Analyzed N: 400	admitted to 2 wards over	Female %: 55.7	equally common on the day	
	Inpatient	Intervention (N=200): Geriatric ward	an 8-month period	Race %: NR	of admission at the 2 wards,	
	Country:	staff education in delirium assessment,	Exclusion: NR	Delirium %: NR	but fewer patients remained	
	Sweden	prevention, and treatment and re-		Function: NR	delirious on day 7 on the	
	Funding: Mixed	organization from a task-allocation care		Dementia %: 4.5	intervention ward (19/63,	
		system to a patient-allocation system		Mean (SD) MMSE: 25.2 (6)	30.2%) vs. in the usual care	
		with individualized care; daily		Postop %: NR	group (37/62, 59.7%)	
		Control (N=200): Usual care; daily		Cancer %: NR	(p=0.001).	
		Intervention duration: Until discharge			Attrition: NR	
		Control duration: During hospitalization				
		Follow-up (days): Until discharge				

Author (year); trial	Study characteristics	Study protocol including numbers of participants, interventions, duration,	Study population including main inclusion	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
name		and follow-up	and exclusion criteria			
Lundström et al. (2007); Stenvall et al. (2012)	Design: RCT Setting: Postop, orthopedic Country: Sweden Funding: Government	Randomized N: 199 Analyzed N: 199 Intervention (N=102): Postop multi- factorial intervention program in a 24- bed geriatric unit specializing in geriatric orthopedic patients where the staff worked as a team, applying comprehensive geriatric assessment, management, and rehabilitation; daily Control (N=97): Usual care; daily Intervention duration: Until discharge Control duration: During hospitalization Follow-up (days): Until discharge	Inclusion: Age ≥70 years, with femoral neck fracture Exclusion: Severe RA, hip osteoarthritis, and renal failure; pathological fracture; patients bedridden before the fracture	Mean (SD) age: 82.1 (6.1) Female %: 74.4 Race %: NR Delirium %: 26.3 Functioning: NR Dementia %: 32 Postop %: 100 Cancer %: NR Mean (SD) number of medications: 5.8 (3.7)	Main outcomes: Days with POD were fewer in the intervention group vs. control group (5.0 days [SD 7.1] vs. 10.2 days [SD 13.3], p=0.009). A lower proportion of the intervention patients was delirious post-operatively vs. controls (56/102 [54.9%] vs. 73/97 [75.3%], p=0.003). 18% in the intervention group vs. 52% control group were delirious after the postop day 7 (p<0.001). Intervention patients suffered from fewer complications, such as decubitus ulcers, urinary tract infections, nutritional complications, sleeping problems, and falls than controls.	Moderate
Rice et al.	Design: RCT	Randomized N: 134	Inclusion: Age ≥50 years	Mean (SD) age: 66 (10)	Attrition: 6% vs. 7% Main outcomes: Delirium	Moderate
(2017);	Setting: ICU	Analyzed N: 125	admitted to a 32-bed	Female %: 43	incidence was 8% (10/125)	
mHELP	Country: U.S.	Intervention (N=67): Multi-component	neurological ICU or a 44-	Race %:	with 3 subjects in the	
	Funding: Non-	intervention including all standardized	bed stroke unit	-Caucasian: 48	intervention group vs. 7 in the	
	profit	stroke care; the intervention was also	Exclusion: Delirium at	-Black/African American: 47	usual care group.	
		augmented by 1) therapeutic activities	baseline, aphasia, or LOS	-Asian: 1.6	Attrition at follow-up: 12% vs.	
		twice daily on the basis of mHELP and 2)	<48 hours	-Other: 3.2	1%	
		calculated anticholinergic burden and		Delirium %: 0 (excluded)		
		medication risk each day by clinical		Function: NR		
		pharmacists, using AChB and ADS, to		Dementia %: NR		
		guide medication recommendations;		Mean (SD) NIHSS: 4.76		

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
Rood et al. (2021); UNDERPIN- ICU study	Design: RCT Setting: ICU Country: the Netherlands Funding: Government	daily Control (N=67): Usual care; daily Duration: During hospitalization Follow-up (days): Unclear Randomized N: 1,749 Analyzed N: 1,749 Intervention (N=924): Customized nursing interventions to reduce delirium aimed at visual and hearing impairment, orientation loss, sleep deprivation, cognitive impairment, and immobility Control (N=825): Usual care Duration: During ICU stay Follow-up (days): 28	Inclusion: Age ≥18 years, medical, surgical, and trauma critically ill patients that were at high-risk to develop delirium (E-PRE-DELIRIC score ≥35%), and delirium-free at time of ICU admission Exclusion: Expected ICU stay <1 day or reliable assessment of delirium not possible (acute brain injury, sustained coma during completed ICU stay [RASS score ≤-3], audiovisual disorders, language problems, mental disability, or	(4.91) Mean (SD) MoCA: 20.4 (5.95) Postop %: NR Cancer %: NR Mean (SD) age: 71 (10) Female %: 40 Race %: NR Delirium %: NR Median (IQR) E-PRE- DELIRIC %: 42 (37-49) Mean (SD) APACHE-IV: 82 (30) Dementia %: NR Documented history of cognitive impairment % (dementia, mild cognitive impairment, or delirium): 11.1 Postop %: 9.6 Cancer %: NR	Main outcomes: Patients in the intervention period had median 23 (IQR 4-27) delirium-free and coma-free days alive, compared with median 23 (IQR 5-27) days for patients in the control group (MD -1.21 days, 95% CI -2.84 to 0.42 days, p=0.15). Also, the number of delirium days was similar: median 2 days (IQR 1-4) (ratio of medians 0.90, 95% CI 0.75 to 1.09, p=0.27). Overall attrition: 0%	Moderate
Siddiqi et al. (2016); Stop Delirium!	Design: RCT Setting: Nursing homes Country: U.K. Funding: Government	Randomized N: 215 Analyzed N: 160 Intervention (N=103): Stop Delirium!; a 16-month-enhanced educational package incorporating multiple strategies to support care home staff to address key delirium risk factors Control (N=112): Usual care	aphasia) Inclusion: Residents of included care homes Exclusion: Those receiving end of life care	Mean (SD) age: 84 (8.4) Female %: 69 Race %: -Caucasian: 99.5 -Black/African American: 0.5 -Asian: 0 -Other: 0 Delirium %: 1.4	Main outcomes: 1-month delirium prevalence was 4.0% in intervention vs. 7.1% in control. Attrition: 27% vs. 24%	High

Author	Study	Study protocol including numbers of	Study population	Sample demographics	Results including main	Risk of
(year); trial	characteristics	participants, interventions, duration,	including main inclusion		outcomes and attrition rates	Bias
name		and follow-up	and exclusion criteria			
		Duration: Unclear		Cognitive impairment % (6-		
		Follow-up (days): 480		CIT score ≥8): 70		
				Median (IQR) Charlson		
				Comorbidity Index: 1.0 (0-8)		
				Dementia %: 42		
				Postop %: NR		
				Cancer %: NR		
				End of life/palliative care %:		
				0 (excluded)		
				Mean (SD) number of		
				medications taken at		
				baseline: 7.3 (4.1)		
Verloo et al.	Design: RCT	Randomized N: 114	Inclusion: Age ≥65 years,	Mean age: 83	Main outcomes: There were	Moderate
(2015)	Setting: Home	Analyzed N: 103	recently discharged from	Female %: 65	no statistical differences	
	care	Intervention (N=56): Multi-component	hospital with a	Race %: NR	regarding symptoms of	
	Country:	person-centered nursing interventions	prescription for home	Delirium %: NR	delirium (p=0.085), cognitive	
	Switzerland	consisting of assessment, detection,	health care	Mean number of delirium	impairment (p=0.151), and	
	Funding:	monitoring, support, dispensed care,	Exclusion: Those who	symptoms (CAM 0-9): 2.5	functional status (p=0.235)	
	Government	health promotion, and education	had outpatient	Dementia %: NR	between the intervention and	
	and university	Control (N=58): Usual care	treatment within the	Mean MMSE: 23.88	control groups at study entry	
		Intervention duration: Within 2 days of	hospital premises and a	Mean IQCODE: 3.68	and at 1 month. After	
		starting study, then again on days 3, 7,	medical prescription for	Postop %: NR	adjustment, statistical	
		14, and 21	a single intervention of	Cancer %: NR	differences were found in	
		Control duration: Mean (SD) of 2.28	home health care and		favor of the intervention	
		(0.84) weekly visits per person	were outside the study		group for symptoms of	
		Follow-up (days): 30	reach		delirium (p=0.046), cognitive	
					impairment (p=0.015), and	
					functional status (p=0.033).	
					Attrition at follow-up: 9% vs.	
					10%	

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
Wang Y.Y. et al. (2020); t- HELP	Design: RCT Setting: Postop, elective other Country: China Funding: Government	Randomized N: 281 Analyzed N: 281 Intervention (N=152): t-HELP consisting of 3 universal protocols and 8 targeted protocols; the universal protocols included orientation, therapeutic activities, and early mobilization protocol. The targeted protocols were tailored for each patient on the basis of delirium-related risk factors; daily Control (N=129): Usual care; daily Duration: Until POD 7 or discharge Follow-up (days): 30	Inclusion: Age ≥70 years, scheduled for an elective surgical procedure with expected LOS >2 days Exclusion: Delirium at baseline or severe dementia	Mean (SD) age: 75.7 (5.2) Female %: 39 Race %: NR Delirium %: 0 (excluded) Cognitive function intact %: 83 Median (IQR) APACHE II: 15 (12-20) vs. 14 (12-20)* *Reported as median for each group, not overall Dementia %: "severe" dementia excluded Postop %: 100 Cancer %: 96	Main outcomes: POD occurred in 4 participants (2.6%) in the intervention group vs. 25 (19.4%) in the control group (RR 0.14, 95% CI 0.05 to 0.38). NNT to prevent 1 case of POD was 5.9 (95% CI 4.2 to 11.1). Attrition: 13% vs. 11%	Low
Watne et al. (2014); Oslo Orthogeriatr ic Trial	Design: RCT Setting: Postop, orthopedic Country: Norway Funding: Mixed	Randomized N: 329 Analyzed N: 329 Intervention (N=163): Multi-component intervention in the acute geriatric ward; geriatric assessment by nurses, nursing assistants, physiotherapists, occupational therapists, nutritionists, and social workers and daily interdisciplinary meetings; daily Control (N=166): Usual care in the orthopedic ward Intervention duration: Until discharge Control duration: During hospitalization Follow-up (days): 5, until discharge, 120, 365	Inclusion: Patients admitted acutely to the hospital with a hip fracture Exclusion: Hip fracture as a part of a high energy trauma (defined as a fall from higher than 1 m) or if they were moribund on admission	Median age: 85 Female %: 75.7 Race %: NR Delirium %: 29.5 Median (IQR) Charlson Comorbidity Index: 1 (0-2) Mean (SD) APACHE II: 9.4 (2.7) Median Barthel Index: 18 Dementia %: 49 Postop %: 100 Cancer %: NR Median (IQR) medications used regularly: 4.5 (2-7)	Main outcomes: No significant difference was found in delirium rates (49% intervention group vs. 53% usual care group, p=0.51) or 4-month mortality (17% vs. 15%, p=0.50) between the intervention and the control groups. Attrition: 2% vs 1%	Moderate
Young et al. (2020)	Design: RCT	Randomized N: 713 Analyzed N: 713 Intervention (N=343): Multi-component	Inclusion: Age ≥65 years admitted to study wards Exclusion: Delirium	Mean (SD) age: 82.8 (7.9) Female %: 68.3 Race %:	Main outcomes: Rates of new-onset delirium were lower than expected and did	Moderate

Author	Study	Study protocol including numbers of	Study population	Sample demographics	Results including main	Risk of
(year); trial	characteristics	participants, interventions, duration,	including main inclusion		outcomes and attrition rates	Bias
name		and follow-up	and exclusion criteria			
	Setting:	intervention consisting of actions	present on admission,	-Caucasian: 91.7	not differ between groups (24	
	Inpatient	centered on 10 risk factors associated	discharge planned within	-Black/African American: NR	[7.0%] intervention group vs.	
	Country: U.K.	with the development of delirium;	48 hours, delirium	-Asian: NR	33 [8.9%] control group, OR	
	Funding: Mixed	interventions directly affect the patient	assessment not	-Other: NR	0.68, 95% CI 0.37 to 1.26,	
		experience of care and include	performed by a	Delirium %: 0 (excluded)	p=0.2225).	
		optimizing hydration and nutrition,	researcher within 24	Mean (SD) Charlson	Attrition at 10-day follow-up:	
		reducing environmental triggers	hours of admission or	Comorbidity Index: 1.7 (1.9)	8% vs. 6%	
		(excessive noise, multiple moves),	preop, end of life care	Cognitive impairment		
		increasing orientation to time and place,	being provided, or under	and/or dementia %: 21		
		improving communicative practices	the care of another ward	Postop %: NR		
		(personally meaningful interaction and		Cancer %: NR		
		cognitive stimulation), and supporting				
		and/or encouraging mobility and better				
		management of pain and infection.				
		Control (N=370): Usual care				
		Duration: During hospitalization				
		Follow-up (days): 10, 30, 90				

AChB=Anticholinergic Cognitive Burden scale; ADL=Activities of Daily Living; ADS=Anticholinergic Drug Scale; APACHE II=Acute Physiology and Chronic Health Evaluation II; APACHE-IV=Acute Physiology and Chronic Health Evaluation-IV; APS=Acute Physiology Score; CABG=coronary artery bypass graf; CAM=Confusion Assessment Method; CAM-S=Confusion Assessment Method-Severity; CI=confidence interval; 6-CIT=6 item cognitive impairment test; CNS=central nervous system; DRS-R-98=Delirium Rating Scale-Revised-1998; e-CHAMPS=enhanced Care for Hospitalized older Adults with Memory Problems; E-PRE-DELIRIC=Early Prediction of Delirium in ICU Patients; FIM=functional independence measure; GCS=Glasgow Coma Scale; GI=gastrointestinal; GRAM=Geriatric Risk Assessment MedGuide; HELP=Hospital Elder Life Program; HELP-LTC=Hospital Elder Life Program-Long Term Care; HR=hazard ratio; ICU=intensive care unit; IQCODE=Informant Questionnaire on Cognitive Decline in the Elderly; IQR=interquartile range; LIFE=Liaison Intervention in Frail Elderly; LOS=length of stay; MD=mean difference; mHELP=modified Hospital Elder Life Program; MID-Nurse-P=preventive multi-component nonpharmacological nurse-led intervention randomized clinical trial; MMSE=Mini-Mental State Examination; MMSE-K=Mini-Mental State Examination-Korean version; MoCA=Montreal Cognitive Assessment; MV=medical ventilation; N=number; NIHSS=National Institutes of Health Stroke Scale; NNT=number needed to treat; NR=not reported; OR=odds ratio; POD=post-operative delirium; postop=post-operative; preop=pre-operative; RA=rheumatoid arthritis; RASS=Richmond Agitation Sedation Scale; RCT=randomized controlled trial; REACH-OUT=Rehabilitation Of Elderly And Care At Home Or Usual Treatment; RR=relative risk; SD=standard deviation; SF-36=Short Form-36; t-HELP=Tailored, Family-Involved Hospital Elder Life Program; SPMSQ=Short Portable Mental Status Questionnaire; UNDERPIN-ICU=Nursing Delirium Preventive Interventions in the Intensive Care Unit.

Single-Component Interventions

Family Member Interventions

Author	Study	Study protocol including numbers of	Study population including	Sample demographics	Results including main	Risk of
(year);	characteristics	participants, interventions,	main inclusion and exclusion		outcomes and attrition	Bias
trial		duration, and follow-up	criteria		rates	
name						
Eghbali-	Design: RCT	Randomized N: 68	Inclusion: Ages 18-70 years	Mean (SD) age: 55 (12.11)	Main outcomes: Incidence of	Moderate
Babadi	Setting:	Analyzed N: 68	Exclusion: Delirium,	Female %: 59	delirium in the morning after	
et al.	Postop, cardiac	Intervention (N=34): Family member	consciousness level disorder,	Race %: NR	surgery (2 nd day) was 11.76%	
(2017)	Country: Iran	with education about delirium	history of blindness or	Delirium %: 0 (excluded)	in the intervention group vs.	
	Funding:	permitted to attend by the patient	deafness, intubated with a	Cognitive status: NR	23.53% in the control group,	
	University	for 30-40 minutes and	tracheal tube, or death during	Dementia %: NR	p=0.04; for the 3 rd day,	
		communicated on the basis of the	the study	Postop %: 100	8.83% vs. 20.58%, p=0.03. In	
		education; twice a day		Cancer %: NR	the control group, the	
		Control (N=34): Usual care		Mean (SD) length of surgery	incidence of delirium in the	
		Duration: During ICU stay		hours: 4.5 (1.26)	evening was 32.35%, which	
		Follow-up (days): 2, 3			was more than that in the	
					morning, p=0.004.	
					Attrition: NR	
Martinez	Design: RCT	Randomized N: 287	Inclusion: Older adults	Mean (SD) age: 78.2 (6.2)	Main outcomes: Delirium	Moderate
et al.	Setting:	Analyzed N: 287	hospitalized and at risk for	Female %: 63.7* *The text in	occurred during the	
(2012)	Inpatient	Intervention (N=144): Family	delirium	the article says female and	hospitalization in 5.6% of the	
	Country: Chile	member education about delirium; a	Exclusion: Those with	the table says males for this %	patients in the intervention	
	Funding: None	clock and calendar available for the	delirium on admission and in	Race %: NR	group and in 13.3% of the	
	reported	patient; sensory deprivation avoided	a room with ≥2 beds	Delirium %: 0 (excluded)	patients in the control group	
		(glasses, dentures, and hearing aids		Previous delirium %: 3.8	(RR 0.41, 95% CI 0.19 to	
		available); presence of familiar		Median Charlson Comorbidity	0.92, p=0.027).	
		objects in the room (photographs,		Index: 2	Attrition: 3% vs. 6%	
		cushions, and radio); reorientation		Mild cognitive impairment %:		
		(current date and time, recent		8		
		events) by family members; and		Dementia %: 5.9		
		extended visitation times (5 hours		Postop %: NR		
		daily); daily		Cancer %: 17.7		
		Control (N=143): Usual care; daily		Started on risky medications:		
		Duration: During hospitalization		5.2		
		Follow-up (days): Until discharge				

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
				Received anticholinergics %: 1 Received opioids %: 0.3		
Mitchell et al. (2017)	Design: RCT Setting: ICU Country: Australia Funding: University	Randomized N: 61 Analyzed N: 61 Intervention (N=29): Family member delivered intervention containing orientation (memory clues), therapeutic engagement (engage patient), and if applicable sensory aids (making sure glasses are on and hearing aids in place/working); daily Control (N=32): Usual care; daily Intervention duration: During ICU stay Control duration: For up to 30 days	Inclusion: Age ≥16 years, expected to be in ICU ≥4 days Exclusion: Unable to communicate in both written and spoken English	Mean (SD) age: 56.2 (26.8) Female %: 65.5 Race %: NR Delirium %: NR Functioning: NR Dementia %: NR Postop %: 18.0 Cancer %: NR On MV in ICU %: 98.4 Median (IQR) days on MV in ICU: 9.0 (7) vs. 10.0 (10)	Main outcomes: No significant differences between groups were found on outcomes of delirium. Attrition: 0% vs. 3%	Moderate
Munro et al. (2017)	Design: RCT Setting: ICU Country: U.S. Funding: NR	Follow-up (days): Unclear Randomized N: 30 Analyzed N: 30 Intervention 1 (N=10): Family member recorded messages to reorient the patient about being in the ICU and their condition there; daily Intervention 2 (N=10): Generic female recorded messages to reorient the patient about being in the ICU and their condition there; daily Control (N=10): Usual care; daily Duration: During ICU stay Follow-up (days): 3	Inclusion: Age ≥18 years, within 24 hours of ICU admission Exclusion: Expected imminent patient death	Mean (SD) age: 59.5 (17) Female %: 36.7 Race %: -Caucasian: 83.3 -Black/African American: 16.7 -Asian: NR -Other: NR Delirium %: 13.3 Mean (SD) APACHE: 63.6 (20.7) Dementia %: NR Postop %: NR Cancer %: NR	Main outcomes: The family voice group had more delirium free days than the non-family voice group, and significantly more delirium free days (p=0.0437) than the control group. Attrition: 70% vs. 50% vs. 40%	Moderate

Author	Study	Study protocol including numbers of	Study population including	Sample demographics	Results including main	Risk of
(year);	characteristics	participants, interventions,	main inclusion and exclusion		outcomes and attrition	Bias
trial		duration, and follow-up	criteria		rates	
name						
Rosa et	Design: RCT	Randomized N: 1,685	Inclusion: Age ≥18 years,	Mean (SD) age: 58.5 (18.2)	Main outcomes: Incidence of	Moderate
al.	Setting: ICU	Analyzed N: 1,685	admitted to participating ICUs	Female %: 47.2	delirium during ICU stay was	
(2019)	Country: Brazil	Intervention (N=837): Flexible family	Exclusion: Coma for ≥96	Race %: NR	not significantly different	
	Funding:	visitation schedule for up to 12	hours, presence of delirium,	Delirium %: 0 (excluded)	between flexible and	
	Government	hours/day, along with education	brain death, exclusive	Median (IQR) Charlson	restricted visitation (18.9%	
		about the ICU environment, common	palliative care, expected ICU	Comorbidity Index: 1.0 (0-2)	vs. 20.1%, adjusted	
		procedures, multidisciplinary work,	stay of <48 hours, or	Dementia %: 0.9	difference –1.7%, 95% Cl	
		infection control, palliative care, and	prisoners	Postop %: 42.6	–6.1% to 2.7%, p=0.44). For	
		delirium; daily		Cancer %: NR	family members, median	
		Control (N=848): Usual care;		Hazardous alcohol	anxiety (6.0 vs. 7.0, adjusted	
		restricted visitation (median 1.5		consumption %: 7.1	difference –1.6, 95% Cl –2.3	
		hours/day); daily		Taking opioids %: 18.7	to –0.9, p<0.001) and	
		Duration: During ICU stay		Taking vasopressors %: 27.0	depression scores (4.0 vs.	
		Follow-up (days): 30 or until		Taking corticosteroids %: 18.7	5.0, adjusted difference	
		discharge		Taking parenteral	–1.2, 95% Cl –2.0 to –0.4,	
				sedatives %: 14.2	p=0.003) were significantly	
				Taking benzodiazepines %:	better with flexible	
				12.7	visitation.	
					Overall attrition: 0%; no lost	
					to follow-up but primary	
					outcome data were not	
					available for 9 patients (6 vs.	
					3).	

APACHE=Acute Physiology and Chronic Health Evaluation; CI=confidence interval; ICU=intensive care unit; IQR=interquartile range; MV=medical ventilation; N=number; NR=not reported; postop=post-operative; RCT=randomized controlled trial; RR=relative risk; SD=standard deviation.

Individualized	Education
mannadanzed	Laacation

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
Chevillon et al. (2015)	Design: RCT Setting: ICU Country: U.S. Funding: None	Randomized N: 132 Analyzed N: 129 Intervention (N=63): Individualized education Control (N=69): Usual care Duration: Preop Follow-up (days): Until discharge	Inclusion: Age ≥18 years with no prior pulmonary thromboendarterectomy Exclusion: History of Alzheimer disease, dementia, or inability to give consent	Mean age: 54 Female %: 55 Race %: -Caucasian: 67 -Black/African American: 19 -Hispanic: 8 -Asian: 2 -Other: 3 Delirium %: NR Function: NR Dementia %: 0 (excluded) Postop %: NR Cancer %: NR	Main outcomes: The 2 groups did not differ significantly in anxiety, incidence of delirium, or ICU days. Attrition: 3% vs. 1%	Moderate
Fahimi et al. (2020)	Design: RCT Setting: Postop, cardiac Country: Iran Funding: None	Randomized N: 110 Analyzed N: 110 Intervention (N=55): Multimedia education consisting of 3 videos on the nature of the surgery, respiratory exercises, and prior patients' experiences Control (N=55): Usual care Intervention duration: Preop Control duration: During hospitalization Follow-up (days): Until discharge	Inclusion: Undergoing CABG for the first time and non- development of postop cardiogenic shock or myocardial rupture Exclusion: Not willing to continue the study and died during the intervention	Mean (SD) age: 58 (12.21) Female %: 50 Race %: NR Delirium %: 0 (excluded) Baseline scale of function: NR Dementia %: NR Postop %: 100 Cancer %: NR	Main outcomes: Considering the lower incidence of POD in patients who experienced multimedia education than the control group, the use of this nonpharmaceutical method is recommended to prevent delirium in such patients. Overall attrition: 0%	Moderate
Xue et al. (2020)	Design: RCT Setting: Postop, cardiac	Randomized N: 156 Analyzed N: 133 Intervention (N=67): Individualized education on the basis of patient's age, gender, education level, and surgery type,	Inclusion: Age ≥18 years who received routine elective CPB surgery Exclusion: Cognitive impairment, serious organ	Mean (SD) age: 58.0 (16.2) Female %: 54.9 Race %: NR Delirium %: NR	Main outcomes: The incidence of delirium in the intervention group was significantly lower than that in the control	Moderate

Author	Study	Study protocol including numbers of	Study population including	Sample demographics	Results including main	Risk of
(year);	characteristics	participants, interventions, duration, and	main inclusion and exclusion		outcomes and attrition	Bias
trial		follow-up	criteria		rates	
name						
	Country: China	along with leaflets given to the patient and	dysfunction relying on	Function: NR	group (10.4% vs. 24.2%,	
	Funding: Non-	family, and a tour	mechanical support, or	Dementia %: NR, cognitive	p=0.038).	
	profit	Control (N=66): Routine preop education	undergone cardiothoracic	impairment excluded	Overall attrition: 15%	
		Duration: 3 days prior to surgery	surgery before	Postop %: 100		
		Follow-up (days): Until discharge		Cancer %: NR		

CABG=coronary artery bypass graf; CPB=cardiopulmonary bypass; ICU=intensive care unit; N=number; NR=not reported; POD=post-operative delirium; postop=post-operative; preop=pre-operative; RCT=randomized controlled trial; SD=standard deviation.

Exercise/Mobilization

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year);	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
trial		interventions, duration, and			rates	
name		follow-up				
Jeffs et	Design: RCT	Randomized N: 649	Inclusion: Age ≥65 years in hospital for	Mean (SD) age: 79 (7.7)	Main outcomes: 4.9%	Moderate
al.	Setting:	Analyzed N: 648	<48 hours	Female %: 48	(95% CI 2.3 to 7.3)	
(2013)	Inpatient	Intervention (N=305): A program	Exclusion: Severe dysphasia, isolation	Race %: NR	intervention group vs.	
	Country:	of progressive resistance exercise,	for infection control, death expected	Delirium %: 0 (excluded)	5.9% (95% CI 3.8 to 9.2)	
	Australia	mobilization, and orientation in	within 24 hours, contraindication to	Median (IQR) Barthel Index:	usual care group had	
	Funding:	addition to usual care, delivered	mobilization, or admission to stroke	90 (71-100)	delirium. There was no	
	University,	twice daily by ward staff until	unit or ICU	Median (IQR) IADL: 6 (3-8)	difference between the	
	government	discharge		Premorbid cognitive	groups (p=0.5).	
		Control (N=344): Usual care		impairment %: 14	Attrition: 6% vs. 6%	
		Duration: During hospital stay		Median (IQR) MMSE: 26 (19-		
		(median 5.5 days)		28)		
		Follow-up: Every 2 days until		Mean (SD) APACHE II: 14 (5)		
		discharge (median 5.5 days)		Median (IQR) Charlson		
				Comorbidity Index: 2 (1-3)		
				Dementia %: NR		
				Postop %: NR		
				Cancer %: NR		
Karadas	Design: RCT	Randomized N: 94	Inclusion: Age ≥65 years, no previous	Mean (SD) age: 74 (7.2)	Main outcomes:	Moderate
and	Setting: ICU	Analyzed N: 94	delirium, and ICU stay ≥24 hours	Female %: 53	Although delirium	
Ozdemir	Country:	Intervention (N=47): Range of	Exclusion: Amputated extremity,	Race %: NR	incidence and duration	

Author (year); trial name (2016)	Study characteristics Turkey Funding: Unclear	Study protocol including numbers of participants, interventions, duration, and follow-up motion exercises once a day until the patients were discharged Control (N=47): Usual care Duration: During hospital stay (median 5 days) Follow-up (days): Until discharge	Study population including main inclusion and exclusion criteria undergoing invasive MV and procedures limiting mobility, a RASS score of -4 and -5, advanced osteoporosis, terminal illness, increased intracranial pressure, active gastrointestinal system bleeding, or arrhythmia and active myocardial ischemia	Sample demographics Delirium %: 0 (excluded) Functioning: NR Dementia %: 0 (excluded) Postop %: NR Cancer %: NR	Results including main outcomes and attrition rates decreased by 2.5-fold in the intervention group vs. the control group, there was no significant relationship between the intervention and control groups. Attrition: NR	Risk of Bias
Martinez -Velilla et al. (2019)	Design: RCT Setting: Inpatient Country: Spain Funding: Government	Randomized N: 370 Analyzed N: 370 Intervention (N=185): Exercise sessions, with morning sessions including individualized supervised progressive resistance, balance, and walking training exercises; and evening sessions including functional unsupervised exercises using light loads; 2 sessions daily Control (N=185): Usual care Intervention duration: For 5-7 consecutive days Control duration: During hospitalization Follow-up (days): Until discharge	Inclusion: Age ≥75 years, Barthel Index score ≥60, and admitted to 1 of the ACE units Exclusion: Expected LOS <6 days, very severe cognitive decline, terminal illness, uncontrolled arrhythmias, acute pulmonary embolism, recent MI, recent major surgery, or extremity bone fracture in the past 3 months	Mean (SD) age: 87.4 (4.9) Female %: 56.5 Race %: NR Delirium %: 14.3 Mean (SD) MMSE: 22 (4) Mean (SD) Barthel Index: 83.5 (17) Dementia %: NR, severe cognitive decline excluded Cancer %: NR Postop %: NR Mean (SD) number of diseases/person: 9 (6)	Main outcomes: No significant differences between groups were found in incident delirium (p>0.10). Attrition: 17% vs. 15%	Moderate
Morris et al. (2016)	Design: RCT Setting: ICU Country: U.S. Funding: Government	Randomized N: 300 Analyzed N: 300 Intervention (N=150): Passive range of motion, PT, and progressive resistance exercise administered as 3 separate sessions every day Control (N=150): Usual care	Inclusion: Age ≥18 years admitted to a medical ICU, MV via endotracheal tube or noninvasive ventilation by mask, and PaO2/FIO2 ratio <300 Exclusion: Inability to walk without assistance prior to the acute ICU illness, cognitive impairment prior to acute ICU illness, acute stroke, BMI	Mean (SD) age: 56 (15) Female %: 55.3 Race %: -Caucasian: 77.3 -Black/African American: 21.3 -Hispanic or Latino: 1.3 -Asian: NR	Main outcomes: No differences in CAM positive days were found between the intervention and control groups. Attrition at discharge: 13% vs. 16%	Moderate

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year);	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
trial		interventions, duration, and			rates	
name		follow-up				
		Intervention duration: Until	>50, neuromuscular disease impairing	-Other: NR		
		discharge	weaning from MV, acute hip fracture,	Delirium %: NR		
		Control duration: During	unstable cervical spine or pathological	Mean (SD) APACHE II: 76		
		hospitalization	fracture, MV >80 hours or current	(27)		
		Follow-up (days): Discharge, 60,	hospitalization >7 days, orders for do	Dementia %: NR, cognitive		
		120, 180	not intubate on admission, or	impairment excluded		
			considered to be moribund	Postop %: NR		
				Cancer %: NR		
Nydahl	Design: RCT	Randomized N: 274	Inclusion: Age ≥18 years and order for	Median age: 70 vs. 74	Main outcomes:	Moderate
et al.	Setting: ICU	Analyzed N: 272	mobilization	Female %: 44.8	Secondary outcomes,	
(2020)	Country:	Intervention (N=122):	Exclusion: Palliative state, immobility	Race %: NR	such as days with MV,	
	Germany	Mobilization; daily	order, or not documented	Delirium %: NR	delirium, and in ICU and	
	Funding: NR	Control (N=152): Usual care	mobilization	Median (IQR) RASS: 0 (-1-0)	hospital stay, did not	
		Duration: During hospitalization		Frailty index ≥5 %: 36.3	significantly differ.	
		Follow-up (days): Discharge, 28		Dementia %: NR	Attrition: 2% vs. 0%	
				Postop %: NR		
				Cancer %: NR		
Nydahl	Design: RCT	Randomized N: 53	Inclusion: Age ≥18 years, RASS ≥ -3	Mean (SD) age: 62.5 (14.5)	Main outcomes: There	Moderate
et al.	Setting: ICU	Analyzed N: 46	and responsive, were able to be	Female %: 28.3	was less delirium in the	
(2022)	Country:	Intervention (N=122): Evening	mobilized out of bed according to	Race %: NR	intervention group than	
	Germany	mobilization ranging from 3	local policies, and expected to spend	Delirium %: 0 (excluded)	in the control group (not	
	Funding:	minutes to 2 hours a session on	≥1 night in ICU	Median (IQR) Charlson	significant).	
	Government	the basis of tolerability by the	Exclusion: Expectation of death within	Comorbidity Index: 4 (3-6)	Overall attrition: 13%	
		patient; each evening	72 hours, pre-existing immobility,	Dementia %: 0		
		Control (N=122): Usual care	delirium already present before	Postop %: NR		
		Intervention duration: 3 days	recruitment, or not possible to assess	Cancer %: NR		
		Control duration: NR	for delirium			
		Follow-up (days): 3, discharge				
Schweick	Design: RCT	Randomized N: 104	Inclusion: Age ≥18 years on MV <72	Median age: 56	Main outcomes: Patients	Moderate
ert et al.	Setting: ICU	Analyzed N: 104	hours and expected to continue ≥24	Female %: 50	in the intervention group	
(2009)	Country: U.S.	Intervention (N=49): Exercise and	hours; excluded patients not	Race %:	experienced fewer	
		mobilization	functionally independent		delirium days than in the	
		Control (N=55): Standard care				

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
	Funding: Unclear	with physical and occupational therapy as ordered by primary care Duration: During MV Follow-up (days): Until discharge	Exclusion: Rapidly developing neuromuscular disease, cardiopulmonary arrest, irreversible disorders with 6-month mortality estimated at >50%, raised intracranial pressure, absent limbs, or enrollment in another trial	-Caucasian: NR -Black/African American: 58.7 -Asian: NR -Other: NR Delirium %: NR Mean APACHE II: 19.5 Dementia %: NR Postop %: NR Cancer %: 2.9	control group (median 4 vs. 2, p=0.02) and less time in ICU with delirium (33% vs. 57%, p=0.02). Overall attrition: 0%	
Shirvani et al. (2020)	Design: RCT Setting: Postop, cardiac Country: Iran Funding: None	Randomized N: 92 Analyzed N: 90 Intervention (N=46): Early planned mobilization; daily Control (N=46): Usual care Duration: During ICU stay Follow-up (days): Discharge, 30, 180	Inclusion: Patients who underwent elective CABG, had GCS score of 15, no neurological and movement disorders, and were conscious Exclusion: Undergoing emergency CABG or any physiological or hemodynamic instability after surgery	Mean (SD) age: 60.4 (8.6) Female %: 17.8 Race %: NR Delirium %: NR Function: NR Dementia %: NR Postop %: 100 Cancer %: NR	Main outcomes: The intervention group had significantly higher Neecham scores on postop day 2 (22.49 [SD 2.03] vs. 26.82 [SD 2.10], p=0.001). Multivariable analysis showed significant associations between Neecham score and age (p=0.022), ejection fraction (p=0.015), myocardial infarction (p=0.016), systolic pressure (p=0.009), and diastolic pressure (p=0.008). Attrition at follow-up: 2% vs. 2%	High

ACE=acute care of elderly; APACHE II=Acute Physiology and Chronic Health Evaluation II; BMI=body mass index; CABG=coronary artery bypass graf; CAM=Confusion Assessment Method; CI=confidence interval; GCS=Glasgow Coma Scale; IADL=Independence in Activities of Daily Living; ICU=intensive care unit; IQR=interquartile range; LOS=length of stay; MI=myocardial infarction; MMSE=Mini-Mental State Examination; MV=medical ventilation; N=number; NR=not reported; postop=post-operative; PT=physical therapy; RASS=Richmond Agitation Sedation Scale; RCT=randomized controlled trial; SD=standard deviation.

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
Ono et al. (2011)	Design: RCT Setting: Postop, esophageal cancer Country: Japan Funding: None	Randomized N: 26 Analyzed N: 22 Intervention (N=10): Bright light therapy; 2 hours/day starting POD 2 Control (N=12): Usual care Intervention duration: 4 days Control duration: During hospitalization Follow-up (days): 6	Inclusion: Age ≥18 years scheduled to undergo surgical resection and reconstruction through a right thoracotomy for the treatment of thoracic esophageal cancer Exclusion: NR	Mean (SD) age: 63.6 (8.7) Female %: 0 Race %: NR Delirium %: NR Mean (SD) APACHE II: 8.2 (2.3) Dementia %: NR Cancer %: 100 Postop %: 100 Mean (SD) operation time minutes: 444 (80)	Main outcomes: The occurrence rate of POD tended to be lower in the light exposure group (1/10 vs. 5/12), but there was no significant difference. Attrition: 23% vs. 8%	Moderate
Potharajar oen et al. (2018)	Design: RCT Setting: Postop, mixed Country: Thailand Funding: University	Randomized N: 62 Analyzed N: 62 Intervention (N=31): Bright light therapy plus usual care Control (N=31): Usual care Intervention duration: Started by POD 1-3 Control duration: Postop Follow-up (days): 3	Inclusion: ≥50 years, postop patients' admittance to SICU, and APACHE II score ≥8 Exclusion: Alzheimer's, multiple sclerosis, couldn't sit in a 30-45° position due to c-spine injury, or eye problems	Mean (SD) age: 68.2 (11.47) Female %: 56 Race %: NR Delirium %: NR Mean (SD) APACHE II: 14.4 (3.9) vs. 16.4 (4.9) Dementia %: NR Postop %: 100 Cancer %: NR Mean number of medications taken at baseline: NR (11% taking hypnotics)	Main outcomes: 2 subjects in the intervention group (2/31) vs. 11 controls (11/31) had a delirium diagnosis at the endpoint. Generalized estimating equations analysis showed a significant preventive effect of bright light therapy on delirium, which was independent of risk or treatment factors. Attrition: 3% vs. 0%	Moderate
Simons et al. (2016)	Design: RCT Setting: ICU Country: The Netherlands	Randomized N: 734 Analyzed N: 734 Intervention (N=361): Dynamic lighting to achieve 800-1000 lux bluish-white	Inclusion: Age ≥18 years in the ICU longer than 24 hours and could be assessed for delirium Exclusion: Life expectancy <48 hours or who could not be	Mean (SD) age: 65.33 (13.26) Female %: 41.5 Race %: NR Delirium %: NR Mean (SD) PRE-DELIRIC: 58.8	Main outcomes: Delirium occurred in 137/361 (38%) dynamic lighting patients and 123/373 (33%) control	High

Bright Light Therapy/Light Therapy

Author (year); trial name	Study characteristics Funding: None; "Philips supplied the lighting system for the study but had no role in the study design	Study protocol including numbers of participants, interventions, duration, and follow-up light Control (N=373): Usual care Duration: During hospitalization Follow-up (days): 28	Study population including main inclusion and exclusion criteria assessed for delirium (e.g., severe hearing or visual impairment, unable to understand Dutch, or severe mental impairment)	Sample demographics (31.8) vs. 55.4 (30.6) Mean (SD) APACHE II: 22.7 (8.6) vs. 22.4 (8.1) Dementia %: NR Postop %: 25 Cancer %: NR Mean number of medications	Results including main outcomes and attrition rates patients (OR 1.24, 95% CI 0.92 to 1.68, p=0.16). No adverse events were noted in patients or staff. Attrition: 2% vs. 3%	Risk of Bias
Taguchi et al. (2007)	or conduct." Design: RCT Setting: Postop, esophageal cancer Country: Japan Funding: Unclear	Randomized N: 15 Analyzed N: 11 Intervention (N=8): Bright light therapy Control (N=7): Usual care Intervention duration: 3 days after surgery Control duration: Postop Follow-up (days): 5	Inclusion: Age 29-68 years, middle-aged or aged patients with no mental or ophthalmological disorders Exclusion: Reintubation, medical complications, or deterioration of the condition* *Excluded post randomization	taken at baseline: NR Mean (SD) age: 57.6 (12.8) Female %: 0 Race %: -Caucasian: NR -Black/African American: NR -Asian: 100 -Other: NR Delirium %: NR (implies 0%) Baseline scale of function: NR* *circadian rhythm, sleep-awake rhythm: NR Dementia %: NR Postop %: 100 Cancer %: 100, esophageal Mean number of medications taken at baseline: NR	Main outcomes: A significant difference was observed in the delirium score on the morning of day 3 of the bright light therapy (p=0.014). Attrition: 25% vs. 29%	High
Zhang K.S. et al. (2021)	Design: RCT Setting: ICU Country: U.S. Funding: Non- profit	Randomized N: 108 Analyzed N: 78 Intervention (N=54): Bright light therapy with peaks of 10,000 lux white light Control (N=54): Standard light of 150 lux Intervention duration: Started at 7:30am and	Inclusion: Age ≥18 years and expected ICU stay of ≥24 hours Exclusion: Confirmed psychiatric history of bipolar disorder	Median age: 63.5 vs. 64 Female %: 42.3 Race %: NR Delirium %: NR Function: NR Dementia %: NR Past neurological or behavioral impairment %: 51.3	Main outcomes: Daily morning 10,000 lux bright light therapy of 30-minute duration alone was not associated with a significant decrease in ICU-acquired delirium incidence or duration compared with	High

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
name		interventions, duration,			rates	
		and follow-up				
		lasted for 30 minutes		Postop %: 17.9	standard hospital	
		during ICU stay		Cancer %: NR	lighting.	
		Control duration: During			Attrition: 30% vs. 26%	
		ICU stay				
		Follow-up (days): NR				

APACHE II=Acute Physiology and Chronic Health Evaluation II; CI=confidence interval; ICU=intensive care unit; N=number; NR=not reported; OR=odds ratio; postop=post-operative; POD= post-operative delirium; PRE-DELIRIC=Prediction of Delirium in ICU Patients; RCT=randomized controlled trial; SD=standard deviation; SICU=surgical intensive care unit.

Ear Plugs/Eye Mask

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
name		interventions, duration,			rates	
		and follow-up				
Arttawejkul	Design: RCT	Randomized N: 17	Inclusion: Age ≥18 years admitted to a	Mean (SD) age: 71.8 (28.9)	Main outcomes: The	Moderate
et al.	Setting: ICU	Analyzed N: 17	medical ICU, expected to remain in the	Female %: 35.3	prevalence of delirium,	
(2020)	Country:	Intervention (N=8):	ICU for >24 hours, GCS score ≥13, RASS -1	Race %: NR	the use of sedation,	
	Thailand	Earplugs and eye masks	to +1, and did not require medication or	Delirium %: NR	duration of ICU stay, and	
	Funding: Non-	Control (N=9): Usual care	intervention to facilitate sleep	Mean (SD) APACHE II: 14.5	duration of MV were not	
	profit	Intervention duration:	Exclusion: Bilateral deafness, bilateral	(4.9)	different between the	
		During the night while in	blindness, severe encephalopathy, severe	Dementia %: NR, severe	groups.	
		the ICU	dementia, hepatic encephalopathy,	dementia excluded	Overall attrition: 0%	
		Control duration: During ICU stay	uremic encephalopathy, encephalitis,	Postop %: NR		
		Follow-up (days): NR	increased intracranial pressure, metabolic	Cancer %: NR		
		Tonow up (uays). Wit	derangements, severe hemodynamic			
			instability, high vasopressure			
			requirement, or severe respiratory failure			
Leong et al.	Design: RCT	Randomized N: 100	Inclusion: Age >21 years undergoing	Median age: 67 vs. 60	Main outcomes: There	Moderate
(2021)	Setting: Postop,	Analyzed N: 93	elective major colorectal surgery and with	Female %: 45.2	were no differences in	
	colorectal	Intervention (N=51):	a GCS of ≥10 post-operatively in the study	Race %:	patient satisfaction,	
	Country:	Earplugs and eye mask;	Exclusion: Known hearing impairment,	Chinese: 83.9	reduction in frequency of	
	Singapore	nightly	dementia, confusion, delirium, pre-	Malay: 5.4	nursing demands, or	
	Funding: Non-	Control (N=49): No	existing tracheostomy, or who returned	Indian: 8.6	incidence of delirium on	
	profit	intervention	post-operatively to the ward after 22.00	-Others: 2.1		

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up Intervention duration: Until POD 3 Control duration: NR Follow-up (days): 1, 2, 3	Study population including main inclusion and exclusion criteria	Sample demographics Delirium %: 0 (excluded) ASA I %: 2.1 ASA II %: 65.6 ASA III %: 31.2 Dementia %: 0 (excluded) Postop %: 100, colorectal	Results including main outcomes and attrition rates postop days 1-3 after major abdominal surgery. Attrition: 6% vs. 8%	Risk of Bias
Obanor et al. (2021)	Design: RCT Setting: ICU Country: U.S. Funding: NR, but no conflicts reported	Randomized N: 90 Analyzed N: 87 Intervention (N=44): Earplugs and eye mask; nightly Control (N=43): Standard care Duration: During ICU stay Follow-up (days): Discharge	Inclusion: Age ≥18 years and female patients admitted to the ICU following plastic surgical breast free flap procedures requiring hourly postop assessments Exclusion: Current incarceration and diagnosis of sleep apnea, insomnia, or other sleep disturbance	Cancer %: NR Mean (SD) age: 51.05 (9.01) Female %: 100 Race %: -White: 72.4 -Black: 19.5 -Hispanic: 4.6 -Unknown/NR: 3.4 Delirium %: NR ASA I %: 3.4 ASA II %: 77.0 ASA III %: 19.5 Dementia %: NR Postop %: 100 Cancer %: NR	Main outcomes: There were no significant group differences for CAM for the ICU scores. Overall attrition: 3%	Moderate
Van Rompaey et al. (2012)	Design: RCT Setting: ICU Country: Belgium Funding: None	Randomized N: 136 Analyzed N: 136 Intervention (N=69): Sleeping with earplugs during the night Control (N=67): Usual care Duration: During ICU stay Follow-up (days): 5	Inclusion: Age ≥18 years with expected ICU stay of ≥24 hours and GCS ≥10 Exclusion: Dementia, confusion or delirium, or receiving sedation	Mean (SD) age: 59 Female %: 44 Race %: NR Delirium %: 0 (excluded) Functioning: NR Dementia %: 0 (excluded) Postop %: 74.3 Cancer %: NR ≥1 comorbidity %: 72	Main outcomes: The patients in the earplug group showed 15% mild confusion vs. 40% in the control group. A HR for delirium or mild confusion with earplugs was 0.47 (95% CI 0.27 to 0.82). Attrition: NR	Moderate

APACHE II=Acute Physiology and Chronic Health Evaluation II; ASA=American Society of Anesthesiologists; CAM=Confusion Assessment Method; CI=confidence interval; GCS=Glasgow Coma Scale; HR=hazard ratio; ICU=intensive care unit; MV=medical ventilation; N=number; NR=not reported; POD=post-operative delirium; postop=post-operative; RASS=Richmond Agitation Sedation Scale; RCT=randomized controlled trial; SD=standard deviation.

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year);	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition rates	Bias
trial		interventions, duration, and	criteria			
name		follow-up				
Browning	Design: RCT	Randomized N: 6	Inclusion: Patients in the	Mean (SD) age: 67.5 (9.7)	Main outcomes: Although no	High
et al.	Setting: ICU	Analyzed N: 6	medical ICU who were on MV	Female %: 66.6	statistical significance was	
(2020)	Country: U.S.	Intervention (N=3): Therapeutic	Exclusion: Hard of hearing or	Race %: NR	established relative to the	
	Funding: None	music listening in 1-hour	hearing impaired, baseline	Delirium %: NR (but cognitive	small sample size, the pilot	
		increments; twice a day from	cognitive dysfunction, prisoners,	dysfunction at baseline	study results indicated the	
		10-11am and 9-10pm	moribund, receiving comfort or	excluded)	music group experienced less	
		Control (N=3): Usual care	end-of-life care, or no family or	Function: NR	proportion of time CAM+ (the	
		Duration: During ICU stay	friend present	Dementia %: NR	presence of ICU delirium)	
		Follow-up (days): Discharge		Postop %: NR	(33%) than the control group	
		from ICU		Cancer %: NR	did (67%).	
					Attrition: NR	
Johnson	Design: RCT	Randomized N: 40	Inclusion: Age >55 years and	Mean (SD) age: 72 (9.2)	Main outcomes: The CAM-ICU	High
et al.	Setting: ICU	Analyzed N: 40	oriented to person, time, and	Female %: 85	for both groups remained	
(2018)	Country: U.S.	Intervention (N=20): Listening to	place on admission	Race %:	negative at each data	
	Funding: None	music for 60 minutes; 2 times	Exclusion: Not able to pass the	C -aucasian: 85	collection time point.	
		per day	Whisper Test, intubated	-Black/African American: 0.025	Attrition: No patients	
		Control (N=20): Usual care	patients, or CAM-ICU positive	-Asian: 0.025	withdrew from the study, but	
		Duration: During hospitalization		-Other: 10	it appears some patients	
		for 3 days		Delirium %: 0 (excluded)	missed doses.	
		Follow-up (days): 3		Functioning: NR		
				Dementia %: NR		
				Postop %: NR		
				Cancer %: NR		
Khan et	Design: RCT	Randomized N: 52	Inclusion: Age ≥18 years and	Mean age:	Main outcomes: The median	High
al. (2020)	Setting: ICU	Analyzed N: 52	admitted to the ICU and	-18-49: 23%	number (IQR) of	
	Country: U.S.	Intervention 1 (N=17):	receiving MV ≥24 hours but ≤48	-50-64: 52%	delirium/coma-free days by	
	Funding:	Personalized music playlist; two	hours	->64: 25%	day 7 was 1 (1-6) for	
	Unclear	1-hour sessions per day	Exclusion: Neurological injury,		personalized music, 3 (1-6) for	

Listening to Music

Intervention 2 (N=17): Relaxing	chronic neurological disease,	Female %: 52	slow tempo music, and 2 (0-3)
slow-tempo music playlist; two	uncorrected hearing or vision	Race %:	for attention control (p=0.32).
1-hour sessions per day	impairments, were in a coma	-Caucasian: 56	Median delirium severity was
Intervention 3 (N=18): Attention	after cardiac arrest, or	-Black/African American: 40	5.5 (1-7) vs. 3.5 (0-7) vs. 4 (1-
control (audiobook); two 1-hour	incarcerated	-Asian: NR	6.5) (p=0.78).
sessions per day		-Other: 4	Attrition: 6% vs. 6% vs. 6%
Duration: During hospitalization		Delirium %: NR	
for up to 7 days		Median (IQR) ADL index: 6 (3-6)	
Follow-up (days): Up to 7 days		Median (IQR) IQCODE: 3 (3.0-	
		3.1)	
		Dementia %: NR	
		Postop %: 27	
		Cancer %: NR	
		Median (IQR) Charlson	
		Comorbidity Index: 1 (0-3)	

ADL=Activities of Daily Living; CAM-ICU=Confusion Assessment Method for the ICU; ICU=intensive care unit; IQCODE=Informant Questionnaire on Cognitive Decline in the Elderly; IQR=interquartile range; MV=medical ventilation; NR=not reported; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

Cognitive Therapy Plus Physical Therapy

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year);	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
trial name		interventions, duration,				
		and follow-up				
Brummel	Design: RCT	Randomized N: 87	Inclusion: Age ≥18 years being treated for	Median age: 62 vs. 62 vs.	Main outcomes: Cognitive,	Moderate
et al.	Setting: ICU	Analyzed N: 87	respiratory failure and/or septic,	60	functional, and health-	
(2014)	Country: U.S.	Intervention 1 (N=43):	cardiogenic, or hemorrhagic shock	Female %: 43.7	related quality of life	
	Funding: None	Cognitive therapy + PT; daily	Exclusion: Critically ill for >72 hours since	Race %: NR	outcomes did not differ	
		Intervention 2 (N=22): PT	the opportunity to administer early	Delirium %: NR	between groups at 3-month	
		only; daily	cognitive and physical therapy had	Median APACHE II: 27 vs.	follow-up.	
		Control (N=22): Usual care	passed, in the ICU >5 days in the previous	21.5 vs. 25	Attrition: 35% vs. 27% vs.	
		Duration: During ICU stay	30 days, unlikely to benefit from the	Dementia %: NR, severe	27%	
		Follow-up (days): 90	rehabilitation targeting acute declines in	pre-existing dementia		
			cognitive or functional status due to the	excluded		
			moribund status, severe pre-existing	Postop %: 18.4		
			dementia or physical disability in ADLs, or	Cancer %: NR		
			unlikely to continue in outpatient setting			

ADL=Activities of Daily Living; APACHE II=Acute Physiology and Chronic Health Evaluation II; ICU=intensive care unit; N=number; NR=not reported; postop=post-operative; PT=physical therapy; RCT=randomized controlled trial.

Cognitive Exercises or Test

Author (year); trial name Dai et al. (2021)	Study characteristics Design: RCT Setting: ICU Country: China Funding: None	Study protocol including numbers of participants, interventions, duration, and follow-up Randomized N: 76 Analyzed N: 76 Intervention (N=38): Cognitive function training Control (N=38): Lowel agree	Study population including main inclusion and exclusion criteria Inclusion: Age >18 years ICU patients without delirium, expected to be treated for >1 week, and with a family member	Sample demographics Mean (SD) age: 41.8 (14.01) Female %: 48.7 Race %: NR Delirium %: 0 (excluded)	Results including main outcomes and attrition rates Main outcomes: After 1 week of treatment, the incidences of delirium in the intervention group were	Risk of Bias High
		Control (N=38): Usual care Duration: During ICU stay Follow-up (days): 7	who agreed to participate Exclusion: Deteriorated condition, couldn't express their ideas, missing relevant data, other malignant tumor, or experienced delirium during hospitalization before the study	Mean (SD) Barthel Index: 45.44 (6.51) Mean (SD) MMSE: 18.7 (3.2) Postop %: NR Cancer %: NR	significantly lower than they were in the control group (23.68% vs. 42.11%, p<0.05). Attrition: NR, but 2 deaths vs. 1 death	
Humeidan et al. (2021)	Design: RCT Setting: Preop, mixed Country: U.S. Funding: University	Randomized N: 268 Analyzed N: 251 Intervention (N=134): Cognitive exercises for a total of 10 hours Control (N=134): Usual care Intervention duration: The days prior to surgery (suggested 1 hour a day for 10 days, but at patient's discretion) Control duration: Prior to surgery Follow-up (days): 7, discharge	Inclusion: Age ≥60 years undergoing major noncardiac or non-neurological surgery under general anesthesia with an anticipated hospital stay of ≥72 hours and immediate postop extubation Exclusion: Cognitive impairment on the modified MMSE (score, <26 of 30 or <24 of 30 if the patient's education level was less than high school) or evidence of active depression (GDS; score >9 of 15) during their visit	Median (IQR) age: 67 (63-71) Female %: 64.9 Race %: NR Delirium %: NR ASA I-II %: 14.3 ASA III %: 81.3 ASA IV %: 4.4 Median (IQR) Charlson Comorbidity Index: 2 (1-3) Median (IQR) MMSE: 29 (28- 30) Postop %: 100 -General: 37.5 -Orthopedic: 47.0 -Gynecologic: 4.0 -Thoracic: 2.4 -Urology: 3.6 -Plastic: 4.4	Main outcomes: The delirium rate among control participants was 23.0% (29/126). With intention-to- treat analysis, the delirium rate in the intervention group was 14.4% (18/125, p=0.08). Attrition: 7% vs. 6%	Moderate

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
O'Gara et al. (2020); PEaPoD study	Design: RCT Setting: Postop, cardiac Country: U.S. Funding: University	Randomized N: 45 Analyzed N: 40 Intervention (N=22): Cognitive training software used to train users in the cognitive domains of memory, attention, problem solving, flexibility, and processing speed; trained for 2 separate 15-minute sessions per day Control (N=23): Usual care Intervention duration: From the day of enrollment until 4 weeks after surgery including the immediate postop period Control duration: During hospitalization Follow-up (days): 28	Inclusion: Ages 60-90 years scheduled to undergo cardiac surgery ≥10 days from enrollment Exclusion: History of psychiatric illness that increased risk of POD, other forms of cognitive decline, and score <10 on MoCA (indicating severe cognitive impairment)	Cancer %: NR Mean (SD) age: 69.5 (6.5) Female %: 27.5 Race %: NR Delirium %: NR Functioning: NR Dementia %: NR, severe cognitive impairment excluded Solid tumor nonmetastatic %: 30 Solid tumor metastatic %: 2.5 Postop %: 100	Main outcomes: Incidence of POD was not statistically significant (cognitive training group 5/20 [25%] vs. control 3/20 [15%], p=0.69). Attrition: 9% vs. 13% vs. 11%	Moderate
Vlisides et al. (2019)	Design: RCT Setting: Postop, mixed Country: U.S. Funding: University	Randomized N: 61 Analyzed N: 52 Intervention (N=30): Computer-based cognitive training battery that specifically targets executive function, attention, working memory, and visuospatial processing; ~20-minute sessions every day	Inclusion: Age ≥60 years, scheduled noncardiac, non-major vascular, or non-intracranial surgery, and daily access to computer and internet use before surgery Exclusion: Preop delirium, mild cognitive impairment, or dementia	Mean (SD) age: 67 (5.2) Female %: 48 Race %: NR Delirium %: 0 (excluded) Functioning: NR Dementia %: 0 (excluded) Postop %: 100 Cancer %: NR	Main outcomes: POD incidence was 6/23 (26%) in the intervention group vs. 5/29 (17%) in the control group (p=0.507). Attrition: 23% vs. 6%	High

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
name		interventions, duration,				
		and follow-up				
		Control (N=31): Usual care				
		Intervention duration: For				
		7 days prior to surgery				
		Control duration: Unclear				
		Follow-up (days): 3				

ASA=American Society of Anesthesiologists; GDS=Geriatric Depression Score; ICU=intensive care unit; IQR=interquartile range; MMSE=Mini-Mental State Examination; MoCA=Montreal Cognitive Assessment; N=number; NR=not reported; PEaPoD=Prevention of Early Post-operative Decline; POD=post-operative delirium; postop=post-operative; preop=pre-operative; RASS=Richmond Agitation Sedation Scale; RCT=randomized controlled trial; SD=standard deviation.

Massage

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year);	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
trial		interventions, duration, and				
name		follow-up				
Fazlollah	Design: RCT	Randomized N: 60	Inclusion: Ages 35-70 years, ejection	Mean (SD) age: 64.3 (7.2)	Main outcomes: Delirium	Moderate
et al.	Setting:	Analyzed N: 60	fraction >40%, non-emergency	Female %: 52	occurred in 8 (26.7%) and 7	
(2021)	Postop, cardiac	Intervention (N=30): Foot	surgery, negative history of stroke or	Race %: NR	(23.3%) of patients in the	
	Country: Iran	reflexology massage for 20	other severe neurological disorders,	Delirium %: NR	intervention and control	
	Funding: Non-	minutes; once a day	healthy feet, and non-redo surgery	Function: NR	groups, respectively (p>0.05).	
	profit	Control (N=30): No	Exclusion: Drainage of >400 mL at	Dementia %: NR	The pain intensity was	
		intervention	first 4 hours after surgery,	Postop %: 100	decreased in the intervention	
		Intervention duration: 2 days	hemodynamic instability, loss of	Cancer %: NR	group (p<0.001).	
		Control duration: None	consciousness, and requiring MV >24		Overall attrition: 0%	
		Follow-up (days): 2	hours after the surgery			

MV=medical ventilation; N=number; NR=not reported; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

Occupational Therapy

Author	Study	Study protocol including numbers of	Study population including	Sample demographics	Results including main outcomes	Risk of
(year);	characteristics	participants, interventions,	main inclusion and		and attrition rates	Bias
trial		duration, and follow-up	exclusion criteria			
name						
Alvarez	Design: RCT	Randomized N: 140	Inclusion: Age ≥60 years,	Median age: 68 vs. 71	Main outcomes: The intervention	Low
et al.		Analyzed N: 140	non-intubated, and	Female %: 50	group had lower duration (risk	

Author	Study	Study protocol including numbers of	Study population including	Sample demographics	Results including main outcomes	Risk of
(year);	characteristics	participants, interventions,	main inclusion and		and attrition rates	Bias
trial		duration, and follow-up	exclusion criteria			
name						
(2017)	Setting: ICU	Intervention (N=70): Occupational	hospitalized within 24	Race %: NR	incidence ratios 0.15 [95% CI 0.12 to	
	Country: Chile	therapy (early and intensive), with	hours in the ICU	Delirium %: 0 (excluded)	0.19, p=0.000] vs. 6.6 [95% Cl 5.23	
	Funding:	standard nonpharmacological	Exclusion: CAM positive	Baseline PRE-DELIRIC %:	to 8.3, p=0.000]) and incidence of	
	Government	prevention; twice a day, once in the	patients with cognitive	16.5	delirium (3% vs 20%, p=0.001), and	
		morning, once in the evening for	decline, severe	Median (IQR) APACHE II: 10	had higher scores in Motor	
		consecutive 5 days	communication disorders,	(9-12) vs. 11 (8-12)	Functional Independence Measure	
		Control (N=70): Usual care	delirium before ICU	Dementia %: 0	(59 points vs. 40 points, p=0.0001),	
		Duration: During hospitalization	admission, or a	SIU %: 64	cognitive state (MMSE: 28 points vs	
		within 24 hours of ICU admission	requirement for invasive	Cancer %: 16	26 points, p=0.05), and grip	
		Follow-up (days): 5, Discharge	MV	Medications taken at	strength in the dominant hand (26	
				baseline: NR	kg vs. 18 kg, p=0.05), compared	
					with the control group.	
					Attrition: 7% vs. 9%	

APACHE II=Acute Physiology and Chronic Health Evaluation II; CAM=Confusion Assessment Method; CI=confidence interval; ICU=intensive care unit; IQR=interquartile range; MMSE=Mini-Mental State Examination; MV=medical ventilation; N=number; NR=not reported; PRE-DELIRIC=Prediction of Delirium in ICU Patients; RCT=randomized controlled trial; SIU=Surgical Intermediate Unit.

Use of Mirrors

Author	Study	Study protocol including numbers of	Study population	Sample demographics	Results including main outcomes	Risk of
(year);	characteristics	participants, interventions, duration,	including main		and attrition rates	Bias
trial		and follow-up	inclusion and			
name			exclusion criteria			
Giraud	Design: RCT	Randomized N: 223	Inclusion: Age ≥70	Mean (SD) age: 77 (4.9)	Main outcomes: The intervention	Moderate
et al.	Setting: ICU	Analyzed N: 223	years and admitted to	Female %: 24	did not significantly reduce ICU	
(2016)	Country: U.K.	Intervention (N=115): Structured mirrors	ICU after elective or	Race %: NR	delirium incidence (mirrors:	
	Funding: Non-	intervention to support mental status and	urgent cardiac surgery	Delirium %: NR	20/115 [17%] vs. usual care:	
	profit	attention, physical mobilization, and	Exclusion: Severe	Baseline scale of function: NR	17/108 [16%]) or duration	
		multisensory feedback integration	visual impairment,	Dementia %: NR	(mirrors: 1 [1-3]) vs. usual care: 2	
		administered by nursing and	physical or	Postop %: 100	[1-8]).	
		physiotherapy teams; timing of	communication	Cancer %: NR	Attrition: 10% vs. 0%	
		intervention followed change in patient's	barriers, or history of			
		mental status	psychiatric illness			
		Control (N=108): Usual care				

	Duration: During hospitalization; median	previously requiring		
	ICU stay of 2 days	hospitalization		
F	Follow-up (days): 84			

ICU=intensive care unit; N=number; NR=not reported; RCT=randomized controlled trial; SD=standard deviation.

Nonpharmacological Interventions for Treatment of Delirium

Multi-Component Interventions

Author	Study	Study protocol including numbers	Study population	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristic	of participants, interventions,	including main inclusion		and attrition rates	Bias
name	s	duration, and follow-up	and exclusion criteria			
Cole et al.	Design: RCT	Randomized N: 88	Inclusion: Age ≥75 years	Mean (SD) age: 86.1 (6.1)	Main outcomes: Delirium was	Moderate
(1994)	Setting:	Analyzed N: 88	admitted to the hospital	Female %: 65	diagnosed in 16% of the control	
	Inpatient	Intervention (N=42): Geriatric	and diagnosed with	Race %: NR	cases. 28% in the treatment group	
	Country:	internist or psychiatrist performed	delirium	Delirium %: 100	had delirium alone, 56% had delirium	
	Canada	consultations to determine	Exclusion: Those	Mean (SD) CGBRS: 33.0	superimposed on dementia	
	Funding: Non-	probable predisposing,	admitted to the ICU or	(8.8)	(Alzheimer's disease in most cases),	
	profit	precipitating, and perpetuating	cardiac monitoring unit	Mean (SD) SPMSQ: 8.8	and 16% had delirium superimposed	
		factors of delirium and resulted in		(1.7)	on another psychiatric disorder. The	
		management recommendations		Postop %: NR	delirium was attributed to drugs	
		that were carried out by study		Cancer %: NR	(n=1), cardiovascular disease (n=1),	
		nurses following an intervention			infection (n=4), other causes (n=7),	
		protocol; daily			or a combination of factors (n=16).	
		Control (N=46): Usual care; daily			The cause was not determined in 10	
		Duration: Until discharge			cases.	
		Follow-up (days): Until discharge, 56			Attrition: 7% vs. NR (14/46 received a	
					consultation by a geriatrician or	
					geriatric psychiatrist)	
Cole et al.	Design: RCT	Randomized N: 227	Inclusion: Age ≥65 years	Mean (SD) age: 82.3 (7.3)	Main outcomes: 48% in the	Moderate
(2002)	Setting:	Analyzed N: 218	admitted to the hospital	Female %: 54	intervention group vs. 45% in the	
	Inpatient	Intervention (N=113): Geriatric	with prevalent or	Race %: NR	control group had their delirium	
	Country:	internist or psychiatrist performed	incident delirium within	Prevalent Delirium %: 81	improved. HR for shorter time to	
	Canada	consultations to determine	1 week of admission	Incident Delirium %: 19	improvement was 1.10 (95% CI 0.74	
	Funding:	probable predisposing,	Exclusion: Those with a	Mean (SD) Charlson	to 1.63). Outcomes between the 2	
	Government	precipitating, and perpetuating	primary diagnosis of	Comorbidity Index: 3.2	groups did not differ statistically	
		factors of delirium and resulted in	stroke, ICU LOS, or	(2.1)	significantly for patients without	
		management recommendations		Mean (SD) clinical severity	dementia (HR 1.54, 95% CI 0.80 to	

Author	Study	Study protocol including numbers	Study population	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristic	of participants, interventions,	including main inclusion		and attrition rates	Bias
name	s	duration, and follow-up	and exclusion criteria			
		that were carried out by study	cardiac monitoring unit	of illness (scale of 1=mild to	2.97), for those who had less	
		nurses following an intervention	>48 hours	9=moribund): 5.8 (1.2)	comorbidity (HR 1.36, 95% CI 0.75 to	
		protocol; daily		Suspected Dementia %: 58	2.46), or for those with prevalent	
		Control (N=114): Usual care; daily		Postop %: NR	delirium (HR 1.15, 95% CI 0.48 to	
		Duration: Until discharge		Cancer %: NR	2.79).	
		Follow-up (days): Until discharge, 56			Attrition: 6% vs. 2%	
Khalifezade	Design: RCT	Randomized N: 40	Inclusion: Age 17-70	Mean age range: 17-70	Main outcomes: There was	High
h et al.	Setting:	Analyzed N: 40	years, ≥9 for level of	Female %: NR	significant difference in irritability	
(2011)	Postop,	Intervention (N=20): Multi-	consciousness, and 6 on	Race %: NR	and delirium severity status on the	
	neurosurgery	component nurse-led intervention	GCS	Delirium %: 100	1 st day of admission and the 5 th day.	
	Country: Iran	of clear information, effective	Exclusion: Dementia and	RASS score of +1: 100	Higher reduction in the irritability	
	Funding:	communication, assurance, and	those who died before	Dementia %: 0 (excluded)	severity was reported in the	
	None	emotional support from the	the 5 th day after delirium	Postop %: 100	intervention group vs. control group.	
		researcher, his partners, and the	diagnosis	Cancer %: NR	The number of subjects with delirium	
		nurses. The patients' families in the			in both groups reduced on the 5 th	
		intervention group were allowed to			day vs. the 1 st day of admission with	
		have regular daily visits twice a day;			a significant difference between	
		once in the morning shift and once			these 2 days. The number of samples	
		in the afternoon for 45 minutes			without delirium in the intervention	
		Control (N=20): Usual care			group was almost two times higher	
		Duration: During ICU stay			vs. the control group on the 5 th day.	
		Follow-up (days): 5			Attrition: NR	
Kolanowski	Design: RCT	Randomized N: 16	Inclusion: Age ≥65 years,	Mean (SD) age: 86.5 (4.3)	Main outcomes: Delirium, severity of	Moderate
et al.	Setting:	Analyzed N: 16	with mild to moderate	Female %: 58.5	delirium, attention approached	
(2011)	Rehab	Intervention (N=11): Cognitive	stage dementia, and	Race %:	significance, and improvement over	
	Country: U.S.	stimulation delivered using simple	presence of delirium	-Caucasian: 100	time favored the intervention group.	
	Funding:	recreational activities that were	Exclusion: Neurological	-Black/African American: 0	Although not statistically significant,	
	University	increasingly challenging, mentally	or neurosurgical	-Asian: 0	a difference in mean (7.0 vs. 3.27)	
		stimulating, and tailored to each	disease associated with	-Other: 0	and median (7.0 vs. 3.0) days with	
		person's interests and functional	cognitive impairment	Delirium %: 100	delirium was found, with the control	
		ability; the recreational activities	other than dementia,	Mean (SD) CDR: 1.1 (0.3)	group having more days of delirium.	
		target cognitive domains affected	nonverbal, severe	Dementia %: 100	Attrition: NR	
		by delirium: attention, orientation,	hearing or vision			

Author	Study	Study protocol including numbers	Study population	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristic	of participants, interventions,	including main inclusion		and attrition rates	Bias
name	s	duration, and follow-up	and exclusion criteria			
		memory, abstract thinking, and	impairment, or no family	Postop %: 100		
		executive functioning; <30 (mean	or caregiver to interview	Cancer %: NR		
		26.1, SD 8) minutes each time; daily				
		Control (N=5): Usual care; daily				
		Duration: Up to 30 days				
		Follow-up (days): 30				
Kolanowski	Design: RCT	Randomized N: 283	Inclusion: Age ≥65 years,	Mean (SD) age: 85.78 (6.8)	Main outcomes: Mean percentage of	Moderate
et al.	Setting:	Analyzed N: 282	with mild to moderate	Female %: 64.6	delirium-free days was similar	
(2016)	Rehab	Intervention (N=141): Cognitive	stage dementia, and	Race %:	between intervention vs. control	
	Country: U.S.	stimulation delivered using simple	presence of delirium	-Caucasian: 97.5	(64.8%, 95% CI 59.6 to 70.1 vs.	
	Funding:	recreational activities that were	Exclusion: Any	-Black/African American:	68.7%, 95% CI 63.9 to 73.6, p=0.37,	
	Government	increasingly challenging, mentally	neurological or	2.4	Wilcoxon's rank sums test). Delirium	
		stimulating, and tailored to each	neurosurgical disease	-Asian: NR	severity was similar between	
		person's interests and functional	associated with cognitive	-Other: NR	intervention and control (10.77, 95%	
		ability; the recreational activities	impairment, nonverbal,	Delirium %: 100	Cl 10.10 to 11.45 vs. 11.15, 95% Cl	
		target cognitive domains affected	or severe hearing or	Mean (SD) Charlson	10.50 to 11.80; a difference of 0.37,	
		by delirium %: attention,	vision impairment	Comorbidity Index: 3.00	95% Cl 0.56 to 1.31, p=0.43).	
		orientation, memory, abstract		(1.93)	Attrition: 1% vs. 4%	
		thinking, and executive functioning;		Mean (SD) CDR: 1.25 (0.5)		
		<30 minutes each day delivered 5		Dementia %: 100		
		days a week; daily		Postop %: 100		
		Control (N=142): Usual care; daily		Cancer %: NR		
		Duration: Up to 30 days		Mean (SD) number of		
		Follow-up (days): 30 or discharge		medications: 15.38 (4.7)		
				Mean (SD) number of		
				anticholinergic		
				medications: 1.61 (1.1)		
Marcantoni	Design: RCT	Randomized N: 126	Inclusion: Age ≥65 years,	Mean (SD) age: 79 (8)	Main outcomes: Delirium occurred in	Moderate
o et al.	Setting:	Analyzed N: 126	admitted directly from	Female %: 79	20/62 (32%) intervention patients vs.	
(2001)	Nursing	Intervention (N=62): Proactive	an acute medical or	Race %:	32/64 (50%) usual care patients	
	homes	geriatrics consultation; geriatrician's	surgical hospitalization	-Caucasian: 90	(p=0.04, RR 0.64, 95% Cl 0.37 to	
	Country: U.S.	daily visits	Exclusion: End-stage	-Black/African American:	0.98).	
		Control (N=64): Usual care	dementia and those who	NR	Overall attrition: 0%	

Author	Study	Study protocol including numbers	Study population	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristic	of participants, interventions,	including main inclusion		and attrition rates	Bias
name	s	duration, and follow-up	and exclusion criteria			
	Funding:	Intervention duration: At admission;	had complete functional	-Asian: NR		
	Government	if negative, again when warranted	dependence before	-Other: NR		
		Control duration: At admission	hospitalization	Delirium %: 100		
		Follow-up (days): Until discharge		Charlson Comorbidity Index		
				score ≥4 %: 36		
				Clinical Dementia %: 40		
				Postop %: 33		
				Cancer %: NR		
Marcantoni	Design: RCT	Randomized N: 457	Inclusion: Age ≥65 years,	Mean age: 84	Main outcomes: Nurses at DAP sites	High
o et al.	Setting:	Analyzed N: 370	admitted directly from	Female %: 64	detected delirium in 41% of	
(2010)	Nursing	Intervention (N=282): Delirium	an acute medical or	Race %:	intervention participants vs. 12% in	
	homes	Abatement Program (DAP); 1)	surgical hospitalization	-Caucasian: 92	usual care sites (p<0.001). The DAP	
	Country: U.S.	assessment for delirium within 5	Exclusion: End-stage	-Black/African American:	intervention had no effect on	
	Funding:	days of post-acute care admission,	dementia and those who	NR	delirium persistence on the basis of 2	
	Government	2) assessment and correction of	had complete functional	-Asian: NR	measurements at 2 weeks (68% vs.	
		common reversible causes of	dependence before	-Other: NR	66%) and 1 month (60% vs. 51%)	
		delirium, 3) prevention of	hospitalization	Delirium %: 100	(adjusted p=0.20). Adjusting for	
		complications of delirium, and 4)		Mean delirium severity	baseline differences between DAP	
		restoration of function		(scale 0 to 30): 12.4	and usual care participants and	
		Control (N=175): Usual care		Mean Charlson	restricting analysis to DAP	
		Intervention duration: At admission;		Comorbidity Index: 2.6	participants in whom delirium was	
		if negative, again when warranted		Clinical Dementia %: 40	detected did not alter the results.	
		Control duration: At admission		Postop %: NR	Attrition at 4 weeks: 25% vs. 21%	
		Follow-up (days): 14, 28		Cancer %: NR		
Pitkälä et	Design: RCT	Randomized N: 174	Inclusion: Age >69 years	Mean age: 83	Main outcomes: Delirium was	Moderate
al. (2006;	Setting:	Analyzed N: 174	admitted to the general	Female %: 73.6	alleviated more rapidly during	
2008)	Inpatient	Intervention (N=87): Multi-	medicine services at 1	Race %: NR	hospitalization, and cognition	
	Country:	component intervention consisting	hospital	Delirium %: 100	improved significantly at 6 months in	
	Finland	of geriatric assessment and	Exclusion: Admission	Mean (SD) delirium	the intervention group.	
	Funding:	recognition of delirium, avoidance	from permanent	severity, MDAS: 12.5 (5.1)	Attrition at 3- and 6-month follow-	
	University	of conventional neuroleptics and	institutional care to the	Mean (SD) Barthel Index:	up: 0% vs. 5%	
		administering atypical	hospital	79 (19.7)		
		antipsychotics as necessary, general		Mean (SD) Charlson		

Author	Study	Study protocol including numbers	Study population	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristic	of participants, interventions,	including main inclusion		and attrition rates	Bias
name	s	duration, and follow-up	and exclusion criteria			
		orientation (calendars, clocks,		Comorbidity Index: 2.4		
		photos), physiotherapy, general		(1.9)		
		geriatric interventions (nutritional		Dementia %: 30.4		
		supplements, calcium, hip		Mean (SD) MMSE: 14.3		
		protectors, etc.), cholinesterase		(5.2)		
		inhibitors if needed, and		Cancer %: NR		
		comprehensive discharge planning		Postop %: NR		
		(social worker consultation, OT		Mean (SD) number of		
		home visit, discharge planning with		medications: 7.3 (3.7)		
		caregivers)				
		Control (N=87): Usual care				
		Duration: During hospitalization				
		Follow-up (days): 90, 180, 365				

CDR=Clinical Dementia Rating; CGBRS=Crichton Geriatric Behavioural Rating Scale; Cl=confidence interval; DAP=Delirium Abatement Program; GCS=Glasgow Coma Scale; HR=hazard ratio; ICU=intensive care unit; LOS=length of stay; MDAS Memorial Delirium Assessment Scale; MMSE=Mini-Mental State Examination; N=number; NR=not reported; OT=occupational therapy; postop=postoperative; RCT=randomized controlled trial; RR=relative risk; SD=standard deviation; SPMSQ=Short Portable Mental Status Questionnaire.

Single-Component Interventions

Computerized Decision Support

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
name		interventions, duration, and				
		follow-up				
Campbell	Design: RCT	Randomized N: 200	Inclusion: Age ≥18 years, within 24	Mean (SD) age: 61.8 (14.3)	Main outcomes: Neither	Moderate
et al.	Setting: ICU	Analyzed N: 200	hours of ICU admission, with	Female %: 59	median delirium/coma-free	
(2019)	Country: U.S.	Intervention (N=99):	delirium on any day of the ICU	Race %:	days (p=0.361) nor median	
	Funding:	Computerized decision aid	stay, and patients with	-Caucasian: NR	change in delirium severity	
	Government	consisting of 2 methods: (1) a	contraindication to haloperidol or	-Black/African American:	scores (p=0.582 for DRS-R-98;	
		computerized decision support	personal preference to avoid	52	p=0.333 for CAM-ICU-7) were	
		intervention to interrupt orders	exposure to haloperidol as a	-Asian: NR	different between the	
		for strong anticholinergics and (2)	delirium treatment	-Other: NR	groups. No differences in	
		human (pharmacist) decision	Exclusion: Delirium due to alcohol	Delirium %: 100	adverse events or mortality	
		support that included twice-daily	intoxication or aphasic stroke	Mean (SD) APACHE II: 21.2	were identified.	
		surveillance of medication orders		(8.3)	Attrition: NR	

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
name		interventions, duration, and				
		follow-up				
		and administration records		Mean (SD) Charlson		
		Control (N=101): Usual care		Comorbidity Index: 3.2		
		Duration: During ICU stay		(2.5)		
		Follow-up (days): 8, 30		Mean (SD) IQCODE: 3.3		
				(0.5)		
				Postop %: 17.6		
				Cancer %: NR		
				Mechanically ventilated %:		
				71.9		
Khan et al.	Design: RCT	Randomized N: 351	Inclusion: Age ≥18 years, admitted	Mean (SD) age: 59.3 (16.9)	Main outcomes: There were	Moderate
(2019)	Setting: ICU	Analyzed N: 351	to ICU ≥24 hours, and screened	Female %: 52	no differences between the	
	Country: U.S.	Intervention (N=174):	positive for delirium	Race %:	intervention vs. usual care	
	Funding:	Computerized decision support	Exclusion: Alcohol related delirium	-Caucasian: NR	groups in median	
	Government	system that generated automated		-Black/African American:	delirium/coma-free days at	
		interruptive messages that		42	day 8 (4 [IQR 2-7] days vs. 5	
		alerted providers to the risk of		-Asian: NR	[IQR 1-7] days, p=0.888) or at	
		anticholinergic in delirium and		-Other: NR	day 30 (26 [IQR 19-29] days	
		offered alternative,		Delirium %: 100	vs. 26 [IQR 14-29] days,	
		nonanticholinergic medications; if		Mean (SD) Charlson	p=0.991). There were no	
		messages were ignored a study		Comorbidity Index: 3.2	significant differences for	
		pharmacist called the physician		(3.0)	decrease in delirium severity	
		the same day to discuss reducing		Dementia %: NR	at day 8, but at hospital	
		or discontinuing the		Postop %: 25.4	discharge, the intervention	
		anticholinergic medication.		Cancer %: NR	group showed a greater	
		Control (N=177): Usual care		Receiving MV %: 72.8	reduction in delirium severity	
		Intervention duration: Continuous			(mean decrease in CAM-ICU-	
		through hospital stay			7 score: 3.2 [SD 3.3] vs. 2.5	
		Control duration: During			[SD 3.2], p=0.046).	
		hospitalization			Attrition: 3% vs. 1%	
		Follow-up (days): 8, 30				

APACHE II=Acute Physiology and Chronic Health Evaluation II; CAM-ICU=Confusion Assessment Method for the ICU; DRS-R-98=Delirium Rating Scale-Revised-1998; ICU=intensive care unit; IQCODE=Informant Questionnaire on Cognitive Decline in the Elderly; IQR=interquartile range; MV=medical ventilation; N=number; NR=not reported; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

Acupuncture

Author (year); trial	Study characteristics	Study protocol including numbers of participants,	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
name		interventions, duration, and				
		follow-up				
Levy et al.	Design: RCT	Randomized N: 81	Inclusion: Age >65 years,	Mean (SD) age: 84.5 (7.4)	Main outcomes: A	High
(2022)	Setting:	Analyzed N: 81	hospitalized in a medical inpatient	Female %: 45.7	multivariate Cox regression	
	Inpatient	Intervention (N=50):	unit, and diagnosed with delirium	Race %: NR	analysis showed a shorter	
	Country: Israel	Acupuncture plus usual care;	or subsyndromal delirium within	Delirium on admission to	time-to first remission of	
	Funding: Non-	Once a day	the past 48 hours	hospital %: 51.8	delirium in acupuncture vs.	
	profit	Control (N=31): Usual care	Exclusion: Contraindication to	Median APACHE II: 9 vs. 11	control (HR 0.267, 95% CI	
		Duration: Up to 5 days or	acupuncture (e.g., platelets ≤20 x	Dementia %: NR, severe	0.098 to 0.726, p=0.010). In	
		discharge	109/L), a history of severe	dementia excluded	the 7 days of evaluation, a	
		Follow-up (days): 5, Discharge	dementia (documented history	Postop %: NR	significantly higher number of	
			and/or IQCODE score ≥4), an	Cancer %: NR	delirium-free days was found	
			acute neurological injury (stroke),		in acupuncture vs. control	
			a history of schizophrenia or a		(p<0.001), and CAM-S sum	
			formal thought disorder, an active		from day 2 to day 7 of	
			acute alcohol or medication		evaluation was significantly	
			withdrawal, a history of end stage		lower in acupuncture vs.	
			liver failure (to distinguish		control (p=0.002).	
			between delirium and hepatic		Overall attrition: 0%	
			encephalopathy), or language			
			barriers preventing delirium			
			assessment			

APACHE II=Acute Physiology and Chronic Health Evaluation II; CAM-S=Confusion Assessment Method-Severity; CI=confidence interval; HR=hazard ratio; ICU=intensive care unit; IQCODE=Informant Questionnaire on Cognitive Decline in the Elderly; N=number; NR=not reported; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

Family Member Delivered Intervention

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
name		interventions, duration, and				
		follow-up				
Mailhot et al.	Design: RCT	Randomized N: 30	Inclusion: POD, undergoing CABG	Mean age: 75	Main outcomes: Mean	Moderate
(2017)	Setting:	Analyzed N: 30	or heart valve surgery, and a family	Female %: NR	delirium severity scores	
	Postop cardiac	Intervention (N=16): Nurse	caregiver who could visit with 24	Race %: NR	showed similar trajectories on	
	Country:	mentor provided information	hours of delirium onset and visit	Delirium %: 100		

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
name		interventions, duration, and				
		follow-up				
	Canada	on delirium and guidance to	twice a day during the study	Past episode of delirium %:	days 1, 2 and 3 in both	
	Funding:	the family caregiver who was	Exclusion: Preop diagnosis of	16.7	groups.	
	Government	there to intervene in delirium	cognitive impairment or	Functioning: NR	Attrition: 2% vs. 0%	
		management; twice a day	irreversible postop cognitive	Dementia %: NR, cognitive		
		Control (N=14): Usual care	damage	impairment excluded		
		Duration: During		Postop %: 100		
		hospitalization		Cancer %: NR		
		Follow-up (days): Until		Drank daily %: 10		
		discharge		Depression %: 33.3		

CABG=coronary artery bypass graf; N=number; NR=not reported; POD=post-operative delirium; postop=post-operative; preop=pre-operative; RCT=randomized controlled trial.

Massage

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
name		interventions, duration, and				
		follow-up				
Makinian et	Design: RCT	Randomized N: 88	Inclusion: Age ≥60-year-old	Mean age: 74.1	Main outcomes: After the	High
al. (2015)	Setting:	Analyzed N: 88	women hospitalized in coronary	Female %: 100	study intervention, the mean	
	Inpatient	Intervention (N=NR): Face,	care units, received a diagnosis of	Race %: NR	total delirium score in the	
	Country: Iran	head, and neck massage	delirium, and not on MV	Delirium %: 100	intervention group was	
	Funding:	therapy plus single dose of	Exclusion: Those with skin lesions	Functioning: NR	significantly higher than that	
	University	haloperidol; twice a day	or tender area in the face and the	Dementia %: NR, excluded	of the control group (17.6 vs.	
		Control (N=NR): Single dose of	head and those needing another	those with cognitive	16.7, p=0.03).	
		haloperidol	dose of haloperidol	disorders	Attrition: NR	
		Intervention duration: 2 days;		Postop %: NR		
		haloperidol at admission		Cancer %: NR		
		Control duration: At admission				
		Follow-up (days): Until				
		discharge				

MV=medical ventilation; N=number; NR=not reported; postop=post-operative; RCT=randomized controlled trial.

Bright Light Therapy

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
name		interventions, duration, and				
		follow-up				
Yang et al.	Design: RCT	Randomized N: 36	Inclusion: DRS score >12	Mean (SD) age: 69.58	Main outcomes: Risperidone	Moderate
(2012)	Setting:	Analyzed N: 36	(moderate to severe)	(15.13)	with light therapy group	
	Inpatient,	Intervention 1 (N=20):	Exclusion: Other axis I disorders on	Female %: 36	showed a significantly greater	
	psychiatry	Adjuvant bright light therapy	the DSM-IV, prolonged QTc	Race %: NR	decrease in the DRS score	
	Country:	with risperidone starting at 0.5	interval on electrocardiography,	Delirium %: 100 (DRS score	than the risperidone-only	
	South Korea	mg/day; increased daily until a	history of hypersensitivity or	>12)	group (F=2.87, p=0.025), but	
	Funding: None	score <12 on the DRS or a 50%	intolerance to risperidone, and	Baseline scale of function	the MDAS score was not	
		reduction of the baseline DRS	injected with antipsychotics or	(physical or cognitive)	significantly different	
		score was achieved during the	benzodiazepines before screening	CGI-S: 5.31±0.95 vs.	between the 2 groups.	
		study period.		5.05±0.76	Attrition: NR	
		Intervention 2 (N=16):		Dementia %: 0, excluded if		
		Risperidone alone, starting at		had other axis I disorders		
		0.5 mg/day; increased daily		on the DSM-IV		
		until a score <12 on the DRS or		Postop %: 55		
		a 50% reduction of the		Cancer %: NR		
		baseline DRS score was		Hepatic or renal		
		achieved during the study		impairment: NR		
		period.		Alcohol use: NR		
		Duration: During		Substance use: NR		
		hospitalization; 5 days		Mean (SD) number of		
		Follow-up (days): 0, 1, 2, 3, 4, 5		medications taken at		
				baseline: NR		

CGI-S=Clinical global impression-severity; DRS=Delirium Rating Scale; DSM-IV= *Diagnostic and Statistical Manual of Mental Disorders*, Fourth Edition; MDAS Memorial Delirium Assessment Scale; N=number; NR=not reported; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

Pharmacological Interventions for Prevention of Delirium

Dexmedetomidine

Dexmedetomidine vs. Usual Care/Normal Saline

In Surgical Setting

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year);	characteristics	numbers of participants,	main inclusion and exclusion		and attrition rates	Bias
trial name		interventions, duration, and	criteria			
		follow-up				
Chen et	Design: RCT	Randomized N: 160	Inclusion: Age ≥20 years,	Mean age: 57.5	Main outcomes: The	Low
al. (2021)	Setting: Intraop,	Analyzed N: 160	elective cranial surgery for brain	Female %: 60.6	dexmedetomidine group had a	
	cranial surgery	Intervention (N=80):	tumor resection, aneurysm	Race %: NR	more favorable ICDSC score, with	
	Country: Taiwan	Dexmedetomidine 0.5	clipping, intracranial bypass, and	Delirium %: NR	more patients receiving an ICDSC	
	Funding:	μg/kg/hour IV	microvascular decompression	ASA I-III %: 100	score of 0 than the control group	
	Unclear	Control (N=80): Normal saline	Exclusion: Age >80 years,	Dementia %: NR	(84.6% vs. 64.2%, p=0.012).	
		Duration: Intraop	metastatic brain tumor, revision	Postop %: 100	Overall attrition: 0%	
		Follow-up (days): Until	surgery, history of arrhythmia or	Tumor excision %: 69.4		
		discharge	heart failure, liver cirrhosis, or	Aneurysm clipping %: 13.1		
			renal insufficiency	Intracranial bypass %:		
				10.6		
				Microvascular		
				decompression %: 6.9		
He et al.	Design: RCT	Randomized N: 90	Inclusion: Ages 75-90 years with	Mean (SD) age: 82.5 (5.6)	Main outcomes: The incidence rate	Moderate
(2018)	Setting: Intraop,	Analyzed N: 90	thoracic or lumbar vertebral	Female %: 42	of POD in the dexmedetomidine	
	orthopedic	Intervention 1 (N=30):	fractures and receiving selective	Race %: NR	group was apparently lower than	
	Country:	Dexmedetomidine 0.5 μg/kg	operation at grade I to III in the	Delirium %: NR	those in the other 2 groups	
	Funding: China	initial bolus, then maintained	ASA classification	Function: NR	(p<0.05); the incidence rate of POD	
	Government	at 0.4 μg/kg/hour	Exclusion: CNS disease or ≤23 on	Dementia %: NR	at 1-2 days after operation in	
		Intervention 2 (N=30):	MMSE	Postop %: NR	midazolam group was higher than	
		Midazolam IV of 0.03 mg/kg		Cancer %: NR	that in the normal saline group	
		Control (N=30): Normal saline			(p<0.05). There was no significant	
		Intervention 1 duration: 10			difference in the incidence rate of	
		minutes before anesthesia			POD at 3-5 days after operation	
		induction, then during			between the midazolam and normal	
		surgery			saline groups (p>0.05).	
					Attrition: NR	

Author (year); trial name Hu et al.	Study characteristics Design: RCT	Study protocol including numbers of participants, interventions, duration, and follow-up Intervention 2, Control duration: Before anesthesia Follow-up (days): 5 Randomized N: 177	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates Main outcomes: Delirium occurred	Risk of Bias
(2020)	Setting: Intraop, esophagectomy Country: China Funding: Government	Analyzed N: 177 Intervention (N=90): Dexmedetomidine IV loading dose of 0.4 ml/kg over 15 minutes, then 0.1 ml/kg/hour Control (N=87): Usual care Intervention duration: Loading dose immediately prior to induction of anesthesia, then until 1 hour until anticipated end of surgery Control duration: During surgery Follow-up (days): 4	ASA I-III and scheduled for an open transthoracic esophagectomy under general endotracheal anesthesia Exclusion: BMI >30, severe pulmonary, cardiac, renal, hepatic, cerebrovascular, comorbidities, chronic pain, or dementia	Female %: 17.6 Race %: NR Delirium %: NR ASA II %: 72.3 Dementia %: 0 (excluded) Postop %: 100 Cancer %: NR	in 15 (16.7%) of 90 cases given dexmedetomidine and in 32 (36.8%) of 87 cases given saline (p=0.0036). Attrition: 14% vs. 14%	
Huyan et al. (2019)	Design: RCT Setting: Intraop, cardiothoracic Country: China Funding: Mixed	Randomized N: 360 Analyzed N: 346 Intervention (N=180): Dexmedetomidine continuous IV infusion of 0.5 µg/kg bolus preop followed by 0.1 µg/kg/hour intra-operatively Control (N=180): Normal saline Intervention duration: Preop to 30 minutes before end of surgery	Inclusion: Age ≥65 years having radical pulmonary resection Exclusion: ICDSC score >0 and discharged to ICU after surgery	Mean (SD) age: 70.5 (5.52) Female %: 47 Race %: NR Delirium %: 0 ASA II, III %: 100 Dementia %: NR Postop %: 100 pulmonary Cancer %: 100 lung	Main outcomes: During postop days 1-7, delirium occurred in both groups but was lower in the dexmedetomidine group (precise numbers not provided, graph only). Attrition: 4% vs. 4%	Moderate

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year);	characteristics	numbers of participants,	main inclusion and exclusion		and attrition rates	Bias
trial name		interventions, duration, and	criteria			
		follow-up				
		Control duration: Unclear				
		Follow-up (days): Through				
		day 7				
Kim J.A. et	Design: RCT	Randomized N: 143	Inclusion: Ages 18-75 years	Median age: 61	Main outcomes: The incidence of	Low
al. (2019)	Setting: Intraop,	Analyzed N: 120	undergoing elective video-	Female %: 48	delirium after discharge from post	
	cardiothoracic	Intervention (N=73):	assisted thoracoscopic	Race %: NR	anesthesia care unit was not	
	Country: South	Dexmedetomidine continuous	lobectomy/segmentectomy for	Delirium %: NR	different between the groups (25%	
	Korea	IV infusion of 0.5 μg/kg/hour	lung cancer	ASA I-III %: 100	vs. 25%).	
	Funding:	Control (N=70): Saline	Exclusion: Patients with	Dementia %: 0	Attrition: 18% vs. 14%	
	Industry	(sevoflurane) 0.125	dementia	Postop %: 100 pulmonary		
		mL/kg/hour		surgery		
		Duration: Just prior to		Cancer %: 100 lung cancer		
		induction of anesthesia and				
		discontinued at end of				
		surgery				
		Follow-up (days): Through				
		day 3				
Lee et al.	Design: RCT	Randomized N: 354	Inclusion: Age >65 years	Mean (SD) age: 73.07	Main outcomes: The incidence of	Moderate
(2018)	Setting: Intraop,	Analyzed N: 318	undergoing laparoscopic major	(6.01)	POD was 9.5% and 18.4% in the 2	
	noncardiac	Intervention 1 (N=118):	non-cardiac surgery under	Female %: 56	groups receiving dexmedetomidine	
	Country: South	Dexmedetomidine IV 1µg/kg	general anesthesia	Race %: NR	compared with usual care (24.8%)	
	Korea	bolus followed by 0.2-0.7	Exclusion: Patients with	Delirium %: NR	(p=0.017).	
	Funding:	µg/kg/hour	cognitive impairment	ASA I, II %: 68.2	Attrition at follow-up: 19% vs. 3%	
	University	Intervention 2 (N=118):		Cognitive Impairment %: 0	vs. 8%	
		Dexmedetomidine IV 1µg/kg		Postop %: 100 non-cardiac		
		bolus		surgery		
		Control (N=118): Usual care		Cancer %: NR		
		(saline)				
		Duration: Intraop				
		Follow-up (days): Through				
		day 5				

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year);	characteristics	numbers of participants,	main inclusion and exclusion		and attrition rates	Bias
trial name		interventions, duration, and	criteria			
		follow-up				
Lee et al.	Design: RCT	Randomized N: 217	Inclusion: Age ≥18 years	Mean (SD) age: 55.5	Main outcomes: There was no	Low
(2019)	Setting: Intraop	Analyzed N: 201	undergoing liver transplant	(range 50-62)	significant difference in delirium	
	and postop,	Intervention (N=109):	(recipient)	Female %: 28	incidence in the dexmedetomidine	
	liver transplant	Dexmedetomidine IV	Exclusion: Preop comatose	Race %: NR	group compared with the control	
	Country: South	1µg/kg/hour	state, preexisting neurological	Delirium %: NR	group (9% vs. 5.9%, p=0.44).	
	Korea	Control (N=108): Normal	deficit, no Korean speaker, and	APACHE II: 23.5	Attrition: 8% vs. 6%	
	Funding:	saline	hemodynamic instability for >1	Dementia %: NR		
	Unclear	Duration: Intraop and postop	hour	Postop %: 100 liver		
		for 2 days		transplant		
		Follow-up (days): Until		Cancer (original		
		discharge		diagnosis) %: 63		
				Cancer surgery %: 0		
Li X. et al.	Design: RCT	Randomized N: 285	Inclusion: Age ≥60 years	Mean (SD) age: 66.95	Main outcomes: Dexmedetomidine	Low
(2017)	Setting: Intraop	Analyzed N: 285	undergoing elective CABG	(5.35)	did not decrease the incidence of	
	and postop,	Intervention (N=142):	and/or valve replacement	Female %: 31	delirium (4.9% vs. 7.7%, p=0.341).	
	cardiac	Dexmedetomidine IV 0.6	surgery	Race %: NR	Attrition: 5% vs. 8%	
	Country: China	µg/kg for 10 minutes followed	Exclusion: Parkinson's disease or	Delirium %: 0		
	Funding:	by 0.4 μg/kg/hour until end of	severe dementia	ASA I, II %: 64.2		
	University	surgery then 0.1 μg/kg/hour		Severe Dementia %: 0		
		until end of MV		Postop %: 100 cardiac		
		Control (N=143): Normal		surgery		
		saline		Cancer %: 0		
		Duration: Intraop and during				
		MV				
		Follow-up (days): 1 to 5				
Li et al.	Design: RCT	Randomized N: 620	Inclusion: Age ≥60 years	Mean (SD) age: 69.0 (6.5)	Main outcomes: The incidence of	Low
(2020)	Setting: Intraop,	Analyzed N: 619	undergoing elective major non-	Female %: 60	delirium within 5 days of surgery	
	noncardiac	Intervention (N=310):	cardiac surgery under general	Race %: NR	was lower with dexmedetomidine	
	Country: China	Dexmedetomidine IV 0.6	anesthesia with an expected	Delirium %: 0	treatment (5.5% vs. 10.3%,	
	Funding: Mixed	µg/kg bolus followed by 0.5	duration of 2 hours or more	ASA I, II %: 89.5	p=0.026).	
		μg/kg/hour until 1 hour	Exclusion: Patients with	Dementia %: NR (excluded	Attrition: 0% vs. 0%	
		before end of surgery	Parkinson's disease	Parkinson's)		

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
that hame		follow-up	citteria			
		Control (N=310): Normal saline Duration: Intraop Follow-up (days): Up to day 5 or discharge		Postop %: 100 noncardiac surgery Cancer %: 0		
Likhvants ev et al. (2021)	Design: RCT Setting: Intraop, cardiac surgery Country: Russia Funding: None	Randomized N: 175 Analyzed N: 169 Intervention (N=87): Dexmedetomidine 100 mg/mL Control (N=88): Placebo; usual care Duration: Started at induction of anesthesia and lasted throughout the procedure Follow-up (days): Until discharge	Inclusion: Age >45 years undergoing elective CABG or valve surgery or a combination of the 2 with CPB Exclusion: Evidence of preop mental impairment or underwent a second surgery before ICU discharge	Mean (SD) age: 62.5 (9.6) Female %: 27.8 Race %: NR Delirium %: NR Function: NR Dementia %: NR, but excluded mental impairment; implied 0% Postop %: 100 Cancer %: NR	Main outcomes: A decrease in the rate of delirium for dexmedetomidine vs. placebo was demonstrated (6/84 [7.1%] vs. 16/85 [18.8%], p=0.02, OR 0.33, 95% CI 0.12 to 0.90). Attrition: 3% vs. 3%	Low
Liu Y. et al. (2016)	Design: RCT Setting: Intraop, orthopedic Country: China Funding: Unclear	Randomized N: 200 Analyzed N: 197 Intervention (N=100): Dexmedetomidine IV 0.2-0.4 µg/kg/hour until end of surgery Control (N=100): Placebo; normal saline Duration: Intraop Follow-up (days): 1, 3, 7	Inclusion: Ages 65-80 years undergoing total hip, knee, or shoulder replacement with general anesthesia Exclusion: Neurological diseases that may affect cognitive function (e.g., subdural hematoma, vascular dementia, frontotemporal dementia, hypothyroidism, alcoholic dementia, vitamin B12 deficiency, encephalitis), hypoxic pulmonary disease, and perioperative serious cardiopulmonary complications	Mean (SD) age: 72.83 (8.39) Female %: 51 Race %: NR Delirium %: NR Function: NR Dementia %: NR, but excluded mental impairment; implied 0% Postop %: 100 Cancer %: NR	Main outcomes: Dexmedetomidine treatment significantly decreased POD incidence for patients with and without mild cognitive impairment relative to placebo (p<0.05, both comparisons). Attrition: 1% vs. 2%	Low

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year);	characteristics	numbers of participants,	main inclusion and exclusion		and attrition rates	Bias
trial name		interventions, duration, and	criteria			
		follow-up				
Massoumi	Design: RCT	Randomized N: 93	Inclusion: Ages 40-80 years	Mean (SD) age: 61.55	Main outcomes: Administration of	Moderate
et al.	Setting: Postop,	Analyzed N: 88	undergoing CABG surgery	(4.80)	dexmedetomidine significantly	
(2019)	cardiac	Intervention (N=46):	Exclusion: History of dementia,	Female %: 18	decreased delirium compared with	
	Country: Iran	Dexmedetomidine 1 µg/kg	"defect in the examined data,"	Race %: NR	placebo (9.1% vs 20.5%, p=0.040).	
	Funding:	over 10 minutes then infusion	need for reoperation due to	Delirium %: NR	Attrition: 4% vs. 6%	
	University	of 0.2-0.7 µg/kg/hour in 50cc	hemorrhage, "excessive	Baseline scale of function:		
		volume by syringe pump until	sensitivity" to haloperidol and	NR		
		extubation	phenothiazines, glaucoma, or	Dementia %: 0 (excluded)		
		Control (N=47): Placebo;	receiving lithium medication	Postop %: 100		
		infusion of normal saline with		Cancer %: NR		
		the same volume as				
		medication by the syringe				
		pump				
		Duration: NR				
		Follow-up (days): 3				
Momeni	Design: RCT	Randomized N: 420	Inclusion: Age ≥60 years having	Mean age: 70.5	Main outcomes: There was no	Moderate
et al.	Setting: Postop,	Analyzed N: 349	on-pump cardiac surgery	Female %: 24.2	difference between treatments in	
(2021)	cardiac	Intervention 1 (N=210):	Exclusion: Patients with hepatic	Race %: NR	the incidence of POD (p=0.687).	
	Country:	Dexmedetomidine 0.4	dysfunction (liver enzyme 3 x	Delirium %: 0 (excluded)	Attrition: 16% vs. 18%	
	Belgium	µg/kg/hour plus propofol 1-3	the upper limit of normal + a	Function: NR		
	Funding:	mg/kg/hour	serum albumin concentration	Dementia %: NR		
	Medical	Intervention 2 (N=210):	below the normal reference	Postop %: 100		
	associations	Propofol 1-3 mg/kg/hour plus	limit), preop delirium, surgery	Cancer %: NR		
		saline 0.9%	without CPB, minimally invasive			
		Intervention 1 duration:	or robotic cardiac surgery,			
		Perioperative	emergency surgery, or patients			
		Intervention 2 duration:	on chronic renal replacement			
		Postop	therapy			
		Follow-up (days): Until				
		discharge				

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year);	characteristics	numbers of participants,	main inclusion and exclusion		and attrition rates	Bias
trial name		interventions, duration, and	criteria			
		follow-up				
Shi et al.	Design: RCT	Randomized N: 168	Inclusion: Age ≥60 years	Mean (SD) age: 74.46	Main outcomes: There was no	Low
(2019)*	Setting: Intraop,	Analyzed N: 164	undergoing cardiac surgery	(7.45)	significant difference in the	
	cardiac	Intervention 1 (N=84):	Exclusion: Patients with	Female %: 27	incidence of POD between the	
	Country: China	Dexmedetomidine IV 0.4-0.6	previous history of POD	Race %: NR	dexmedetomidine group and the	
	Funding: Mixed	μg/kg/hour		Delirium %: 0 with	propofol (usual care) group (39.3%	
		Intervention 2 (N=84):		previous POD	vs. 26.3%, p=0.0758).	
		Propofol		Function; NR	Attrition: 0% vs. 5%	
		Duration: Intraop		Dementia %: NR		
		Follow-up (days): POD 5		Postop %: 100 cardiac		
				surgery		
				Cancer %: NR		
Shi et al.	Design: RCT	Randomized N: 106	Inclusion: Age ≥65 years males,	Mean (SD) age: 68.7	Main outcomes: The incidence of	Low
(2020)	Setting: Intraop,	Analyzed N: 106	scheduled for thoracoscopic	(4.06)	postop cognitive dysfunction and	
	thoracic	Intervention (N=53):	lobectomy with one-lung	Female %: 0	POD in the dexmedetomidine group	
	Country: China	Dexmedetomidine IV 0.5	ventilation, and received	Race %: NR	was 13.2 and 7.5%, respectively,	
	Funding:	μg/kg/hour	general anesthesia	Delirium %: NR	while that in the control group was	
	Government	Control (N=53): Normal saline	Exclusion: Neurologically	ASA II %: 88.7	35.8 and 11.3%, respectively.	
		Duration: Started at induction	impaired (MMSE ≤23); systolic	Dementia %: 0 (excluded)	Overall attrition: 0%	
		of anesthesia and continued	BP ≥180 or <90 mmHg or	Postop %: 100		
		until chest closure	diastolic BP ≥110 or <60 mmHg;	Cancer %: NR		
		Follow-up (days): 1, 3, 7	serious heart, liver, kidney, lung,			
			endocrine, or nervous system			
			diseases; severe infection;			
			abnormal results on MMSE,			
			MoCA, or CAM; epidural			
			puncture failure; sleep disorders			
Shu et al.	Design: RCT	Randomized N: 60	Inclusion: Ages 45-75 years	Mean (SD) age: 47.25	Main outcomes: The POD score of	Moderate
(2017)	Setting: Intraop,	Analyzed N: 60	undergoing elective cardiac	(8.08)	the dexmedetomidine group was	
	cardiac	Intervention (N=30):	valve replacement	Female %: 43	significantly decreased (15.8±4.2)	
	Country: China	Dexmedetomidine IV 1.0	Exclusion: NR	Race %: NR	compared with the control group	
	Funding:	µg/kg bolus preop, followed		Delirium %: NR	(18.6±6.2) (p<0.05). There was no	
	Unclear			ASA II, III %: 100	difference in the incidence of	

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
		follow-up				
		by 0.5 μg/kg/hour Control (N=30): Normal saline Duration: Preop, Intraop Follow-up (days): Discharge		Dementia %: NR Postop %: 100 cardiac surgery Cancer %: 0	delirium in the dexmedetomidine group compared with the control group (23.3% vs. 13.3%, p>0.05). Attrition: NR	
Soh et al. (2020)	Design: RCT Setting: Intraop and postop, cardiac Country: South Korea Funding: None	Randomized N: 108 Analyzed N: 108 Intervention (N=54): Dexmedetomidine 200 µg mixed with 0.9% saline to achieve a concentration of 4 µg/kg/hour Control (N=54): Normal saline Duration: Started immediately after anesthetic induction and continued for 24 hours Follow-up (days): 7	Inclusion: Age ≥20 years scheduled for aortic surgery under CPB using either moderate hypothermic circulatory arrest with antegrade cerebral perfusion via the right axillar artery or aortic cross clamp interrupting renal blood flow Exclusion: Congestive heart failure with a left ventricular ejection fraction <30%, uncontrolled arrhythmia combined with unstable hemodynamics, acute coronary syndrome, estimated glomerular filtration rate <15 ml/minute/1.73 m ² , or use of ventricular assist devices	Mean age: 65 Female %: 38.9 Race %: NR Delirium %: NR Katz grade I and II %: 10.2 Katz grade III %: 38.0 Katz grade IV %: 27.8 Katz grade IV %: 27.8 Katz grade V %: 8.3 Dementia %: NR Postop %: 100 Cancer %: NR	Main outcomes: Secondary outcomes, including stroke, mortality, and delirium, were similar between subjects randomized to dexmedetomidine and control groups (16/54 [30%] vs. 22 [41%], OR 0.61, 95% CI 0.28 to 2.36). POD in the 7 days after surgery was also similar between the groups (2/54 [4%] vs. 7/54 [13%], OR 0/26, 95% CI 0.05 to 1.31). Attrition: 6% vs. 2%	Low
Su et al. (2016) Zhang et al. (2019)	Design: RCT Setting: Postop, noncardiac Country: China Funding: Mixed	Randomized N: 700 Analyzed N: 700 Intervention (N=350): Dexmedetomidine IV 0.1 μg/kg/hour Control (N=350): Placebo; normal saline	Inclusion: Age ≥65 years who underwent elective noncardiac surgery under general anesthesia Exclusion: Patients with parkinsonism or profound dementia	Mean (SD) age: NR Female %: NR Race %: NR Delirium %: NR Mean APACHE II: 10.4 Severe Dementia %: 0 Postop %: 100 noncardiac surgery Cancer %: NR	Main outcomes: The incidence of POD was significantly lower in the dexmedetomidine group compared with the placebo group (9% vs. 23%, p<0.001). Attrition: 33% vs. 22%	Low

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
that hame		follow-up	criteria			
		Duration: Postop Follow-up (days): Through POD 7				
Sun et al. (2019)*	Design: RCT Setting: Postop, noncardiac Country: China Funding: None	Randomized N: 618 Analyzed N: 557 Intervention (N=309): Dexmedetomidine IV 0.1 µg/kg/hour Control (N=309): Placebo; saline Duration: Postop Follow-up (days): Through POD 5	Inclusion: Age ≥65 years undergoing major elective noncardiac surgery without a planned ICU stay Exclusion: Parkinson's or frank dementia	Median age: 68.5 Female %: 43 Race %: NR Delirium %: NR Mean ASA I-II: 79.5 Mean MMSE: 24.5 Postop %: 100 noncardiac surgery Cancer %: 50	Main outcomes: The incidence of POD was not different between the groups (11.7% vs. 13.8%, p=0.47). Attrition: 9% vs. 11%	Low
Tang et al. (2018)	Design: RCT Setting: Intraop, brain Country: China Funding: Unclear	Randomized N: 112 Analyzed N: 106 Intervention (N=56): Dexmedetomidine IV 1.0 µg/kg bolus followed by 0.3 µg/kg/hour Control (N=56): Normal saline (sevoflurane) Duration: Intraop Follow-up (days): 1	Inclusion: Ages 18-70 years undergoing brain aneurysm embolism surgery with Glasgow coma scale >11 Exclusion: Coagulation dysfunction, severe hypertension or cardiovascular disease, liver or kidney dysfunction, use of sedatives within 2 days prior to surgery, sinus bradycardia, known history of second- or third- degree heart block, and ischemic heart disease	Mean (SD) age: 61.56 (7.91) Female %: 53 Race %: NR Delirium %: NR ASA I-IV %: 100 Dementia %: NR Postop %: 100 brain vascular surgery Cancer %: NR	Main outcomes: There was less severe POD in the dexmedetomidine group than normal saline (p=0.038). Attrition: 4% vs. 7%	Moderate
Tang C. et al. (2020)	Design: RCT Setting: Postop, esophageal cancer Country: China	Randomized N: 60 Analyzed N: 53 Intervention 1 (N=30): Dexmedetomidine 2.5 µg/mL plus sufentanil 1 µg/mL PCA	Inclusion: Ages 18-80 years with ASA status I-III and undergoing thoracoscopic-laparoscopic esophagectomy Exclusion: Obstructive or	Mean (SD) age: 61.5 (7.7) Female %: 47.2 Race %: NR Delirium %: NR ASA I %: 32.1	Main outcomes: The simultaneous administration of dexmedetomidine and sufentanil significantly reduced plasma interleukin-6 and tumor necrosis factor-α concentrations	Moderate

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
	Funding: Government	Intervention 2 (N=30): Sufentanil 1 µg/mL PCA Duration: During post anesthesia care unit stay Follow-up (days): 1, 2	restrictive lung disease with FEV1/FVC% < 70% and 50% predict FEV1 < 80% predict, asthma and sleep apnea syndrome, liver or urinary bladder disorders, regular use of pain perception-modifying drugs and opioids or sedative medications in the week prior to surgery, known history of second- or third-degree heart block and ischemic heart diseases, difficulties with the use of PCA, known cognitive dysfunction/dementia, and BMI >35 kg/m ²	ASA II %: 62.3 ASA III %: 5.7 Dementia %: 0 (excluded) Postop %: 100 Cancer %: 100	and increased interleukin-10 level (p<0.0001, p=0.0003, and p=0.0345, respectively), accompanied by better POD categories and health statuses of patients (p=0.024 and p<0.05, respectively). There was no hypotension, bradycardia, respiratory depression, or over sedation in the dexmedetomidine group. Attrition: 10% vs. 13%	
Turan et al. (2020); DECADE	Design: RCT Setting: Intra- and post- operative, cardiac Country: U.S. Funding: Industry	Randomized N: 798 Analyzed N: 794 Intervention (N=400): Dexmedetomidine IV bolus (0.1 µg/kg/hour), then 0.2 µg/kg/hour during surgery and 0.4 µg/kg/hour postop surgery Control (N=398): Placebo; normal saline Duration: Bolus given before induction of anesthesia, then during surgery, and postop Follow-up (days): 5 or until discharge	Inclusion: Ages 18-85 years who were scheduled for cardiac surgery with CPB and who had heart rates ≥50 beats per minute Exclusion: Sick-sinus or Wolff- Parkinson-White syndromes, atrioventricular block, atrial fibrillation within 30 days, permanent pacemaker, amiodarone or dexmedetomidine use within 30 days, an ejection fraction <30% or severe heart failure, MI within 7 days, BMI ≥40, or clonidine use within 48 hours	Mean (SD) age: 62.5 (11.5) Female %: 29.8 Race %: -Caucasian: 91.7 -Black/African American: NR -Asian: NR -Other: NR Delirium %: NR ASA III %: 25.3 Dementia %: NR Postop %: 100 Cancer %: NR	Main outcomes: The incidence of delirium was 67 patients (17%) in the dexmedetomidine group and 46 patients (12%) in the placebo group (RR 1.48, 97.8% Cl 0.99 to 2.23, p=0.026 [p≤0.022 required for significance]). Attrition: 1% vs. 1%	Moderate

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year);	characteristics	numbers of participants,	main inclusion and exclusion		and attrition rates	Bias
trial name		interventions, duration, and	criteria			
		follow-up				
van	Design: RCT	Randomized N: 63	Inclusion: Age ≥60 years,	Mean (SD) age: 70.5 (6.7)	Main outcomes: Dexmedetomidine	Moderate
Norden et	Setting: Intraop,	Analyzed N: 60	undergoing either major	Female %: 30	was associated with a reduced	
al. (2021)	cardiac and	Intervention (N=30):	elective cardiac or major open	Race %: NR	incidence of POD within the first 5	
	abdominal	Dexmedetomidine 0.7 μg/kg	abdominal surgery	Delirium %: NR	postop days (17.9% vs. 43.8%,	
	Country:	IV then 0.4 μg/kg/hour IV	Exclusion: Valvular surgery, off-	Mean Charlson	p=0.038). There was no difference	
	Germany	Control (N=33): Placebo;	pump cardiac surgery,	Comorbidity Index: 3.3	in the severity of POD between the	
	Funding:	normal saline	previously diagnosed or	(2.18)	groups and no difference in mean	
	Industry	Duration: During surgery and	suspected to suffer from major	Dementia %: 0 (excluded	(SD) duration of delirium between	
		in ICU	neurocognitive disorder (MMSE	MMSE <24)	the dexmedetomidine and placebo	
		Follow-up (days): 14 or until	<24), severe audiovisual	Postop %: 100	groups (2.00 [1.41] vs. 0.89 [0.94]	
		discharge	impairment, TBI, intracranial	-Cardiac: 23	days, p=0.149). No patients in the	
			bleeding <1 year before study,	-Pancreatic: 48	dexmedetomidine group died while	
			psychiatric illness,	-Other intra-abdominal:	5 (15.6%) patients in the placebo	
			hemodynamic dysfunction,	28	group died (p=0.029).	
			second- or third-degree	Cancer %: 67	Attrition: 7% vs. 3%	
			atrioventricular heart block,			
			spinal injury with autonomic			
			dysfunction, preop			
			cerebrovascular accident with			
			residual neurological deficit,			
			Child C liver cirrhosis, Intraop			
			use of remifentanil or clonidine,			
			and planned postop deep			
			sedation below a RASS of 4			
Wu et al.	Design: RCT	Randomized N: 76	Inclusion: Age ≥65 years who	Mean (SD) age: 75 (5.5)	Main outcomes: The incidences of	Low
(2016)	Setting: Postop,	Analyzed N: 61	underwent noncardiac surgery	Female %: 42.1	delirium and other complications	
	noncardiac	Intervention (N=38):	during general anesthesia and	Race %: NR	after surgery were not statistically	
	Country: China	Dexmedetomidine 0.1	were admitted to the surgical	Delirium %: NR	different between the groups.	
	Funding:	μg/kg/hour	ICU	ASA II %: 51.3	Attrition: 21% vs. 18%	
	Government	Control (N=38): Normal saline	Exclusion: History of sleep	ASA III %: 48.7		
		50 mL	disorders (requirement of	Dementia %: NR		
			hypnotics/sedatives during the			

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year);	characteristics	numbers of participants,	main inclusion and exclusion		and attrition rates	Bias
trial name		interventions, duration, and	criteria			
		follow-up				
		Duration: 15 hours from 5pm	last month) or obstructive sleep	Postop %: 100		
		on the day of surgery until	apnea syndrome; preop sick	Cancer %: NR		
		8am on the first day after	sinus syndrome, severe sinus			
		surgery	bradycardia (heart rate less than			
		Follow-up (days): 7,	50 beats/minute), or			
		discharge, 30	atrioventricular block of second			
			degree or above without			
			pacemaker; preop coma; brain			
			injury or neurosurgery; serious			
			hepatic dysfunction (Child-Pugh			
			class C); serious renal			
			dysfunction (undergoing dialysis			
			before surgery); or requirement			
			of MV			
Xin et al.	Design: RCT	Randomized N: 60	Inclusion: Age >65 years,	Mean age: 68.5	Main outcomes: POD occurred in	Moderate
(2021)	Setting: Intraop,	Analyzed N: 60	undergoing laparoscopic	Female %: 63	10/30 patients (33.3%) in the	
	cholecystectom	Intervention (N=30):	cholecystectomy, with mild	Race %: NR	control group, and in 3/30 patients	
	у	Dexmedetomidine 0.5 μg/kg	cognitive impairment (MoCA 15-	Delirium %: 0 (excluded)	(10%) in the dexmedetomidine	
	Country: China	IV bolus then 0.4 μg/kg/hour	24; MMSE <27; CDR of 0.5	ASA II %: 90	group (OR 0.222, 95% Cl 0.054 to	
	Funding:	IV	points; and ADL score <26)	Dementia %: NR (excluded	0.914, p=0.028).	
	Government	Control (N=30): Normal saline	Exclusion: Preop delirium, preop	vascular dementia)	Overall attrition: 0%	
		Duration: During surgery	neurological diseases affecting	Postop %: 100		
		Follow-up (days): 7	cognitive function (such as	Cancer %: NR		
			vascular dementia), severe liver			
			and renal insufficiency,			
			autoimmune diseases, recent			
			use of sedatives,			
			antidepressants or			
			immunosuppressive drugs, or			
			ТВІ			

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year);	characteristics	numbers of participants,	main inclusion and exclusion		and attrition rates	Bias
trial name		interventions, duration, and	criteria			
		follow-up				
Xuan et	Design: RCT	Randomized N: 453	Inclusion: Age >60 years with	Mean (SD) age: 66.7 (6.4)	Main outcomes: Incidence of POD	Low
al. (2018)	Setting: Postop,	Analyzed N: 453	joint replacement surgery and	Female %: 56.5	was significantly lower in the	
	ortho	Intervention (N=227):	admitted to the ICU	Race %: NR	dexmedetomidine group (30/227	
	Country: China	Dexmedetomidine 0.1	Exclusion: High cholesterol	Delirium %: NR	[13.2%]) than the placebo group	
	Funding:	μg/kg/hour; daily	combined with diabetes; brain	Function: NR	(64/226 [28.3%]) (OR 0.385, 95% CI	
	Government	Control (N=226): Placebo;	injury or neurosurgery; severe	Dementia %: NR, history	0.238 to 0.624, p<0.0001).	
		normal saline; daily	sinus bradycardia; sick sinus	of mental illness excluded	Regarding safety, incidence of	
		Duration: For 3 days	syndrome; neurological disease;	Postop %: 100	hypertension was higher with	
		Follow-up (days): 3, 7, 30	abnormal liver enzymes,	-Total hip: 56.7	placebo (32/226 [14.2%]) than with	
			patients with rhabdomyolysis,	-Total knee: 43.3	dexmedetomidine (18/227 [7.9%])	
			and myopathy; severe lung	Cancer %: NR	(OR 0.522, 95% CI 0.284 to 0.961,	
			disease and multiple organ		p=0.034).	
			dysfunction		Attrition: 8% vs. 4%	
Yang et al.	Design: RCT	Randomized N: 80	Inclusion: Ages 18-80 years	Mean (SD) age: 50.45	Main outcomes: There was no	Moderate
(2015)	Setting: Intra-	Analyzed N: 79	undergoing maxillofacial free	(13.7)	difference in the incidence of	
	and post-	Intervention (N=40):	flap surgery	Female %: 47	delirium with dexmedetomidine	
	operative, free	Dexmedetomidine IV 0.5	Exclusion: Severe dementia	Race %: NR	compared with placebo within 5	
	flap surgery	μg/kg for 1 hour before		Delirium %: NR	days post-operatively (5.1% vs.	
	Country: China	surgery followed by 0.2-		ASA I,II %: 100	12.5%, p=0.432).	
	Funding:	0.7μg/kg/hour postop		Severe Dementia %: 0	Attrition: 3% vs. 0%	
	Unclear	Control (N=40): Placebo;		Postop %: 100		
		normal saline		maxillofacial free flap		
		Duration: Intraop, postop		surgery		
		Follow-up (days): Through		Cancer %: NR		
		POD 5				
Zhang et	Design: RCT	Randomized N: 240	Inclusion: Ages 65-90 years, ASA	Mean (SD) age: 78.5 (6.6)	Main outcomes: Dexmedetomidine	Moderate
al. (2020)	Setting: Intraop,	Analyzed N: 218	I-III, and scheduled for hip	Female %: 68.7	decreased POD incidence (18.2% vs.	
	orthopedic	Intervention (N=120):	fracture operation	Race %: NR	30.6%, p=0.033).	
	Country: U.S.	Dexmedetomidine 0.5	Exclusion: Patients with preop	Delirium %: NR	Attrition: 8% vs. 19%	
	Funding:	µg/kg/hour IV loading dose,	MMSE ≤23, cerebrovascular	ASA II %: 64.6		
	Government	then 0.3 μg/kg/hour	accidents such as stroke or TIA	Dementia %: 0 (excluded)		
		Control (N=120): Usual care				

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year);	characteristics	numbers of participants,	main inclusion and exclusion		and attrition rates	Bias
trial name		interventions, duration, and	criteria			
		follow-up				
		Intervention duration:	within 3 months, or severe	Postop %: 100		
		Loading dose 30 minutes	infection	Cancer %: NR		
		prior to induction of				
		anesthesia, then until 30				
		minutes until anticipated end				
		of surgery				
		Control duration: During				
		surgery				
		Follow-up (days): 1, 23				
Zhao et al.	Design: RCT	Randomized N: 432	Inclusion: Age >65 years	Mean (SD) age: 69.5 (4.2)	Main outcomes: Incidence rates of	Moderate
(2020)	Setting: Intraop,	Analyzed N: 416	scheduled to undergo non-	Female %: 44	POD and early postop cognitive	
	noncardiac	Intervention 1 (N=111):	cardiac major surgery with ASA	Race %: NR	dysfunction 7 days after surgery	
	Country: China	Dexmedetomidine 1 μ/kg	1-111	Delirium %: NR	were lower in the	
	Funding:	then dexmedetomidine 100	Exclusion: Regular use of	ASA II %: 97	dexmedetomidine 200 mg and 400	
	Government	μg plus sufentanil 150 μg in	opioids, sedatives,	Median (IQR) MMSE: 27	mg groups than in the	
		PCA pump	antidepressants, or anxiolytic	(24-30)	dexmedetomidine 0 mg and 100 mg	
		Intervention 2 (N=107):	drugs prior to the surgery; brain	Postop %: 100	groups (p<0.05). Compared with	
		Dexmedetomidine 1 μ/kg	injury or a history of	-Thoracic: 15.9	dexmedetomidine 200 mg,	
		then dexmedetomidine 200	neurosurgery; serious hepatic	-Abdominal: 83.9	dexmedetomidine 400 mg reduced	
		μg plus sufentanil 150 μg in	dysfunction (Child-Pugh class C);	-Orthopedic: 0.2	early postop cognitive dysfunction	
		PCA pump	serious renal dysfunction	Cancer %: NR	in patients who underwent open	
		Intervention 3 (N=108):	(undergoing dialysis before		surgery (p<0.05). There were no	
		Dexmedetomidine 1 μ/kg	surgery); a preop left ventricular		intergroup differences in the postop	
		then dexmedetomidine 400	ejection fraction <50%; sick		sedation level, pain intensity, and	
		μg plus sufentanil 150 μg in	sinus syndrome, severe sinus		side effects.	
		PCA pump	bradycardia (<50/minute), or a ≥		Attrition: 3% vs. 1% vs. 6% vs. 4%	
		Intervention 4 (N=106):	second-degree atrioventricular			
		Sufentanil 150 µg in PCA	block without a pacemaker; and			
		pump	a preop MMSE scores <17 in			
		Interventions 1, 2, 3 duration:	uneducated patients, <20 for			
		10 minutes before anesthesia	patients with education of ≤6			

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year);	characteristics	numbers of participants,	main inclusion and exclusion		and attrition rates	Bias
trial name		interventions, duration, and	criteria			
		follow-up				
		induction, then post-	years, and <24 for patients with			
		operatively	education of >6 years			
		Intervention 4 duration:				
		Postop				
		Follow-up (days): 1, 2, 3, 7				

*This study was identified as part of the systematic review by the Pacific Northwest Evidence-Based Practice Center but was subsequently retracted.

ADL=Activities of Daily Living; APACHE II=Acute Physiology and Chronic Health Evaluation II; ASA=American Society of Anesthesiologists; BMI=body mass index; BP=blood pressure; CABG=coronary artery bypass graf; CAM=Confusion Assessment Method; CDR=Clinical Dementia Rating; CI=confidence interval; CNS=central nervous system; CPB=cardiopulmonary bypass; ICU=intensive care unit; intraop=intra-operative; IQR=interquartile range; IV=intravenous; MI=myocardial infarction; MMSE=Mini-Mental State Examination; MoCA=Montreal Cognitive Assessment; MV=medical ventilation; N=number; NR=not reported; OR=odds ratio; PCA=patient-controlled analgesia; POD=post-operative delirium; postop=post-operative; preop=pre-operative; RASS=Richmond Agitation Sedation Scale; RCT=randomized controlled trial; RR=relative risk; SD=standard deviation; TBI=traumatic brain injury; TIA=transient ischemic attack.

In Intensive Care Unit Setting

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition rates	Bias
name		interventions, duration, and	criteria			
		follow-up				
Abdelgalel	Design: RCT	Randomized N: 90	Inclusion: Ages 26-70 years, ASA	Mean (SD) age: 59 (50)	Main outcomes: The	Low
(2016)	Setting: ICU	Analyzed N: 90	status III and IV, and in Zagazig	Female %: 25	incidence of delirium was	
	Country: Egypt	Intervention 1 (N=30):	university hospital	Race %: NR	significantly lower in the	
	Funding: None	Dexmedetomidine continuous	Exclusion: Severe dementia,	Delirium %: NR	dexmedetomidine group 3/30	
		IV infusion of 0.2-0.7	heart rate 650 bpm or systolic	Mean APACHE II (0 to 71): 17	(10%) than haloperidol 10/30	
		µg/kg/hour; loading dose of	blood pressure 690 mmhg,	Dementia %: "severe"	(33.3%) and placebo 13/30	
		1.0 μg/kg IV over 10 minutes if	prolonged QTc-time (>500 ms),	dementia excluded	(43.3%) groups. The ICU LOS	
		needed	and history of	Postop %: 17.8	was significantly shorter in	
		Intervention 2 (N=30):	clinically relevant ventricular	Cancer %: NR	the dexmedetomidine group	
		Haloperidol continuous IV	arrhythmia		(3.1±0.4 days) than	
		infusion of 0.5-2 mg/hour;			haloperidol and placebo	
		loading dose of 2.5 mg IV over			groups (6.5±1.0 and 6.9±1.2	
		10 minutes if needed			days, respectively).	
		Control (N=30): Placebo;			Overall attrition: 0%	
		normal saline				
		Duration: During MV				
		Follow-up (days): NR				

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition rates	Bias
name		interventions, duration, and	criteria			
		follow-up				
Skrobik et	Design: RCT	Randomized N: 100	Inclusion: ICU patients receiving	Mean (SD) age: 62.25 (13.66)	Main outcomes: Receipt of	Moderate
al. (2018)	Setting: ICU	Analyzed N: 100	intermittent or continuous	Female %: 36	nocturnal dexmedetomidine	
	Country: Canada	Intervention (N=50):	sedatives and expected to need	Race %: NR	in the ICU compared with	
	Funding:	Dexmedetomidine IV 0.2	at least 48 hours of ICU care	Delirium %: 0	placebo was associated with	
	Industry	μg/kg/hour	Exclusion: Patients with delirium	Mean (SD) APACHE II: 22.75	less incident delirium (20% vs.	
		Control (N=50): Placebo;	or evidence of severe dementia	(7.85)	46%, p=0.006).	
		dextrose 5% in water		Severe Dementia %: 0	Overall attrition: 0%	
		Duration: During ICU stay		Postop %: 27		
		Follow-up (days): Discharge		Cancer %: NR		
		from ICU				

APACHE II=Acute Physiology and Chronic Health Evaluation II; ASA=American Society of Anesthesiologists; ICU=intensive care unit; IV=intravenous; intraop=intra-operative; LOS=length of stay; MV=medical ventilation; N=number; NR=not reported; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

Dexmedetomidine vs. Propofol

In Surgical Setting

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
name		interventions, duration, and				
		follow-up				
Chang et	Design: RCT	Randomized N: 60	Inclusion: Ages 20-99 years	Mean (SD) age: 70.52	Main outcomes: There were	Moderate
al. (2018)	Setting: Postop,	Analyzed N: 60	undergoing major abdominal surgery	(11.08)	no instances of delirium	
	major	Intervention 1 (N=31):	Exclusion: Refractory bradycardia less	Female %: 42	within 24 hours after	
	abdominal	Dexmedetomidine IV 0.1-0.7	than 60 bpm, high degree	Race %: NR	abdominal surgery.	
	surgery	μg/kg/h	atrioventricular block (second or third	Delirium %: NR	Overall attrition: 0%	
	Country: Taiwan	Intervention 2 (N=29): Propofol	degree), refractory shock despite	APACHE II score >30 %:		
	Funding:	IV 0.3-1.6 mg/kg/h	resuscitation (MAP <60 mm Hg), new	0		
	Unclear	Duration: Postop	onset of MI, New York Heart	Dementia %: NR		
		Follow-up (days): 0-24 hours	Association Class IV heart failure,	Postop %: 100		
		postop	APACHE II score >30, severe liver	abdominal surgery		
			cirrhosis (ChildePugh class B or C),	Cancer %: NR		
			organ transplantation within 1 year,			

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
			enrolled in other clinical trial of dexmedetomidine or propofol within 1 month, signed consent of do not resuscitate, other conditions determined by surgeon or primary intensivist, and non-native speaker			
Djaiani et al. (2016)	Design: RCT Setting: Postop, cardiac Country: Canada Funding: Mixed	Randomized N: 185 Analyzed N: 183 Intervention 1 (analyzed N=91): Dexmedetomidine continuous IV infusion of 0.4 µg/kg bolus followed by 0.2- 0.7 µg/kg/hour; if MV needed beyond 24 hours, patients switched to propofol Intervention 2 (analyzed N=92): Propofol continuous IV infusion 25-50 µg/kg/minute Intervention 1 duration: Postop during MV, maximum 24 hours Intervention 2 duration: Intraop Follow-up (days): Through day 5	Inclusion: Age ≥60 years undergoing complex cardiac surgery or ≥70 years undergoing coronary revascularization or single-valve repair/replacement with the use of CPB Exclusion: Patients with serious mental illness, delirium, or severe dementia	Mean (SD) age: 72.55 (6.3) Female %: 25 Race %: NR Delirium %: 0 Function: NR Severe Dementia %: 0 Postop %: 100 cardiac surgery Cancer %: 0	Main outcomes: POD was present in 16 of 91 (17.5%) and 29 of 92 (31.5%) patients in the dexmedetomidine and propofol groups, respectively (p=0.028). Duration of POD was 2 days vs. 3 days (p=0.04). Overall attrition: 1%	Moderate
Liu X. et al. (2016)	Design: RCT Setting: Postop, cardiac Country: China Funding: Unclear	Randomized N: 68 Analyzed N: 61 Intervention 1 (N=34): Dexmedetomidine IV 0.2-1.5 µg/kg/hour Intervention 2 (N=34): Propofol	Inclusion: Age ≥18 years undergoing elective cardiac valve surgery admitted to ICU Exclusion: Patients who received 2 or more sedatives after randomization and had a sedation time <4 hours or ≥24 hours	Median age: 54 Female %: 59 Race %: NR Delirium %: NR Median APACHE II: 15 or 16 Dementia %: NR	Main outcomes: The incidence of delirium was not different in those who received dexmedetomidine vs. propofol (0% vs. 6%, p=0.493). Attrition: 12% vs. 6%	Moderate

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up IV 5-50 μg/kg/minute Duration: Postop Follow-up (days): Unclear (delirium listed as an adverse	Study population including main inclusion and exclusion criteria	Sample demographics Postop %: 100 cardiac surgery Cancer %: 0	Results including main outcomes and attrition rates	Risk of Bias
Maldonado et al. (2009)	Design: RCT Setting: Postop, cardiac Country: U.S. Funding: Unclear	event) Randomized N: 118 Analyzed N: 90 Intervention 1 (N=40): Dexmedetomidine IV 0.4 µg/kg bolus followed by 0.2-0.7 µg/kg/hour Intervention 2 (N=38): Propofol IV 25-50 µg/kg/minute Intervention 3 (N=40): Midazolam IV 0.5-2.0 mg/hour Duration: Postop Follow-up (days): Through POD 3	Inclusion: Ages 18-90 years undergoing elective cardiac valve operation Exclusion: Preexisting dementia	Mean (SD) age: 57 (17) Female %: 36 Race %: NR Delirium %: NR Mean ASA: 3.4 Mean MMSE: 29.4 Dementia %: 0 Postop %: 100 cardiac surgery Cancer %: 0	Main outcomes: Postop sedation with dexmedetomidine was associated with significantly lower rates of POD than propofol or midazolam (3% vs. 50% vs. 50%). Attrition: 10% vs. 18% vs. 20%	Moderate
Mei et al. (2018)	Design: RCT Setting: Intraop, hip Country: China Funding: Government	Randomized N: 336 Analyzed N: 296 Intervention 1 (N=167): Dexmedetomidine IV 0.8-1.0 µg/kg bolus followed by 0.1- 0.5 µg/kg/hour until end of surgery Intervention 2 (N=169): Propofol IV 0.8-1.0 µg/mL Duration: Intraop Follow-up (days): Through POD 3	Inclusion: Age ≥65 years undergoing total hip arthroplasty with nerve block Exclusion: Cognitive impairment and/or preop delirium	Mean (SD) age: 75 (7) Female %: 54 Race %: NR Delirium %: 0 Mean ASA: 3 Mean MMSE: 26 Dementia %: 0 Postop %: 100 hip arthroplasty Cancer %: 0	Main outcomes: Patients sedated with dexmedetomidine had a lower incidence of POD than patients sedated with propofol (7% vs. 16%, p=0.030). Attrition: 9% vs. 11%	Low
Mei B. et al. (2020)	Design: RCT	Randomized N: 415* *The study noted 207 and 208	Inclusion: Age ≥65 years undergoing total hip arthroplasty with nerve block	Mean (SD) age: 72.5 (10)	Main outcomes: Patients sedated with	Moderate

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
name		interventions, duration, and				
		follow-up				
	Setting: Intraop,	patients were assigned to the	Exclusion: Cognitive impairment	Female %: 60	dexmedetomidine had a	
	hip	groups but it is not clear which	and/or preop delirium	Race %: NR	lower incidence of POD than	
	Country: China	group had which number of		Delirium %: 0	patients sedated with	
	Funding:	patients.		Mean ASA: 2	propofol (14% vs. 23%,	
	Government	Analyzed N: 366		Mean MMSE: 26.9	p=0.032).	
		Intervention 1 (N=unclear):		Dementia %: 0	Attrition: 5% vs. 8%	
		Dexmedetomidine IV 0.8-1.0		Postop %: 100 knee		
		µg/kg bolus followed by 0.1-		arthroplasty		
		0.5 μg/kg/hour until end of		Cancer %: 0		
		surgery				
		Intervention 2 (N=unclear):				
		Propofol IV 0.8 -1.0 μg/mL				
		Duration: Intraop				
		Follow-up (days): Through POD				
		7				
Sheikh et	Design: RCT	Randomized N: 60	Inclusion: Ages 15-60 years	Mean (SD) age: 34.58	Main outcomes: The risk of	High
al. (2018)	Setting: Intraop,	Analyzed N: 60	undergoing elective open-heart	(10.74)	delirium was significantly less	
	cardiac	Intervention 1 (N=30):	surgery	Female %: NR	in the dexmedetomidine	
	Country: India	Dexmedetomidine IV 1.0 μg/kg	Exclusion: Patients with	Race %: NR	group compared with the	
	Funding: None	bolus followed by 0.2-0.6	neurological/psychological disorders	Delirium %: NR	propofol group (3.3% vs.	
		μg/kg/hour		Function: NR	23.3%, p=0.02).	
		Intervention 2 (N=30): Propofol		Dementia %: NR	Attrition: NR	
		IV 0.25-1.0 μg/kg/hour		Postop %: 100 cardiac		
		Duration: Intraop		surgery		
		Follow-up (days): Discharge		Cancer %: NR		
Susheela et	Design: RCT	Randomized N: 12	Inclusion: Age ≥60 undergoing CABG	Mean (SD) age: NR	Main outcomes: The	Moderate
al. (2017);	Setting: Postop,	Analyzed N: 12	and/or valve surgery	Female %: NR	incidence of delirium was 2/3	
O'Neal et	cardiac	Intervention 1 (N=3):	Exclusion: Preexisting cognitive	Race %: NR	in the dexmedetomidine and	
al. (2015)	Country: U.S.	Dexmedetomidine IV 0.1-1.0	impairment or medications for	Delirium %: NR	the propofol groups, 1/3 in	
	Funding:	μg/kg/hour	cognitive decline	Function: NR	the dexmedetomidine plus	
	Government	Intervention 2 (N=3): Propofol		Cognitive Impairment %:	acetaminophen group, and	
		IV 25-100 μg/kg/minute		0	0/3 in the group receiving	

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
name		interventions, duration, and				
		follow-up				
		Intervention 3 (N=3):		Postop %: 100	propofol plus	
		Dexmedetomidine IV 0.1-1.0		Cancer %: 0	acetaminophen.	
		µg/kg/hour plus IV			Overall attrition: 0%	
		acetaminophen 1 g/6 hours				
		Intervention 4 (N=3): Propofol				
		IV 25-100 μg/kg/minute plus IV				
		acetaminophen 1 g/6 hours				
		Duration: Postop				
		Follow-up (days): Discharge				

APACHE II=Acute Physiology and Chronic Health Evaluation II; ASA=American Society of Anesthesiologists; CABG=coronary artery bypass graf; CPB=cardiopulmonary bypass; ICU=intensive care unit; intraop=intra-operative; IV=intravenous; MAP=mean arterial pressure; MI=myocardial infarction; MMSE=Mini-Mental State Examination; MV=medical ventilation; N=number; NR=not reported; POD=post-operative delirium; postop=post-operative; preop=pre-operative; RCT=randomized controlled trial; SD=standard deviation.

In Intensive Care Unit Setting

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
name		interventions, duration, and			rates	
		follow-up				
Jakob et al.	Design: RCT	Randomized N: 500	Inclusion: Age ≥18 years requiring	Median age: 65	Main outcomes: There	Low
(2012);	Setting: ICU	Analyzed N: 498	MV with light to moderate sedation	Female %: 35	was no difference in the	
PRODEX	Country: Europe	Intervention 1 (N=251):	for at least 24 hours	Race %: NR	incidence of delirium	
	and Russia	Dexmedetomidine IV 0.2-1.4	Exclusion: Acute severe neurological	Delirium %: NR	between the	
	Funding:	μg/kg/hour	disorder, MAP <55 mmHg, heart	Median SAPS II: 46.3	dexmedetomidine group	
	Industry	Intervention 2 (N=249):	rate <50 bpm, atrioventricular-	Dementia %: NR	and the propofol group at	
		Propofol IV 0.3-4.0	conduction grade II or III (unless	Postop %: 56.2	48 hours post sedation	
		mg/kg/hour	pacemaker installed), and	Cancer %: NR	(9.6% vs. 13.7%, p=0.231).	
		Duration: During MV	use of α_2 agonists or antagonists		Attrition: 28% vs. 24%	
		Follow-up (days): Delirium	within 24 hours prior to			
		assessed 48 hours after	randomization			
		discontinuing sedation				
Li et al.	Design: RCT	Randomized N: 126	Inclusion: Age ≥18 years admitted to	Mean (SD) age: 43.98	Main outcomes: The rate	Moderate
(2019)		Analyzed N: 126	general ICU for more than 96 hours	(14.05)	of delirium was	
		Intervention 1 (N=64):	under continuous sedation and	Female %: 44	significantly lower in the	

	Setting: ICU	Dexmedetomidine IV 0.8	analgesia for 48 hours or longer	Race %: NR	dexmedetomidine group]
	Country: China	μg/kg/hour	Exclusion: GCS <13 at baseline in ED	Delirium %: NR	than in the common	
	Funding: Mixed	Intervention 2 (N=62):		Mean APACHE II: 20.5	sedation (control) group	
	Fulluling. Wilkeu	Midazolam IV 0.06		Dementia %: NR	(28% vs. 55%, p=0.0023).	
		mg/kg/hour or propofol IV		Postop %: 0 within 24 hours	Attrition: NR	
		0.5-2 mg/kg/hour		of study		
		Duration: During ICU stay		Cancer %: 0		
		Follow-up (days): Delirium				
		assessed twice daily until				
		discharged from ICU				
Ruokonen	Design: RCT	Randomized N: 85	Inclusion: Age ≥18 years, MV, need	Median age: 64 vs. 68	Main outcomes: Delirium	Moderate
et al.	Setting: ICU	Analyzed N: 85	for sedation for ≥24 hours after	Female %: 17.6	was more common in the	
(2009)	Country: Finland	Intervention (N=41):	randomization, and an expected ICU	Race %: NR	dexmedetomidine group	
	Funding:	Dexmedetomidine 0.8	stay ≥48 hours	Delirium %: NR	than in the standard care	
	Industry	μg/kg/hour for 1 hour, then	Exclusion: Acute severe neurological	Function: NR	group (43.9% vs. 25.0%,	
		adjusted stepwise at 0.25,	disorder, MAP <55 mmHg despite	Dementia %: NR	p=0.035) when analyzed	
		0.5, 0.8, 1.1, and 1.4	volume and vasopressors, heart rate	Postop %: NR	as the combined endpoint	
		μg/kg/hour	<50 bpm, atrioventricular	Cancer %: NR	of CAM-ICU and adverse	
		Control (N=44): Standard	conduction block II to III (unless		events of delirium and	
		care: 1) propofol 2.4	pacemaker installed), hepatic SOFA		confusion. However, more	
		mg/kg/hour for 1 hour, then	score >2, bilirubin >101 lmol/L,		CAM-ICU assessments	
		adjusted stepwise at 0.8, 1.6,	muscle relaxation, loss of hearing or		were performed in the	
		2.4, 3.2, and 4.0 mg/kg/hour	vision, any other condition		dexmedetomidine group	
		OR 2) midazolam IV bolus 1-2	interfering with RASS assessment, or		than in the standard care	
		mg starting at 3 boluses/hour	use of α_2 agonists or antagonists at		group (106 vs. 84), and the	
		for 1 hour, thereafter 1-4	the time of randomization		proportion of positive	
		boluses/hour; if not sufficient			CAM-ICU results was	
		as continuous infusion of 0.2			comparable (17.0% vs.	
		mg/kg/hour for 1 hour			17.9%, p=NS). During the	
		followed by adjustment at			follow-up to ICU	
		0.04, 0.08, 0.12, 0.16, and			discharge, no significant	
		0.20 mg/kg/hour			difference was observed in	
		Duration: During ICU stay			the occurrence rate of	
		Follow-up (days): 45			positive RASS scores (26%	
					vs. 32%).	
					Attrition: 24% vs. 16%	
				1		

Winings et	Design: RCT	Randomized N: 57	Inclusion: Age ≥18 years, MV, placed	Mean (SD) age: 50.6 (19.2)	Main outcomes: There	Moderate
al. (2021)	Setting: ICU	Analyzed N: 57	on the institutional sedation	Female %: 28.9	was no difference	
	Country: U.S.	Intervention 1 (N=28):	protocol, expected to require	Race %: NR	between the groups in ICU	
	Funding: None	Dexmedetomidine mean dose	sedation lasting 24 hours after	Delirium %: NR	mortality, ICU and hospital	
		of 0.48 mcg/kg/hour	randomization, and admitted to the	Mean (SD) APACHE II: 17.5	LOS, or incidence of	
		Intervention 2 (N=29):	Trauma/Surgical ICU and followed	(7.4)	delirium.	
		Propofol mean dose of 24.6	by the Trauma/Surgical ICU Service	Dementia %: NR	Attrition: NR	
		mcg/kg/minute	Exclusion: ≥72 hours since sedation	Postop %: 29.8		
		Duration: During ICU stay	protocol initiation, treatment per	Cancer %: NR		
		Follow-up (days): 4	the institutional TBI protocol,			
			concomitant continuous infusion of			
			a neuromuscular blocking agent,			
			heart rate <50 bpm, MAP <55			
			mmHg despite fluid resuscitation			
			and vasopressors, and/or use of			
			other α_2 agonists within 24 hours of			
			randomization			

APACHE II=Acute Physiology and Chronic Health Evaluation II; CAM-ICU=Confusion Assessment Method for the ICU; ED=emergency department; GCS=Glasgow Coma Scale; ICU=intensive care unit; IV=intravenous; LOS=length of stay; MAP=mean arterial pressure; MV=medical ventilation; N=number; NR=not reported; NS=not significant; postop=post-operative; RASS=Richmond Agitation Sedation Scale; RCT=randomized controlled trial; SAPS II=Simplified Acute Physiology Score II; SD=standard deviation; SOFA=Sequential Organ Failure Assessment; TBI=traumatic brain injury.

Dexmedetomidine vs. Midazolam

In Surgical Setting

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition	Bias
name		interventions, duration, and	criteria		rates	
		follow-up				
Hassan et	Design: RCT	Randomized N: 70	Inclusion: Ages 55-75 years for	Mean age: 59.6	Main outcomes: Patients	Moderate
al. (2021)	Setting: Intraop,	Analyzed N: 70	elective cardiac surgery	Female %: 44.3	who received	
	cardiac	Intervention 1 (N=35):	Exclusion: Those already	Race %: NR	dexmedetomidine were	
	Country: Pakistan	Dexmedetomidine 0.7	diagnosed with cognitive	Delirium %: 0 (excluded)	less likely to experience	
	Funding: NR	µg/kg/hour IV in operating	disorder	ASA I-II %: 100	POD than patients who	
		room then 0.4 μg/kg/hour IV		Dementia %: NR	received midazolam (8.6%	
		Intervention 2 (N=35):		Postop %: 100	vs. 22.9%, p=0.04).	
		Midazolam 0.05 μg/(kg.h) IV		Cardiac surgery %: 100	Attrition: NR	
		in operating room then 0.02-		Cancer NR		
1		0.08 μg/(kg.h) IV				

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition	Bias
name		interventions, duration, and	criteria		rates	
		follow-up				
		Duration: Perioperative				
		Follow-up (days): 1, 2, 3				
He et al.	Design: RCT	Randomized N: 90	Inclusion: Ages 75-90 years	Mean (SD) age: 82.5 (5.6)	Main outcomes: The	Moderate
(2018)	Setting: Intraop,	Analyzed N: 90	with thoracic or lumbar	Female %: 42	incidence rate of POD in	
	orthopedic	Intervention 1 (N=30):	vertebral fractures and	Race %: NR	the dexmedetomidine	
	Country:	Dexmedetomidine 0.5 µg/kg	receiving selective operation at	Delirium %: NR	group was apparently	
	Funding: China	initial bolus, then maintained	grade I to III in the ASA	Function: NR	lower than those in the	
	Government	at 0.4 μg/kg/hour	classification	Dementia %: NR	other 2 groups (p<0.05);	
		Intervention 2 (N=30):	Exclusion: CNS disease or ≤23	Postop %: NR	the incidence rate of POD	
		Midazolam IV of 0.03 mg/kg	on MMSE	Cancer %: NR	at 1-2 days after operation	
		Control (N=30): Normal saline			in midazolam group was	
		Intervention 1 duration: 10			higher than that in the	
		minutes before anesthesia			normal saline group	
		induction, then during			(p<0.05). There was no	
		surgery			significant difference in the	
		Intervention 2, Control			incidence rate of POD at 3-	
		duration: Before anesthesia			5 days after operation	
		Follow-up (days): 5			between the midazolam	
					and normal saline groups	
					(p>0.05).	
					Attrition: NR	
Maldonado	Design: RCT	Randomized N: 118	Inclusion: Ages 18-90 years	Mean (SD) age: 57 (17)	Main outcomes: Postop	Moderate
et al. (2009)	Setting: Postop,	Analyzed N: 90	undergoing elective cardiac	Female %: 36	sedation with	
	cardiac	Intervention 1 (N=40):	valve operation	Race %: NR	dexmedetomidine was	
	Country: U.S.	Dexmedetomidine IV 0.4	Exclusion: Preexisting dementia	Delirium %: NR	associated with	
	Funding: Unclear	µg/kg bolus followed by 0.2-		Mean ASA: 3.4	significantly lower rates of	
		0.7 μg/kg/hour		Mean MMSE: 29.4	POD than propofol or	
		Intervention 2 (N=38):		Dementia %: 0	midazolam (3% vs. 50% vs.	
		Propofol IV 25-50		Postop %: 100 cardiac	50%).	
		µg/kg/minute		surgery	Attrition: 10% vs. 18% vs.	
		Intervention 3 (N=40):		Cancer %: 0	20%	

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition	Bias
name		interventions, duration, and	criteria		rates	
		follow-up				
		Midazolam IV 0.5-2.0				
		mg/hour				
		Duration: Postop				
		Follow-up (days): Through				
		POD 3				
Yu et al.	Design: RCT	Randomized N: 92	Inclusion: Age >60 years	Mean (SD) age: 68.91 (4.57)	Main outcomes: There was	Moderate
(2017)	Setting: Intraop,	Analyzed N: 92	undergoing elective thoracic	Female %: 45	less POD in the	
	cardiothoracic	Intervention 1 (N=46):	surgery	Race %: NR	dexmedetomidine group	
	Country: China	Dexmedetomidine IV bolus	Exclusion: Senile dementia	Delirium %: NR	compared with the	
	Funding: Unclear	(dose NR) followed by 0.2-0.7		ASA I,II %: 100	midazolam group (6.52%	
		μg/kg/hour		Senile Dementia %: 0	vs. 21.74%, p<0.05).	
		Intervention 2 (N=46):		Postop %: 100 thoracic	Attrition: NR	
		Midazolam 0.05 μg/kg bolus		surgery		
		followed by 0.02-0.08		Cancer %: NR		
		μg/kg/hour				
		Duration: Intraop				
		Follow-up (days): POD 1-3				

ASA=American Society of Anesthesiologists; CNS=central nervous system; intraop=intra-operative; IV=intravenous; MMSE=Mini-Mental State Examination; N=number; NR=not reported; POD=post-operative delirium; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

In Intensive Care Unit Setting

Author	Study	Study protocol including numbers of	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	participants, interventions,	main inclusion and exclusion		outcomes and attrition rates	Bias
name		duration, and follow-up	criteria			
Jakob et al.	Design: RCT	Randomized N: 501	Inclusion: Age ≥18 years	Median age: 65	Main outcomes: There was	Low
(2012);	Setting: ICU	Analyzed N: 500	requiring MV with light to	Female %: 34	no difference in the	
MIDEX	Country:	Intervention 1 (N=249):	moderate sedation for at least	Race %: NR	incidence of delirium	
	Europe	Dexmedetomidine IV 0.2-1.4	24 hours	Delirium %: NR	between the	
	Funding:	μg/kg/hour	Exclusion: Acute severe	Median SAPS II: 45.5	dexmedetomidine group and	
	Industry	Intervention 2 (N=252): Midazolam	neurological disorder, MAP <55	Dementia %: NR	the midazolam group at 48	
		IV 0.03-0.2 mg/kg/hour	mmHg, heart rate <50 bpm,	Postop %: 70.6	hours post sedation (11.9%	
			atrioventricular-conduction	Cancer %: NR	vs. 13.9%, p=0.393).	
			grade II or III (unless pacemaker		Attrition: 13% vs. 20%	

Author	Study	Study protocol including numbers of	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	participants, interventions,	main inclusion and exclusion		outcomes and attrition rates	Bias
name		duration, and follow-up	criteria			
		Duration: During MV	installed), and use of α_2			
		Follow-up (days): Delirium assessed	agonists or antagonists within			
		48 hours after discontinuing sedation	24 hours prior to randomization			
Li et al.	Design: RCT	Randomized N: 126	Inclusion: Age ≥18 years	Mean (SD) age: 43.98	Main outcomes: The rate of	Moderate
(2019)	Setting: ICU	Analyzed N: 126	admitted to general ICU for	(14.05)	delirium was significantly	
	Country: China	Intervention 1 (N=64):	more than 96 hours under	Female %: 44	lower in the	
	Funding: Mixed	Dexmedetomidine IV 0.8 μg/kg/hour	continuous sedation and	Race %: NR	dexmedetomidine group	
		Intervention 2 (N=62): Midazolam IV	analgesia for 48 hours or longer	Delirium %: NR	than in the common sedation	
		0.06 mg/kg/hour or propofol IV 0.5-2	Exclusion: GCS <13 at baseline	Mean APACHE II: 20.5	(control) group (28% vs. 55%,	
		mg/kg/hour	in ED	Dementia %: NR	p=0.0023).	
		Duration: During ICU stay		Postop %: 0 within 24	Attrition: NR	
		Follow-up (days): Delirium assessed		hours of study		
		twice daily until discharged from ICU		Cancer %: 0		
MacLaren	Design: RCT	Randomized N: 23	Inclusion: Ages 18-85 years,	Mean (SD) age: 58.04	Main outcomes: There was	Moderate
et al. (2015)	Setting: ICU	Analyzed N: 23	critically ill requiring MV, and	(12.53)	no statistically significant	
	Country: U.S.	Intervention 1 (N=11):	receiving a benzodiazepine	Female %: 43	difference between	
	Funding:	Dexmedetomidine IV 0.15-1.5	infusion with an anticipated	Race %: NR	dexmedetomidine and	
	Industry	μg/kg/hour	need of at least 12 additional	Delirium %: NR	midazolam in new onset	
		Intervention 2 (N=12): Midazolam IV	hours of sedation	Mean APACHE III: 72.2	delirium (1 vs. 5, p=0.07).	
		1-10 mg/hour	Exclusion: Baseline dementia	Dementia %: 0	Attrition at follow-up: 9% vs.	
		Duration: During MV		Postop %: 13.0	0%	
		Follow-up (days): Delirium assessed		Cancer %: NR		
		twice daily				
Ruokonen	Design: RCT	Randomized N: 85	Inclusion: Age ≥18 years, MV,	Median age: 64 vs. 68	Main outcomes: Delirium	Moderate
et al. (2009)	Setting: ICU	Analyzed N: 85	need for sedation for ≥24 hours	Female %: 17.6	was more common in the	
	Country:	Intervention (N=41):	after randomization, and an	Race %: NR	dexmedetomidine group	
	Finland	Dexmedetomidine 0.8 µg/kg/hour for	expected ICU stay ≥48 hours	Delirium %: NR	than in the standard care	
	Funding:	1 hour, then adjusted stepwise at	Exclusion: Acute severe	Function: NR	group (43.9% vs. 25.0%,	
	Industry	0.25, 0.5, 0.8, 1.1, and 1.4	neurological disorder, MAP <55	Dementia %: NR	p=0.035) when analyzed as	
		μg/kg/hour	mmHg despite volume and	Postop %: NR	the combined endpoint of	
		Control (N=44): Standard care: 1)	vasopressors, heart rate <50	Cancer %: NR	CAM-ICU and adverse events	
		propofol 2.4 mg/kg/hour for 1 hour,	bpm, atrioventricular-		of delirium and confusion.	
		then adjusted stepwise at 0.8, 1.6,	conduction block II to III (unless		However, more CAM-ICU	

DRAFT February 3, 2025 NOT FOR CITATION

Author	Study	Study protocol including numbers of	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	participants, interventions,	main inclusion and exclusion		outcomes and attrition rates	Bias
name		duration, and follow-up	criteria			
		2.4, 3.2, and 4.0 mg/kg/hour	pacemaker installed), hepatic		assessments were performed	
		OR 2) midazolam IV bolus 1-2 mg	SOFA score >2, bilirubin >101		in the dexmedetomidine	
		starting at 3 boluses/hour for 1 hour,	Imol/L, muscle relaxation, loss		group than in the standard	
		thereafter 1-4 boluses/hour; if not	of hearing or vision, any other		care group (106 vs. 84), and	
		sufficient as continuous infusion of	condition interfering with RASS		the proportion of positive	
		0.2 mg/kg/hour for 1 hour followed	assessment, or use of α_2		CAM-ICU results was	
		by adjustment at 0.04, 0.08, 0.12,	agonists or antagonists at the		comparable (17.0% vs.	
		0.16, and 0.20 mg/kg/hour	time of randomization		17.9%, p=NS). During the	
		Duration: During ICU stay			follow-up to ICU discharge,	
		Follow-up (days): 45			no significant difference was	
					observed in the occurrence	
					rate of positive RASS scores	
					(26% vs. 32%).	
					Attrition: 24% vs. 16%	
Shu et al.	Design: RCT	Randomized N: 80	Inclusion: Age >60 years	Mean age: 73.61 (8.28)	Main outcomes: There was	Moderate
(2019)	Setting: ICU	Analyzed N: 80	requiring MV for more than 24	Female %: 35	no significant difference	
	Country: China	Intervention 1 (N=40):	hours	Race %: NR	between dexmedetomidine	
	Funding:	Dexmedetomidine IV 1.0 µg/kg bolus	Exclusion: CNS disease	Delirium %: NR	and midazolam in the	
	Unclear	followed by 0.2-0.7 μg/kg/hour		Mean (SD) APACHE II:	incidence of delirium (0% vs.	
		Intervention 2 (N=40): Midazolam		22.43 (4.84)	10%, p>0.05).	
		0.05 mg/kg bolus followed by 0.05-		Dementia %: NR	Attrition: NR	
		0.10 mg/kg/hour		Postop %: NR		
		Duration: During MV		Cancer %: NR		
		Follow-up (days): Day 1				

APACHE II=Acute Physiology and Chronic Health Evaluation II; CAM-ICU=Confusion Assessment Method for the ICU; CNS=central nervous system; ED=emergency department; GCS=Glasgow Coma Scale; ICU=intensive care unit; IV=intravenous; MAP=mean arterial pressure; MV=medical ventilation; N=number; NR=not reported; NS=not significant; postop=post-operative; RASS=Richmond Agitation Sedation Scale; RCT=randomized controlled trial; SAPS II=Simplified Acute Physiology Score II; SD=standard deviation; SOFA=Sequential Organ Failure Assessment.

Dexmedetomidine vs. Haloperidol

Author	Study	Study protocol including numbers	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	of participants, interventions,	main inclusion and exclusion		outcomes and attrition rates	Bias
name		duration, and follow-up	criteria			

DRAFT February 3, 2025 NOT FOR CITATION

Abdelgalel	Design: RCT	Randomized N: 90	Inclusion: Ages 26-70 years,	Mean (SD) age: 59 (50)	Main outcomes: The	Low
(2016)	Setting: ICU	Analyzed N: 90	ASA status III and IV, and in	Female %: 25	incidence of delirium was	
	Country: Egypt	Intervention 1 (N=30):	Zagazig university hospital	Race %: NR	significantly lower in	
	Funding: None	Dexmedetomidine continuous IV	Exclusion: Severe dementia,	Delirium %: NR	dexmedetomidine group 3/30	
		infusion of 0.2-0.7 μg/kg/hour;	heart rate 650 bpm or systolic	Mean APACHE II: 17	(10%) than haloperidol 10/30	
		loading dose of 1.0 μg/kg IV over 10	blood pressure 690 mmhg,	Dementia %: "severe"	(33.3%) and placebo 13/30	
		minutes if needed	prolonged QTc-time (>500 ms),	dementia excluded	(43.3%) groups. The ICU LOS	
		Intervention 2 (N=30): Haloperidol	or history of	Postop %: 17.8	was significantly shorter in	
		continuous IV infusion of 0.5-2	clinically relevant ventricular	Cancer %: NR	dexmedetomidine group	
		mg/hour; loading dose of 2.5 mg IV	arrhythmia,		(3.1±0.4 days) than	
		over 10 minutes if needed			haloperidol and placebo	
		Control (N=30): Placebo; normal			groups (6.5±1.0 and 6.9±1.2	
		saline			days, respectively).	
		Duration: During MV			Overall attrition: 0%	
		Follow-up (days): NR				

APACHE II=Acute Physiology and Chronic Health Evaluation II; ASA=American Society of Anesthesiologists; ICU=intensive care unit; IV=intravenous; LOS=length of stay; MV=medical ventilation; N=number; NR=not reported; postop=post-operative; RCT=randomized controlled trial.

Dexmedetomidine vs. Melatonin Plus Dexmedetomidine

Author	Study	Study protocol including numbers	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	of participants, interventions,	main inclusion and exclusion		outcomes and attrition	Bias
name		duration, and follow-up	criteria		rates	
Mahrose et	Design: RCT	Randomized N: 110	Inclusion: Age >60 years having	Mean age: 66.5	Main outcomes: Fewer	Moderate
al. (2021)	Setting: Preop,	Analyzed N: 110	elective CABG surgery	Female %: 24.5	patients who received	
	cardiac	Intervention 1 (N=55): Melatonin 5	Exclusion: Patients undergoing	Race %: NR	melatonin in addition to	
	Country: Egypt	mg plus dexmedetomidine 0.4 μg/kg	emergency procedures, preop	Delirium %: NR	dexmedetomidine	
	Funding: NR	IV bolus, then 0.2-0.7 μg/kg/hour IV	renal failure, chronic liver	Function: NR	experienced delirium, and	
		Intervention 2 (N=55):	disease (Child classification	Dementia %: NR	duration of delirium was	
		Dexmedetomidine 0.4 μg/kg IV	class B and C), carotid duplex	(excluded any mental	shorter.	
		bolus, then 0.2-0.7 μg/kg/hour IV	to have carotid disease, or	illness)	Overall attrition: 0%	
		Intervention 1 duration: Melatonin -	prolonged postop intubation	Postop %: 100		
		10 pm night before surgery and	and re-exploration	CABG surgery %: 100		
		every evening before bed for 3 days;		Cancer %: NR		
		dexmedetomidine - on arrival to the				
		ICU for 24 hours				
		Intervention 2 duration: on arrival to				

Author	Study	Study protocol including numbers	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	of participants, interventions,	main inclusion and exclusion		outcomes and attrition	Bias
name		duration, and follow-up	criteria		rates	
		the ICU for 24 hours				
		Follow-up (days): 5				

CABG=coronary artery bypass graf; ICU=intensive care unit; IV=intravenous; N=number; NR=not reported; postop=post-operative; preop=pre-operative; RCT=randomized controlled trial.

Dexmedetomidine vs. Opioid

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
name		interventions, duration, and			rates	
		follow-up				
Park et al.	Design: RCT	Randomized N: 142	Inclusion: Ages 18-90 years	Mean (SD) age: 52.8 (15)	Main outcomes: Delirium	Moderate
(2014)	Setting: Postop,	Analyzed N: 142	undergoing cardiac surgery on	Female %: 44	incidence was significantly	
	cardiac	Intervention 1 (N=67):	СРВ	Race %: NR	less in the	
	Country: South	Dexmedetomidine loading dose,	Exclusion: Re-do and emergency	Delirium %: NR	dexmedetomidine group	
	Korea	0.5 μg/kg; maintenance dose,	surgery, severe pulmonary, or	ASA III-IV %: 17	(6/67 patients, 8.96%) vs.	
	Funding: None	0.2-0.8 μg/kg/hour; daily	systemic disease, left ventricular	Dementia %: 0 (excluded)	remifentanil group (17/75	
		Intervention 2 (N=75):	ejection fraction <40%, pre-	Postop %: 100	patients, 22.67%) (p<0.05).	
		Remifentanil range, 1,000-2,500	existing renal dysfunction,	Cancer %: NR	Attrition: NR	
		μg/hour; daily	surgery requiring deep	Mean (SD) length of		
		Duration: 3	hypothermic circulatory arrest	operation, minutes: 344.7		
		Follow-up (days): 3	involving thoracic aorta, and	(107)		
			documented preop dementia, or			
			recent stroke			
Shehabi et	Design: RCT	Randomized N: 306	Inclusion: Age ≥60 years	Median age: 71.3	Main outcomes: Delirium	Low
al. (2009)	Setting: Postop,	Analyzed N: 299	undergoing pump cardiac surgery	Female %: 25	incidence was comparable	
	cardiac	Intervention 1 (N=154):	(e.g., CABG, valve surgery)	Race %: NR	between dexmedetomidine	
	Country:	Dexmedetomidine IV 0.1-0.7	Exclusion: Documented preop	Delirium %: NR	and morphine (8.6% vs.	
	Australia	μg/kg/hour	dementia	Function: NR	15.0%, p=0.088).	
	Funding: Mixed	Intervention 2 (N=152):		Dementia %: 0	Attrition: 1% vs. 3%	
		Morphine IV 10-70 µg/kg/hour		Postop %: 100		
		Duration: Postop		Cancer %: 0		
		Follow-up (days): Discharge				

ASA=American Society of Anesthesiologists; CABG=coronary artery bypass graf; CPB=cardiopulmonary bypass; IV=intravenous; N=number; NR=not reported; postop=post-operative; preop=preoperative; RCT=randomized controlled trial; SD=standard deviation.

Author	Study	Study protocol including numbers	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	of participants, interventions,	main inclusion and exclusion		outcomes and attrition	Bias
name		duration, and follow-up	criteria		rates	
Shokri and	Design: RCT	Randomized N: 294	Inclusion: Age 60-70 years with	Mean (SD) age: 64.1 (4.1)	Main outcomes:	Low
Ali (2020)	Setting: Intraop	Analyzed N: 286	ASA status II and III, scheduled	Female %: 51.4	Dexmedetomidine was	
	and postop,	Intervention 1 (N=147):	for elective isolated CABG, and	Race %: NR	associated with lower risk	
	cardiac	Dexmedetomidine; initial	absence of any associated	Delirium %: NR, severe	and duration of delirium,	
	Country: Egypt	continuous infusion of 0.7-1.2	comorbidities or history of MI	delirium excluded	shorter MV duration and	
	Funding: None	µg/kg/hour, then adjusted on the	Exclusion: Severe dementia,	ASA II %: 62.6	ICU stay, lower mortality	
		basis of sedation and analgesia	delirium, undergoing	ASA III %: 37.4	rate, and lower morphine	
		adequacy to a maximum dose of 1-	emergency procedures, or	Dementia %: NR, severe	consumption than	
		1.4 μg/kg/hour	treated with haloperidol	dementia excluded	clonidine.	
		Intervention 2 (N=147): Clonidine	impaired renal or hepatic	Postop %: 100	Dexmedetomidine	
		IV 0.5 μg/kg slowly over 10-15	functions	Cancer %: NR	significantly decreased	
		minutes, followed by a continuous			heart rates after ICU	
		IV infusion of 1-2 µg/kg/hour			admission.	
		Intervention 1 duration: During			Attrition at follow-up: 2%	
		surgery, then weaned off slowly			vs. 3%	
		after surgery				
		Intervention 2 duration: During				
		surgery				
		Follow-up (days): 8				

Dexmedetomidine vs. Clonidine

ASA=American Society of Anesthesiologists; CABG=coronary artery bypass graf; ICU=intensive care unit; intraop=intra-operative; IV=intravenous; MI=myocardial infarction; MV=medical ventilation; N=number; NR=not reported; POD=post-operative delirium; postop=post-operative; preop=pre-operative; RCT=randomized controlled trial; SD=standard deviation.

Dexmedetomidine IV 1µg/kg bolus followed by 0.2-0.7 µg/kg/hour vs. Dexmedetomidine IV 1µg/kg bolus

Author	Study	Study protocol including numbers	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	of participants, interventions,	main inclusion and exclusion		outcomes and attrition	Bias
name		duration, and follow-up	criteria		rates	
Lee et al.	Design: RCT	Randomized N: 354	Inclusion: Age >65 years	Mean (SD) age: 73.07	Main outcomes: The	Moderate
(2018)	Setting: Intraop,	Analyzed N: 318	undergoing laparoscopic major	(6.01)	incidence of POD was 9.5%	
	noncardiac	Intervention 1 (N=118):	non-cardiac surgery under	Female %: 56	and 18.4% in the 2 groups	
	Country: South	Dexmedetomidine IV 1µg/kg bolus	general anesthesia	Race %: NR	receiving dexmedetomidine	
	Korea	followed by 0.2-0.7 μg/kg/hour	Exclusion: Patients with	Delirium %: NR	compared with usual care	
	Funding:	Intervention 2 (N=118):	cognitive impairment	ASA I, II %: 68.2	(24.8%, p=0.017).	
	University	Dexmedetomidine IV 1µg/kg bolus		Cognitive Impairment %: 0		

DRAFT February 3, 2025 NOT FOR CITATION

Control (N=118)	Saline	Postop %: 100 non-	Attrition at follow-up: 19%	
Duration: Intrao	0	cardiac surgery	vs. 3% vs. 8%	
Follow-up (days)	: Through day 5	Cancer %: NR		

ASA=American Society of Anesthesiologists; intraop=intra-operative; N=number; NR=not reported; POD=post-operative delirium; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

Benzodiazepines

Midazolam vs. Dexmedetomidine

Author	Study	Study protocol including	Study population	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristics	numbers of participants,	including main inclusion		and attrition rates	Bias
name		interventions, duration, and	and exclusion criteria			
		follow-up				
Hassan et al.	Design: RCT	Randomized N: 70	Inclusion: Ages 55-75	Mean age: 59.6	Main outcomes: Patients who	Moderate
(2021)	Setting: Intraop,	Analyzed N: 70	years for elective cardiac	Female %: 44.3	received dexmedetomidine were	
	cardiac	Intervention 1 (N=35):	surgery	Race %: NR	less likely to experience POD	
	Country: Pakistan	Dexmedetomidine 0.7	Exclusion: Those already	Delirium %: 0 (excluded)	than patients who received	
	Funding: NR	µg/kg/hour IV in OR then 0.4	diagnosed with cognitive	ASA I-II %: 100	midazolam (8.6% vs. 22.9%,	
		µg/kg/hour IV	disorder	Dementia %: NR	p=0.04).	
		Intervention 2 (N=35):		Postop %: 100	Attrition: NR	
		Midazolam 0.05 μg/(kg.h) IV in		Cardiac surgery %: 100		
		OR then 0.02-0.08 μg/(kg.h) IV		Cancer NR		
		Duration: Perioperative				
		Follow-up (days): 1, 2, 3				
He et al.	Design: RCT	Randomized N: 90	Inclusion: Ages 75-90	Mean (SD) age: 82.5 (5.6)	Main outcomes: The incidence	Moderate
(2018)	Setting: Intraop,	Analyzed N: 90	years with thoracic or	Female %: 42	rate of POD in the	
	orthopedic	Intervention 1 (N=30):	lumbar vertebral fractures	Race %: NR	dexmedetomidine group was	
	Country:	Dexmedetomidine 0.5 µg/kg	and receiving selective	Delirium %: NR	apparently lower than those in	
	Funding: China	initial bolus, then maintained	operation at grade I to III	Function: NR	the other 2 groups (p<0.05); the	
	Government	at 0.4 μg/kg/hour	in the ASA classification	Dementia %: NR	incidence rate of POD at 1-2 days	
		Intervention 2 (N=30):	Exclusion: CNS disease or	Postop %: NR	after operation in the midazolam	
		Midazolam IV of 0.03 mg/kg	≤23 on MMSE	Cancer %: NR	group was higher than that in the	
		Control (N=30): Normal saline			normal saline group (p<0.05).	
		Intervention 1 duration: 10			There was no significant	
		minutes before anesthesia			difference in the incidence rate	
		induction, then during surgery			of POD at 3-5 days after	

Author (year); trial	Study characteristics	Study protocol including numbers of participants,	Study population including main inclusion	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
name		interventions, duration, and follow-up	and exclusion criteria			
		Intervention 2, Control duration: Before anesthesia Follow-up (days): 5			operation between the midazolam and normal saline groups (p>0.05). Attrition: NR	
Maldonado et al. (2009)	Design: RCT Setting: Postop, cardiac Country: U.S. Funding: Unclear	Randomized N: 118 Analyzed N: 90 Intervention 1 (N=40): Dexmedetomidine IV 0.4 µg/kg bolus followed by 0.2- 0.7 µg/kg/hour Intervention 2 (N=38): Propofol IV 25-50 µg/kg/minute Intervention 3 (N=40): Midazolam IV 0.5-2.0 mg/hour Duration: Postop Follow-up (days): Through POD 3	Inclusion: Ages 18-90 years undergoing elective cardiac valve operation Exclusion: Preexisting dementia	Mean (SD) age: 57 (17) Female %: 36 Race %: NR Delirium %: NR Mean ASA: 3.4 Mean MMSE: 29.4 Dementia %: 0 Postop %: 100 cardiac surgery Cancer %: 0	Main outcomes: Postop sedation with dexmedetomidine was associated with significantly lower rates of POD than propofol or midazolam (3% vs. 50% vs. 50%). Attrition: 10% vs. 18% vs. 20%	Moderate
Yu et al. (2017)	Design: RCT Setting: Intraop, cardiothoracic Country: China Funding: Unclear	Randomized N: 92 Analyzed N: 92 Intervention 1 (N=46): Dexmedetomidine IV bolus (dose NR) followed by 0.2-0.7 µg/kg/hour Intervention 2 (N=46): Midazolam 0.05 µg/kg bolus followed by 0.02-0.08 µg/kg/hour Duration: Intraop Follow-up (days): POD 1-3	Inclusion: Age >60 years undergoing elective thoracic surgery Exclusion: Senile dementia	Mean (SD) age: 68.91 (4.57) Female %: 45 Race %: NR Delirium %: NR ASA I,II %: 100 Senile Dementia %: 0 Postop %: 100 thoracic surgery Cancer %: NR	Main outcomes: There was less POD in the dexmedetomidine group compared with the midazolam group (6.52% vs. 21.74%, p<0.05). Attrition: NR	Moderate

ASA=American Society of Anesthesiologists; CNS=central nervous system; intraop=intra-operative; IV=intravenous; MMSE=Mini-Mental State Examination; N=number; NR=not reported; POD=post-operative delirium; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

In Intensive Care Unit Setting

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
Jakob et al. (2012); MIDEX	Design: RCT Setting: ICU Country: Europe Funding: Industry	Randomized N: 501 Analyzed N: 500 Intervention 1 (N=249): Dexmedetomidine IV 0.2-1.4 µg/kg/hour Intervention 2 (N=252): Midazolam IV 0.03-0.2 mg/kg/hour Duration: During MV Follow-up (days): Delirium assessed 48 hours after discontinuing sedation	Inclusion: Age ≥ 18 years requiring MV with light to moderate sedation for at least 24 hours Exclusion: Acute severe neurological disorder, MAP <55 mmHg, heart rate <50 bpm, atrioventricular-conduction grade II or III (unless pacemaker installed), and use of α_2 agonists or antagonists within 24 hours prior to randomization	Median age: 65 Female %: 34 Race %: NR Delirium %: NR Median SAPS II: 45.5 Dementia %: NR Postop %: 70.6 Cancer %: NR	Main outcomes: There was no difference in the incidence of delirium between the dexmedetomidine group and the midazolam group at 48 hours post sedation (11.9% vs. 13.9%, p=0.393). Attrition: 13% vs. 20%	Low
Li et al. (2019)	Design: RCT Setting: ICU Country: China Funding: Mixed	Randomized N: 126 Analyzed N: 126 Intervention 1 (N=64): Dexmedetomidine IV 0.8 µg/kg/hour Intervention 2 (N=62): Midazolam IV 0.06 mg/kg/hour or propofol IV 0.5-2 mg/kg/hour Duration: During ICU stay Follow-up (days): Delirium assessed twice daily until discharged from ICU	Inclusion: Age ≥18 years admitted to general ICU for more than 96 hours under continuous sedation and analgesia for 48 hours or longer Exclusion: GCS <13 at baseline in ED	Mean (SD) age: 43.98 (14.05) Female %: 44 Race %: NR Delirium %: NR Mean APACHE II: 20.5 Dementia %: NR Postop %: 0 within 24 hours of study Cancer %: 0	Main outcomes: The rate of delirium was significantly lower in the dexmedetomidine group than in the common sedation (control) group (28% vs. 55%, p=0.0023). Attrition: NR	Moderate
MacLaren et al. (2015)	Design: RCT Setting: ICU Country: U.S. Funding: Industry	Randomized N: 23 Analyzed N: 23 Intervention 1 (N=11): Dexmedetomidine IV 0.15-1.5 µg/kg/hour	Inclusion: Ages 18-85 years, critically ill requiring MV, and receiving a benzodiazepine infusion with an anticipated need of at least 12 additional	Mean (SD) age: 58.04 (12.53) Female %: 43 Race %: NR Delirium %: NR	Main outcomes: There was no statistically significant difference between dexmedetomidine and midazolam in new onset delirium (1 vs. 5, p=0.07).	Moderate

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
		follow-up Intervention 2 (N=12): Midazolam IV 1-10 mg/hour Duration: During MV Follow-up (days): Delirium assessed twice daily	hours of sedation Exclusion: Baseline dementia	Mean APACHE III: 72.2 Dementia %: 0 Postop %: 13.0 Cancer %: NR	Attrition at follow-up: 9% vs. 0%	
Ruokonen et al. (2009)	Design: RCT Setting: ICU Country: Finland Funding: Industry	Randomized N: 85 Analyzed N: 85 Intervention (N=41): Dexmedetomidine 0.8 µg/kg/hour for 1 hour, then adjusted stepwise at 0.25, 0.5, 0.8, 1.1, and 1.4 µg/kg/hour Control (N=44): Standard care: 1) propofol 2.4 mg/kg/hour for 1 hour, then adjusted stepwise at 0.8, 1.6, 2.4, 3.2, and 4.0 mg/kg/hour OR 2) midazolam IV bolus 1-2 mg starting at 3 boluses/hour for 1 hour, thereafter 1-4 boluses/hour; if not sufficient as continuous infusion of 0.2 mg/kg/hour for 1 hour followed by adjustment at 0.04, 0.08, 0.12, 0.16, and 0.20 mg/kg/hour Duration: During ICU stay Follow-up (days): 45	Inclusion: Age ≥ 18 years, MV, need for sedation for ≥ 24 hours after randomization, and an expected ICU stay ≥ 48 hours Exclusion: Acute severe neurological disorder, MAP <55 mmHg despite volume and vasopressors, heart rate <50 bpm, atrioventricular- conduction block II to III (unless pacemaker installed), hepatic SOFA score >2, bilirubin >101 Imol/L, muscle relaxation, loss of hearing or vision, any other condition interfering with RASS assessment, or use of α_2 agonists or antagonists at the time of randomization	Median age: 64 vs. 68 Female %: 17.6 Race %: NR Delirium %: NR Function: NR Dementia %: NR Postop %: NR Cancer %: NR	Main outcomes: Delirium was more common in the dexmedetomidine group than in the standard care group (43.9% vs. 25.0%, p=0.035) when analyzed as the combined endpoint of CAM-ICU and adverse events of delirium and confusion. However, more CAM-ICU assessments were performed in the dexmedetomidine group than in the standard care group (106 vs. 84), and the proportion of positive CAM-ICU results was comparable (17.0% vs. 17.9%, p=NS). During the follow-up to ICU discharge, no significant difference was observed in the occurrence rate of positive RASS scores (26% vs. 32%). Attrition: 24% vs. 16%	Moderate
Shu et al. (2019)	Design: RCT Setting: ICU Country: China Funding: Unclear	Randomized N: 80 Analyzed N: 80 Intervention 1 (N=40): Dexmedetomidine IV 1.0 µg/kg bolus followed by 0.2-0.7	Inclusion: Age >60 years requiring MV for more than 24 hours Exclusion: CNS disease	Mean age: 73.61 (8.28) Female %: 35 Race %: NR Delirium %: NR Mean (SD) APACHE II:	Main outcomes: There was no significant difference between dexmedetomidine and midazolam in the incidence of delirium (0% vs. 10%, p>0.05).	Moderate

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		and attrition rates	Bias
name		interventions, duration, and	criteria			
		follow-up				
		μg/kg/hour		22.43 (4.84)	Attrition: NR	
		Intervention 2 (N=40):		Dementia %: NR		
		Midazolam 0.05 mg/kg bolus		Postop %: NR		
		followed by 0.05-0.10		Cancer %: NR		
		mg/kg/hour				
		Duration: During MV				
		Follow-up (days): Day 1				

APACHE II=Acute Physiology and Chronic Health Evaluation II; CAM-ICU=Confusion Assessment Method for the ICU; CNS=central nervous system; ED=emergency department; GCS=Glasgow Coma Scale; ICU=intensive care unit; IV=intravenous; MAP=mean arterial pressure; MV=medical ventilation; N=number; NS=not significant; NR=not reported; postop=post-operative; RASS=Richmond Agitation Sedation Scale; RCT=randomized controlled trial; SAPS II=Simplified Acute Physiology Score II; SD=standard deviation; SOFA=Sequential Organ Failure Assessment.

Midazolam vs. Propofol

In Surgical Setting

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		and attrition rates	Bias
name		interventions, duration, and	criteria			
		follow-up				
Maldonado	Design: RCT	Randomized N: 118	Inclusion: Age 18-90 years	Mean (SD) age: 57 (17)	Main outcomes: Postop sedation	Moderate
et al.	Setting: Postop,	Analyzed N: 90	undergoing elective cardiac	Female %: 36	with dexmedetomidine was	
(2009)	cardiac	Intervention 1 (N=40):	valve operation	Race %: NR	associated with significantly lower	
	Country: U.S.	Dexmedetomidine IV 0.4 μg/kg	Exclusion: Preexisting	Delirium %: NR	rates of POD than propofol or	
	Funding:	bolus followed by 0.2-0.7	dementia	Mean ASA: 3.4	midazolam (3% vs. 50% vs. 50%).	
	Unclear	μg/kg/hour		Mean MMSE: 29.4	Attrition: 10% vs. 18% vs. 20%	
		Intervention 2 (N=38): Propofol		Dementia %: 0		
		IV 25-50 μg/kg/minute		Postop %: 100 cardiac		
		Intervention 3 (N=40):		surgery		
		Midazolam IV 0.5-2.0 mg/hour		Cancer %: 0		
		Duration: Postop				
		Follow-up (days): Through POD				
		3				

ASA=American Society of Anesthesiologists; ICU=intensive care unit; IV=intravenous; MMSE=Mini-Mental State Examination; N=number; NR=not reported; POD=post-operative delirium; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

Author (year); trial	Study characteristics	Study protocol including numbers of participants,	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
name		interventions, duration,				
		and follow-up				
Chen (2020)	Design: RCT	Randomized N: 120	Inclusion: Ages 18-60 years with	Mean age 41-60 years:	Main outcomes: The difference in	High
	Setting: ICU	Analyzed N: 120	expected sedation time of ≤72	51%	the incidence of delirium, adverse	
	Country: China	Intervention 1 (N=60):	hours and required continuous	Female %: 30	reactions, ICU LOS, and mortality	
	Funding: None	Midazolam IV 0.05-0.2	sedation with MV	Race %: NR	in 28 days between the groups	
		mg/kg/hour	Exclusion: Cerebral surgery; history	Delirium %: NR	was not statistically significant	
		Intervention 2 (N=60):	of CNS and mental illness (including	Function: NR	(p>0.05). However, time to	
		Propofol IV 0.5-4	Alzheimer's disease); long-term use	Dementia %: 0	spontaneous eye opening was	
		mg/kg/hour	of antidepressants or sedatives;	(excluded)	longer in the midazolam group	
		Duration: During MV	serious liver and kidney	Postop %: NR	(p<0.05). The onset effect time of	
		Follow-up (days): 28	dysfunction, internal environment	Cancer %: NR	sedatives was slightly longer in	
			disorder, or hyper-lipidaemia; in a		the midazolam group, compared	
			coma; obvious abnormal blood		with the propofol group (p<0.05).	
			glucose and great fluctuations;		The difference in the time to	
			sepsis, unstable circulation, severe		reach the optimal level of	
			complicated hypoproteinaemia,		sedation between these 2 groups	
			anemia, and thrombocytopenia		was not statistically significant	
					(p>0.05).	
					Attrition: NR	

In Intensive Care Unit Setting

CNS=central nervous system; ICU=intensive care unit; IV=intravenous; LOS=length of stay; MV=medical ventilation; N=number; NR=not reported; RCT=randomized controlled trial.

Midazolam vs. Melatonin vs. Clonidine vs. No Sedation

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
name		interventions, duration, and			rates	
		follow-up				
Sultan	Design: RCT	Randomized N: 222	Inclusion: Age >65 years,	Mean (SD) age: 71.01 (36.8)	Main outcomes: The	High
(2010)	Setting: Preop,	Analyzed N: 203	scheduled for hip arthroplasty	Female %: 51	melatonin group	
	hip	Intervention 1 (N=53 analyzed):	under spinal anesthesia, and ASA I-	Race %: NR	showed a statistically	
	Country: Egypt	Melatonin 5 mg, 2 oral doses	Ш	Delirium %: 0 (excluded)	significant decrease in	
	Funding: None	Intervention 2 (N=50 analyzed):	Exclusion: Sensory impairment	ASA I-III: Inclusion criterion	the percentage of POD	

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
name		interventions, duration, and			rates	
		follow-up				
		Midazolam 7.5 mg, 2 oral doses	(blindness, deafness); dementia;	Dementia %: 0 (excluded)	(9.43% vs. 32.65% in	
		Intervention 3 (N=51 analyzed):	severe infections; severe anemia	Postop %: 100	the other groups).	
		Clonidine 100 µg, 2 oral doses	(hematocrit<30%); intracranial	Cancer %: NR	Overall attrition: 9%	
		Control (N=49 analyzed): No	events (stroke, bleeding,			
		sedation	infection); fluid or electrolyte			
		Duration: One dose the night	disturbances; acute cardiac events;			
		before surgery and another 90	acute pulmonary events; and			
		minutes before surgery	medications including			
		Follow-up (days): POD 3	anticonvulsants, antihistamines,			
			and benzodiazepines			

ASA=American Society of Anesthesiologists; N=number; NR=not reported; POD=post-operative delirium; postop=post-operative; preop=pre-operative; RCT=randomized controlled trial; SD=standard deviation.

Restricted vs. Liberal Benzodiazepine Use

In Surgical Setting

Author	Study	Study protocol including numbers	Study population including	Sample	Results including main outcomes and	Risk of
(year); trial	characteristics	of participants, interventions,	main inclusion and	demographics	attrition rates	Bias
name		duration, and follow-up	exclusion criteria			
Spence et al.	Design: RCT	Randomized N: 800	Inclusion: Age ≥18 years	Mean age: 67	Main outcomes: The overall incidence of	Moderate
(2020)	Setting:	Analyzed N: 718	who underwent cardiac	Female %: 23	delirium is 15.9% (17.5% during the	
	Intraop,	Intervention 1 (N=411): Restricted	surgery at one of the sites	Race %: NR	restricted benzodiazepine periods vs.	
	cardiac	benzodiazepine use*	during the enrollment	Delirium %: NR	14.1% during the liberal benzodiazepine	
	Country:	Intervention 2 (N=389): Liberal	period	Functioning: NR	periods) (p=0.19, RR increase 24.1%, 95%	
	Canada	benzodiazepine use*	Exclusion: NR	Dementia %: NR	CI -21.1% to 27.1%). The median (IQR)	
	Funding:	*Midazolam used in the majority		Postop %: 100	ICU LOS was 24 (24-72) hours, and the	
	Industry	of cases		Cancer %: NR	median (IQR) hospital LOS was 7 (5-11)	
		Duration: Intraop			days. The overall incidence of in-hospital	
		Follow-up (days): Until discharge			mortality was 1.1%.	
					Attrition: 12% vs. 9%	

Cl=confidence interval; ICU=intensive care unit; intraop=intra-operative; IQR=interquartile range; LOS=length of stay; N=number; NR=not reported; postop=post-operative; RCT=randomized controlled trial; RR=relative risk; SD=standard deviation.

Antipsychotics

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
name		interventions, duration, and			rates	
E. J. et al.	Design DCT	follow-up		Marca 200		N A - d - u - t -
Fukata et al.	Design: RCT	Randomized N: 121	Inclusion: Age >75 years undergoing	Mean age: 80	Main outcomes: 42.4% and	Moderate
(2014)	Setting:	Analyzed N: 120	elective abdominal or orthopedic	Female %: 53	33.3% in the intervention	
	Postop,	Intervention (N=59):	surgery with general or spinal	Race %: NR	and control groups,	
	abdominal or	Haloperidol IV 2.5 mg infusion;	anesthesia	Delirium %: 0	respectively, had	
	orthopedic	daily	Exclusion: Prior treatment with	Mean ADL (Berthel Index):	incidences of POD	
	Country: Japan	Control (N=62): No treatment	haloperidol for POD	85	(p=0.309). No adverse	
	Funding:	Duration: For 3 days		Dementia %: NR	events related to	
	Government	Follow-up (days): 3		Postop %: 100	haloperidol were reported.	
				Cancer %: 62	Attrition: 0% vs. 3%	
Hollinger et	Design: RCT	Randomized N: 192	Inclusion: Age ≥65 years scheduled	Mean (SD) age: 73.7 (6.1)	Main outcomes: None of	Moderate
al. (2021)	Setting:	Analyzed N: 182	for visceral, orthopedic, vascular,	Female %: 43.4	the 3 study arms –	
	Intraop, mixed	Intervention 1 (N=48):	gynecological, cardiac, or thoracic	Race %: NR	haloperidol, ketamine, or	
	Country:	Haloperidol 5 µg/kg	surgery	Delirium %: 0 (excluded)	both drugs combined - was	
	Switzerland	Intervention 2 (N=49):	Exclusion: Delirium at admission or	Function: NR	significantly superior to	
	Funding: Non-	Ketamine 1 mg/kg	prior to surgery, MMSE <24, DOS	Dementia %: 0 (excluded)	placebo for prevention of	
	profit	Intervention 3 (N=49):	≥3, dementia, high risk for postop	Postop %: 100	postop brain dysfunction	
		Haloperidol 5 µg/kg plus	treatment in the ICU, QT interval	Cancer %: NR	and delirium (p=0.39).	
		ketamine 1 mg/kg	prolongation, or drugs influencing		Attrition: 6% vs. 4% vs. 4%	
		Intervention 4 (N=47): Placebo	QT interval, intake of dopaminergic		vs. 6%	
		Duration: Once before	drugs, delay of surgery for >72			
		induction of anesthesia	hours after set indication for			
		Follow-up (days): 3	surgery, or weight >100 kg			
Kalisvaart et	Design: RCT	Randomized N: 430	Inclusion: Age ≥70 years, acute or	Mean age: 79	Main outcomes: POD in the	Low
al. (2005)	Setting:	Analyzed N: 430	elective hip surgery, and at	Female %: 80	haloperidol and placebo	
	Postop, hip	Intervention 1 (N=212):	intermediate-high risk for POD	Race %: NR	treatment conditions was	
	Country: The	Haloperidol 1.5 mg oral (0.5	(visual impairment, cognitive	Delirium %: 0	15.1% and 16.5%,	
	, Netherlands	mg three times daily)	impairment, severity of illness)	Mean Barthel Index: 18.78	respectively (RR 50.91, 95%	
	Funding:	Intervention 2 (N=218):	Exclusion: Delirium at	Dementia %: NR	CI 50.6 to 1.3). No	
	Hospital	Placebo	admission, no risk factors for POD,	Postop %: 100	haloperidol-related side	
			use of cholinesterase inhibitors,	Cancer %: NR	effects were noted.	

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
name		interventions, duration, and			rates	
		follow-up				
		Duration: 1-6 days (3 days	levodopa treatment, inability to		Attrition: 9% vs. 13%	
		postop, 3-day delay allowed)	participate in interviews, delay of			
		Follow-up (days): 14	surgery of more than 72 hours after			
			admission, or a prolonged QTc			
			interval of 460 ms or higher for men			
			and 470 ms or higher for women on			
			their electrocardiogram			
Khan et al.	Design: RCT	Randomized N: 135	Inclusion: Age >18 years undergoing	Mean age: 61	Main outcomes: No	Low
(2018)	Setting:	Analyzed N: 135	thoracic surgery	Female %: 26	significant differences were	
	Postop,	Intervention 1 (N=68):	Exclusion: Severe dementia	Race %: African American:	observed between those	
	cardiothoracic	Haloperidol 1.5 mg oral (0.5		4	receiving haloperidol and	
	Country: U.S.	mg three times daily)		Delirium %: NR	those receiving placebo in	
	Funding:	Intervention 2 (N=67): Placebo		Median APACHE II 16.5	incident delirium (15	
	Government	Duration: Three times a day x		Dementia %: NR	[22.1%] vs. 19 [28.4%],	
		11 doses (3.7 days)		Postop %: 100	p=0.43), Safety events were	
		Follow-up (days): Unclear (post		Cancer %: NR (history of	comparable between the	
		discharge)		chemo 54%)	groups.	
					Overall attrition: 0%	
Larsen et al.	Design: RCT	Randomized N: 495	Inclusion: Age >65 years or <65	Mean age: 74	Main outcomes:	Moderate
(2010)	Setting:	Analyzed N: 400	years with a history of POD and	Female %: 54	Administration of 10 mg of	
	Postop,	Intervention 1 (N=243):	scheduled for elective total knee- or	Race %: Caucasian: 98	oral olanzapine	
	orthopedic	Olanzapine 5 mg	total hip-replacement	Mean DRS-R: 15	perioperatively vs. placebo	
	Country: U.S.	Intervention 2 (N=252):	Exclusion: Dementia	Dementia %: 0 (excluded)	was associated with a	
	Funding:	Placebo		Postop %: 100	significantly lower	
	University	Duration: 1 dose immediately		Cancer %: NR	incidence of delirium.	
		preop and 1 dose postop (in			Attrition: 19% vs. 15%	
		pre-anesthesia care unit)				
		Follow-up (days): 8				
Mokhtari et	Design: RCT	Randomized N: 53	Inclusion: Age >18 years, stable	Mean age: 47	Main outcomes: Delirium	Moderate
al. (2020)	Setting:	Analyzed N: 40	hemodynamics, breathing	Female %: 28	incidence and the mean	
	Postop,	Intervention 1 (N=28):	spontaneously, and admitted to ICU	Race %: NR	days to its onset were 20%	
		Aripiprazole 15 mg orally; daily	post neurological surgery	Delirium %: 0	vs. 55% (p=0.022) and 2.17	

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
	neurological Country: Iran Funding: NR	Intervention 2 (N=25): Placebo; daily Duration: For 7 days Follow-up (days): 7	Exclusion: Severe dementia or ICU stay anticipated <3 days	Mean APACHE II: 8.5 Dementia %: 0 Postop %: 100 Cancer %: 15	(SD 0.41) vs. 2.09 (SD 0.30) (p=0.076) in the aripiprazole and placebo groups, respectively. Serious aripiprazole adverse reactions were not observed. Attrition: 29% vs. 20%	
Prakanratta na and Prapaitrakoo I (2007)	Design: RCT Setting: Postop, cardiac Country: Thailand Funding: Hospital	Randomized N: 126 Analyzed N: 126 Intervention 1 (N=63): Risperidone 1 mg sublingually Intervention 2 (N=63): Placebo Duration: Once on regaining consciousness Follow-up (days): Until ICU discharge	Inclusion: Age >40 years scheduled for elective cardiac surgery with CPB Exclusion: Admitted to ICU, endotracheal intubation, or preop delirium	Mean age: 61 Female %: 49 Race %: NR Delirium %: NR Function: NR Dementia %: NR Postop %: NR Cancer %: NR	Main outcomes: A single dose of risperidone administered soon after cardiac surgery with CPB reduced the incidence of POD. Overall attrition: 0%	Moderate
Wang et al. (2012)	Design: RCT Setting: Postop, noncardiac Country: China Funding: NR	Randomized N: 457 Analyzed N: 457 Intervention 1 (N=229): Haloperidol 0.5 mg bolus, followed by IV infusion 0.1 mg/hour Intervention 2 (N=228): Placebo Duration: Continuous 7 days Follow-up (days): 7	Inclusion: Age >65 years, admitted to ICU after noncardiac surgery Exclusion: Profound dementia	Mean age: 74 Female %: 37 Race %: NR Delirium %: NR ASA Class III %: 37 Dementia %: 0 (excluded) Postop %: 100 Cancer %: NR	Main outcomes: Delirium incidence was 15.3% (35/229) in the haloperidol group and 3.2% (53/228) in the control group (p=0.031). No drug-related side effects were documented. Attrition: 1% vs. 0%	Moderate

ADL=Activities of Daily Living; APACHE II=Acute Physiology and Chronic Health Evaluation II; ASA=American Society of Anesthesiologists; CI=confidence interval; CPB=cardiopulmonary bypass; DOS=delirium observation scale; DRS-R-98=Delirium Rating Scale-Revised-1998; ICU=intensive care unit; intraop=intra-operative; IV=intravenous; MMSE=Mini-Mental State Examination; N=number; NR=not reported; POD=post-operative delirium; postop=post-operative; preop=pre-operative; RCT=randomized controlled trial; RR=relative risk; SD=standard deviation.

Risk of Author Study Study protocol including Study population including main Sample **Results including main outcomes** characteristics numbers of participants, inclusion and exclusion criteria demographics Bias (year); trial and attrition rates name interventions, duration, and follow-up Design: RCT Randomized N: 90 Inclusion: Ages 26-70 years, ASA Mean (SD) age: 59 Abdelgalel Main outcomes: The incidence of Low (2016) Setting: ICU Analyzed N: 90 status III and IV, and in Zagazig (50) delirium was significantly lower in Intervention 1 (N=30): Female %: 25 the dexmedetomidine group 3/30 Country: Egypt university hospital Funding: None Dexmedetomidine Exclusion: Severe dementia, heart Race %: NR (10%) than haloperidol 10/30 (33.3%) continuous IV infusion of rate 650 bpm or systolic blood Delirium %: NR and placebo 13/30 (43.3%) groups. 0.2-0.7 µg/kg/hour; loading pressure 690 mmhg, or Mean APACHE II: 17 The ICU LOS was significantly shorter dose of 1.0 µg/kg IV over 10 prolonged QTc-time (>500 ms) or Dementia %: in the dexmedetomidine group minutes if needed "severe" dementia history of clinically relevant (3.1±0.4 days) than haloperidol and Intervention 2 (N=30): ventricular arrhythmia excluded placebo groups (6.5±1.0 and 6.9±1.2 Haloperidol continuous IV Postop %: 17.8 days, respectively). infusion of 0.5-2 mg/hour; Cancer %: NR Overall attrition: 0% loading dose of 2.5 mg IV over 10 minutes if needed Intervention 3 (N=30): Placebo; normal saline Duration: During MV Follow-up (days): NR Design: RCT Randomized N: 82 Inclusion: Age ≥18 years and Abraham et Median age: 55 vs. Main outcomes: The incidence of High al. (2021) Setting: ICU Analyzed N: 71 admitted to the surgical trauma 59 delirium during admission to the ICU Country: U.S. Intervention 1 (N=22): ICU Female %: 39.4 was 45.5% (10/22) in the guetiapine Exclusion: Sustained RASS score Funding: None Quetiapine 12.5 mg twice Race %: NR group and 77.6% (38/49) in the no daily, orally or through a Delirium %: 0 of -4 or -5 during ICU admission treatment group. The mean time to nasogastric/enteral tube or presence of a condition (excluded) onset of delirium was 1.4 days for Control (N=60): No preventing delirium assessment; Median APACHE II: those who did not receive treatment 15.0 treatment anticipated or known ICU LOS vs. 2.5 days for those who did Duration: During ICU stay <48 hours; history of levodopa Dementia %: 19.7 (p=0.06). The quetiapine group Follow-up (days): Discharge treatment; admission with a Postop %: 5.6 significantly reduced ventilator primary neurological condition or Cancer %: NR duration from 8.2 days to 1.5 days an injury with a GCS score ≤9 (p=0.002). during the first 48 hours of their Attrition: 18% vs. 0% ICU stay; current treatment with

In Intensive Care Unit Setting

Author	Study	Study protocol including	Study population including main	Sample	Results including main outcomes	Risk of
(year); trial name	characteristics	numbers of participants, interventions, duration, and follow-up	inclusion and exclusion criteria	demographics	and attrition rates	Bias
			a continuous infusion neuromuscular blocking agent; screened positive for delirium on admission to the ICU; and/or enteral medication route not available			
Al-Qadheeb et al. (2016)	Design: RCT Setting: ICU Country: U.S. Funding: Government	Randomized N: 68 Analyzed N: 68 Intervention 1 (N=34): Haloperidol 1 mg IV every 6 hours Intervention 2 (N=34): Placebo every 6 hours Duration: During ICU stay Follow-up (days): 10 or until discharge	Inclusion: Patients admitted to ICU, expected to stay at least 24 hours but <4 days, and diagnosed with subsyndromal delirium by SAS and ICDSC Exclusion: Age >85 years or severe dementia	Mean age: 60 Female %: 44 Race %: NR Delirium %: 0 Mean APACHE II: 19.5 Dementia %: 0 (excluded) Postop %: 6 Cancer %: NR	Main outcomes: A similar number of patients given haloperidol (12/34 [35%]) and placebo (8/34 [23%]) developed delirium (p=0.29). The proportion of patients who developed QTc-interval prolongation (p=0.16), extrapyramidal symptoms (p=0.31), excessive sedation (p=0.31), or new-onset hypotension (p=1.0) that resulted in study medication discontinuation was comparable between the 2 groups. Overall attrition: 0%	Low
Kim Y. et al. (2019)	Design: RCT Setting: ICU Country: South Korea Funding: Government	Randomized N: 37 Analyzed N: 35 Intervention 1 (N=16): Quetiapine 12.5-25 mg; daily Intervention 2 (N=21): Placebo; daily Duration: During ICU stay Follow-up (days): 10 or until discharge	Inclusion: 3 of the following were met: age >64 years, APACHE II score >14, suspicion of infection, MV, continuous renal replacement therapy, metabolic acidosis, use of morphine or sedatives, unexpected ICU admission, or non-sustained coma Exclusion: Age <18 years or irreversible neurological disease	Mean age: 70 Female %: 63 Race %: NR Delirium %: 0 Mean APACHE II: 23.65 Dementia %: NR Postop %: NR Cancer %: NR	Main outcomes: The incidence of delirium during the 10 days after ICU admission was 46.7% (7/15) in the quetiapine group and 55.0% (11/20) in the placebo group (p=0.442). Delirium duration during the study period was significantly shorter with quetiapine (0.28 day vs.1.83 days, p=0.018) Attrition: 6% vs. 5%	Moderate

Author	Study	Study protocol including	Study population including main	Sample	Results including main outcomes	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria	demographics	and attrition rates	Bias
name		interventions, duration, and				
		follow-up				
van den	Design: RCT	Randomized N: 1,796	Inclusion: Adults without delirium	Mean age: 67	Main outcomes: The 1 mg	Low
Boogaard et	Setting: ICU	Analyzed N: 1,789	anticipated with ICU stay of at	Female %: 39	haloperidol group was prematurely	
al. (2018);	Country: The	Intervention 1 (N=353):	least 2 days	Race %: NR	stopped because of futility. There	
Rood et al.	Netherlands	Haloperidol 1 mg IV every 8	Exclusion: Dementia	Delirium %: 0	was no difference in the median days	
(2019)	Funding:	hours		Mean APACHE II:	patients survived in 28 days: 28 days	
	Industry	Intervention 2 (N=734):		19.4	in the 2 mg haloperidol group vs. 28	
		Haloperidol 2 mg IV every 8		Dementia %: 0	days in the placebo group, for a	
		hours		(Excluded)	difference of 0 days (95% CI 0 to 0,	
		Intervention 3 (N=709):		Postop %: 25	p=0.93) and a HR of 1.003 (95% CI	
		Placebo every 8 hours		Cancer %: NR	0.78 to 1.30, p=0.82). All 15	
		Duration: For 4-8 days			secondary outcomes were not	
		Follow-up (days): 28			statistically different, including	
					delirium incidence (MD 1.5%, 95% Cl	
					-3.6% to 6.7%) and delirium- and	
					coma-free days (MD 0 days, 95% CI 0	
					to 0 days). The number of reported	
					adverse effects did not differ	
					between the groups (2 [0.3%] for the	
					2 mg haloperidol group vs. 1 [0.1%]	
					for the placebo group).	
					Attrition: 1% vs. 0% vs. 0%	

APACHE II=Acute Physiology and Chronic Health Evaluation II; ASA=American Society of Anesthesiologists; CI=confidence interval; GCS=Glasgow Coma Scale; HR=hazard ratio; ICDSC=Intensive Care Delirium Screening Checklist; ICU=intensive care unit; IV=intravenous; LOS=length of stay; MD=mean difference; MV=medical ventilation; N=number; NR=not reported; postop=post-operative; RASS=Richmond Agitation Sedation Scale; RCT=randomized controlled trial; SAS=Sedation Agitation Scale; SD=standard deviation.

In General Inpatient Setting

Author Study (year); trial characteristi name	interventions, duration, and	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
Schrijver et Design: RCT al. (2018) Setting: Non ICU Inpt	follow-up Randomized N: 245 Analyzed N: 242 Intervention 1 (N=119):	Inclusion: Age >70 years, acutely hospitalized through ED or to medical or surgical wards, at risk	Mean age: 83 Female %: 55 Race %: NR	Main outcomes: In the haloperidol and placebo group, delirium incidence was 19.5% vs. 14.5% (OR 1.43, 95% Cl 0.72	Moderate

Author	Study	Study protocol including	Study population including	Sample	Results including main outcomes and	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion	demographics	attrition rates	Bias
name		interventions, duration, and	criteria			
		follow-up				
	Country: The	Haloperidol 1 mg orally;	for delirium by Dutch Safety	Delirium %: 0	to 2.78); median (IQR) delirium	
	Netherlands	twice daily	Management Program scale (1	Median Katz ADLs: 3	duration 4 (2-5) vs. 3 (1-6) days	
	Funding: None	Intervention 2 (N=126):	point of 3), and enrolled within	Dementia %: 0	(p=0.366); maximum DRS-R-98 score 16	
		Placebo; twice daily	24 hours of admission	Postop %: 23	(9.8-19.5) vs. 10 (5.5-22.5) (p=0.549;	
		Duration: For 7 days	Exclusion: Vascular or Lewy	Cancer %: NR	53.7% missing data); hospital LOS 7 (4-	
		Follow-up (days): 7	body Dementia		10.3) vs. 7 (5-11.8) days (p=0.343); 3-	
					month mortality 9.9% vs. 12.5% (OR	
					0.77, 95% Cl 0.34 to 1.75), respectively.	
					No treatment-limiting side effects were	
					noted.	
					Attrition: 6% vs. 7%	
Thanaplueti	Design: RCT	Randomized N: 122	Inclusion: Age >65 years acutely	Mean (SD) age: 75.3	Main outcomes: The incidence of	Low
wong et al.	Setting: Non-	Analyzed N: 114	hospitalized in a medical	(7.1)	delirium in the quetiapine group was	
(2021)	ICU Inpatient	Intervention 1 (N=61):	specialty	Female %: 45.6	14% vs. 8.8% in the placebo group (OR	
	Country:	Quetiapine 12.5 mg/day;	Exclusion: Dementia	Race %: NR	1.698, 95% Cl 0.520 to 5.545, p=0.381).	
	Thailand	daily		Delirium %: 0	Attrition: 7% vs. 7%	
	Funding:	Intervention 2 (N=61):		(excluded)		
	Hospital	Placebo; daily		ASA II: NR (65%		
		Duration: For 7 days		independent)		
		Follow-up (days): 7		Dementia %: 0		
				(excluded)		
				Postop %: NR		
				Cancer %: NR		

ADL=Activities of Daily Living; ASA=American Society of Anesthesiologists; CI=confidence interval; DRS-R-98=Delirium Rating Scale-Revised-1998; ED=emergency department; ICU=intensive care unit; IQR=interquartile range; LOS=length of stay; N=number; NR=not reported; OR=odds ratio; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

Melatonin

Melatonin vs. Placebo

Author (year); trial	Study characteristics	Study protocol including numbers of participants,	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition	Risk of Bias
name		interventions, duration, and			rates	
		follow-up				
de Jonghe et al. (2014); MAPLE (de Jonghe et al. 2011 for study protocol)	Design: RCT Setting: Postop, hip Country: The Netherlands Funding: Government and nonprofit	Randomized N: 452* *8 patients were excluded after randomization due to logistics failure. Analyzed N: 378 Intervention 1 (N=219 assigned): Melatonin 3 mg tablet Intervention 2 (N=225 assigned): Placebo tablet Duration: In the evening for 5 consecutive days Follow-up (days): 90	Inclusion: Age ≥65 years admitted for emergency surgery for hip fracture, enrolled within 24 hours of admission Exclusion: Delirium at baseline, transferred from another hospital, or anticipation of postop admission to the ICU or coronary care unit	Mean (SD) age: 83.7 (7.8) Female %: 70 Race %: NR Delirium %: 0 (excluded) Katz Index of ADL: NR overall Dementia %: NR Postop %: 100 Cancer %: NR Cognitive impairment (on the basis of MMSE, Informant Questionnaire on Cognitive Decline, or dementia on Charlson	Main outcomes: No effect of melatonin on the incidence of delirium was observed (adjusted OR 1.14, 95% Cl 0.71 to 1.83). Attrition from assigned numbers: 16% vs. 15%	Moderate
Ford et al. (2020)	Design: RCT Setting: Preop and postop, cardiac Country: Australia Funding: Government	Randomized N: 210 Analyzed N: 202 at discharge; 166 at 3 months (cognitive only, ITT reported) Intervention 1 (N=105): Melatonin 3 mg; once daily Intervention 2 (N=105): Placebo; once daily Duration, 7 consecutive nights, starting 2 nights before surgery Follow-up (days): 7 (delirium), 90 (cognitive only)	Inclusion: Age ≥50 years and undergoing elective cardiac surgery Exclusion: Dementia or score ≤19 on TICS-M	Comorbidity Index) %: 55.6 Mean (SD) age: 68.3 (8.2) Female %: 22 Race %: NR Delirium %: NR Baseline scale of function: NR Dementia %: 0 (excluded) Postop %: 100 Cancer %: NR Cognitive status (TICS-M): 34.8 (3.9)	Main outcomes: Melatonin did not decrease the incidence of delirium compared with placebo (ITT analysis, adjusted OR 0.79, 95% CI 0.36 to 1.76). Attrition: 7% vs. 1%	Low

DRAFT February 3, 2025 NOT FOR CITATION

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
name		interventions, duration, and			rates	
		follow-up				
Javaherforo	Design: RCT	Randomized N: 60	Inclusion: Age ≥30 years, candidate	Mean (SD) age: 61.58	Main outcomes: On the 1 st	Moderate
osh Zadeh et	Setting: Preop	Analyzed N: 60	for elective on-pump CABG, ASA II-III,	(8.82)	postop day, 4 (13.3%)	
al. (2021)	and postop,	Intervention 1 (N=30):	minimum ejection fraction of 30%,	Female %: 30	patients in the melatonin	
	cardiac	Melatonin 3 mg	and admitted to the hospital	Race %: NR	group vs. 11 (36.6%)	
	Country: Iran	Intervention 2 (N=30):	Exclusion: Receiving barbiturates,	Delirium %: NR	patients in the placebo	
	Funding: None	Placebo	history of liver or kidney disease or	Function: NR	group developed delirium	
		Duration: Evening before	chronic pulmonary disease, history of	Dementia %: NR	(p=0.037). On 2 nd postop	
		surgery, morning of surgery,	neurological or psychological	Postop %: 100 cardiac	day, 3 (10%) patients in	
		and daily until 2 nd postop day	diseases, and the occurrence of	surgery	the melatonin group vs. 14	
		Follow-up (days): POD 2, until	serious and life-threatening events	Cancer %: NR	(46.6%) patients in the	
		discharge	during or after		control group developed	
					delirium (p=0.029). The	
					severity of delirium	
					between the groups was	
					significant on the 1 st and	
					2 nd postop days (p=0.003).	
					Overall attrition: 0%	
Sharaf et al.	Design: RCT	Randomized N: 50	Inclusion: Age ≥60 years, ASA status	Mean (SD) age: 62.7 (4.5)	Main outcomes: The	Low
(2018)	Setting: Preop	Analyzed N: 50	III to IV, and undergoing elective	Female %: 48	incidence of delirium was	
	and postop,	Intervention 1 (N=25):	CABG with 2 or 3 vessel grafts	Race %: NR	8% in the melatonin group	
	cardiac	Melatonin 3 mg	Exclusion: Emergent CABG, ASA	Delirium %: NR	vs. 28% in the control	
	Country: Egypt	Intervention 2 (N=25):	status ≥V, ejection fraction <40%,	ASA III %: 54	group (p=0.046).	
	Funding: NR	Placebo	MMSE ≤24, history of	ASA IV %: 46	Attrition: NR	
		Duration: Night before	neuropsychiatric disorders, history of	Dementia %: 0 (excluded)		
		surgery, 30 minutes before	liver cirrhosis or renal failure, history	Postop %: 100		
		surgery, and night after	of chronic pulmonary diseases,	Cancer %: NR		
		surgery	uncontrolled systemic disease,			
		Follow-up (days): 3	prolonged postop ventilation >8			
			hours, or history of chronic sedative			
			hypnotics use ≥3 times/week			

ADL=Activities of Daily Living; ASA=American Society of Anesthesiologists; CABG=coronary artery bypass graf; CI=confidence interval; ICU=intensive care unit; ITT=intention-to-treat; MMSE=Mini-Mental State Examination; N=number; NR=not reported; OR=odds ratio; POD=post-operative delirium; postop=post-operative; preop=pre-operative; RCT=randomized controlled trial; SD=standard deviation; TICS-M=Modified Telephone Interview for Cognitive Status.

In Intensive Care	Unit Setting
-------------------	--------------

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
name		interventions, duration, and			rates	
		follow-up				
Abbasi et al.	Design: RCT	Randomized N: 172	Inclusion: Age >18 years, ICU	Mean (SD) age: 51.2 (18.7)	Main outcomes: No	Moderate
(2018)	Setting: ICU	Analyzed N: 137	admission within last 24 hours,	Female %: 43	significant effect of	
	Country: Iran	Intervention 1 (N=87):	RASS >-4, GCS >8, and no	Race %: NR	melatonin was found on	
	Funding:	Melatonin 3 mg tablet; once	delirium before ICU admission	Delirium %: NR	incidence of delirium,	
	University	daily	Exclusion: <5 days of ICU stay and	Mean (SD) APACHE II: 7.7	adjusted for baseline	
		Intervention 2 (N=85):	severe heart failure	(4.5)	characteristics (OR 0.71, 95%	
		Placebo tablet; once daily		Dementia %: NR	CI 0.06 to 9.15, p=0.80).	
		Duration: At 9:00 pm for 5		Postop %: 58 surgical	Attrition: 23% vs. 18%	
		continuous days		admission		
		Follow-up (days): NR		Cancer %: NR		
Bellapart et	Design: RCT	Randomized N: 63	Inclusion: Patients expected to	Median age: 55	Main outcomes: Baseline	High
al. (2020)	Setting: ICU	Analyzed N: 33	have a minimal length of 5 days	Female %: NR	delirium scores showed no	
	Country:	Intervention 1 (N=30):	of respiratory weaning, with a	Race %: NR	difference between the	
	Australia	Melatonin 6 mg enteral, via	preserved enteral absorption or	Delirium %: NR	groups when compared with	
	Funding: None	NG tube, each night	the absence of ileus, and without	Median APACHE II: 22	post-intervention scores.	
		Intervention 2 (N=33):	known history of sleep disorders	Median APACHE III: 74	RASS scores were 1 in both	
		Placebo; nightly	Exclusion: Taking beta-blockers,	Dementia %: NR	groups at baseline vs. 0	
		Duration: During ICU stay	vasopressors, corticosteroids,	Postop %: NR	(intervention group) and 0.5	
		Follow-up (days): 1, 3	non-steroidal drugs, naloxone, or	Cancer %: NR	(placebo group) at post	
			pre-intensive care prescription of		treatment. CAM scores were	
			antipsychotics; advanced liver		0 (intervention group) and 1	
			disease; burns prior to		(placebo group) at baseline	
			debridement and grafts; ongoing		vs. 0 (in both groups) at	
			sepsis; neurocritical patients		postintervention.	
					Attrition: 37% vs. 63%	
Gandolfi et	Design: RCT	Randomized N: 206	Inclusion: Age ≥18 years with ≥1	Mean (SD) age: 58.5 (15.1)	Main outcomes: No	Moderate
al. (2020)	Setting: ICU	Analyzed N: 203	night in the ICU	Female %: 40	significant difference	
	Country: Brazil	Intervention 1 (N=103):	Exclusion: History of seizures,	Race %: NR	between the groups was	
	Funding: None	Melatonin 10 mg tablet at	neurological or psychiatric illness,	Delirium %: NR	found in the occurrence of	
		8pm (2 hours after dinner)	sleep apnea, renal or hepatic	Mean (SD) SAPS III: 42 (12.6)	delirium, pain, and anxiety.	
			impairment, intestinal	Dementia %: NR	Attrition: 1% vs. 1%	

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
name		interventions, duration, and			rates	
		follow-up				
		Intervention 2 (N=103):	obstruction or other condition	Postop %: 46.3		
		Placebo	that affected intestinal	Cancer %: 11.9		
		Duration: 7 days	absorption, autoimmune	Median (IQR) days on MV: 2		
		Follow-up (days): 7, Until	diseases, and deaf or mute	vs. 3.5 (1-7)		
		discharge				

APACHE II=Acute Physiology and Chronic Health Evaluation II; CAM=Confusion Assessment Method; CI=confidence interval; GCS=Glasgow Coma Scale; ICU=intensive care unit; IQR=interquartile range; MV=medical ventilation; N=number; NG=nasogastric; NR=not reported; OR=odds ratio; postop=post-operative; RASS=Richmond Agitation Sedation Scale; RCT=randomized controlled trial; SAPS III=Simplified Acute Physiology Score III; SD=standard deviation.

In General Inpatient/Palliative Care Setting

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
name		interventions, duration, and			rates	
		follow-up				
Jaiswal et al.	Design: RCT	Randomized N: 87	Inclusion: Age ≥65 years,	Mean (SD) age: 80.6 (7.8)	Main outcomes: Delirium	Moderate
(2018)	Setting: Non-	Analyzed N: 87	admitted to internal medicine	Female %: 62	occurred in 22.2% (8/36)	
	ICU inpatient	Intervention 1 (N=43):	wards (non-ICU), and expected	Race %: Caucasian: 92	of subjects who received	
	Country: U.S.	Melatonin 3 mg nightly	stay ≥48 hours	Delirium %: 0 (excluded)	melatonin vs. in 9.1%	
	Funding:	Intervention 2 (N=44):	Exclusion: Those admitted with	Baseline scale of function: NR	(3/33) who received	
	Government	Placebo	stroke or with conditions	Dementia %: NR (advanced	placebo (p=0.19).	
	and nonprofit	Duration: Maximum of 14	associated with encephalopathy	dementia excluded)	Melatonin did not prevent	
		consecutive nights	(e.g., cirrhosis, hypernatremia,	Postop %: 23	delirium in non-ICU	
		Follow-up (days): NR	hypercalcemia, alcohol	Cancer %: 3 (primary admission	hospitalized patients (RR	
			withdrawal)	diagnosis)	2.3, 95% CI 0.8 to 6.9).	
					Attrition: 16% vs. 25%	
Lawlor et al.	Design: RCT	Randomized N: 60	Inclusion: Age ≥18 years,	Median age: 67 (range 60-75)	Main outcomes: Melatonin	Low
(2020)	Setting:	Analyzed N: 60	documented diagnosis of	Female %: 45	vs. placebo outcomes were	
	Palliative care	Intervention 1 (N=30):	advanced cancer, admitted to the	Race %: NR	as follows: incident	
	Country:	Melatonin 3 mg daily	inpatient PCU, rating ≥30% on	Delirium %: 0 (excluded)	delirium in 11/30 (36.7%,	
	Canada	Intervention 2 (N=30):	the PPS, and cognitive capacity to	Median (IQR) Charlson	95% CI 19.9 to 56.1) vs.	
	Funding:	Placebo	give informed consent	Comorbidity Index: 10 (9-12)	10/30 (33%, 95% CI 17.3 to	
	University		Exclusion: Delirium present on	Dementia %: 6.7	52.8); early discharge (6 vs.	
			admission, on warfarin or other		5); withdrawal (6 vs. 3);	

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
name		interventions, duration, and			rates	
		follow-up				
		Duration: For 28 days or	oral anticoagulants, or on	Cancer %: 100	death (0 vs. 1); 7 (23%) vs.	
		until discharge or death	immunosuppressant medication	Postop %: NR	11 (37%) reached the 28-	
		Follow-up (days): 28			day end point.	
					Attrition: 40% vs. 27%	

Cl=confidence interval; ICU=intensive care unit; IQR=interquartile range; N=number; NR=not reported; PCU=palliative care unit; postop=post-operative; PPS=Palliative Performance Scale; RCT=randomized controlled trial; RR=relative risk; SD=standard deviation.

Melatonin Plus Dexmedetomidine vs. Dexmedetomidine

In Surgical Setting

Author	Study	Study protocol including numbers of	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	participants, interventions, duration,	main inclusion and exclusion		outcomes and attrition	Bias
name		and follow-up	criteria		rates	
Mahrose et	Design: RCT	Randomized N: 110	Inclusion: Age >60 years	Mean age: 66.5	Main outcomes: Fewer	Moderate
al. (2021)	Setting: Preop,	Analyzed N: 110	having elective CABG surgery	Female %: 24.5	patients who received	
	cardiac	Intervention 1 (N=55): Melatonin 5 mg	Exclusion: Patients	Race %: NR	melatonin in addition to	
	Country: Egypt	plus dexmedetomidine 0.4 μg/kg IV	undergoing emergency	Delirium %: NR	dexmedetomidine	
	Funding: NR	bolus, then 0.2-0.7 μg/kg/hour IV	procedures, preop renal	Function: NR	experienced delirium, and	
		Intervention 2 (N=55):	failure, chronic liver disease	Dementia %: NR	duration of delirium was	
		Dexmedetomidine 0.4 μg/kg IV bolus,	(Child classification class B	(excluded any mental	shorter.	
		then 0.2-0.7 μg/kg/hour IV	and C), carotid duplex to have	illness)	Overall attrition: 0%	
		Intervention 1 duration: Melatonin - 10	carotid disease, or prolonged	Postop %: 100		
		pm night before surgery and every	postop intubation and re-	CABG surgery %: 100		
		evening before bed for 3 days;	exploration	Cancer %: NR		
		dexmedetomidine - on arrival to the				
		ICU for 24 hours				
		Intervention 2 duration: On arrival to				
		the ICU for 24 hours				
		Follow-up (days): 5				

CABG=coronary artery bypass graf; ICU=intensive care unit; IV=intravenous; N=number; NR=not reported; postop=post-operative; preop=pre-operative; RCT=randomized controlled trial.

Melatonin vs. Midazolam vs. Clonidine vs. No Sedation

In Surgical Setting

Author	Study	Study protocol including numbers	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	of participants, interventions,	inclusion and exclusion criteria		outcomes and attrition	Bias
name		duration, and follow-up			rates	
Sultan	Design: RCT	Randomized N: 222	Inclusion: Age >65 years,	Mean (SD) age: 71.01	Main outcomes: The	High
(2010)	Setting: Preop,	Analyzed N: 203	scheduled for hip arthroplasty	(36.8)	melatonin group	
	hip	Intervention 1 (N=53 analyzed):	under spinal anesthesia, and ASA I-	Female %: 51	showed a statistically	
	Country: Egypt	Melatonin 5 mg, 2 oral doses	Ш	Race %: NR	significant decrease in	
	Funding: None	Intervention 2 (N=50 analyzed):	Exclusion: Sensory impairment	Delirium %: 0 (excluded)	the percentage of POD	
		Midazolam 7.5 mg, 2 oral doses	(blindness, deafness); dementia;	ASA I-III: Inclusion criterion	(9.43% vs. 32.65% in	
		Intervention 3 (N=51 analyzed):	severe infections; severe anemia	Dementia %: 0 (excluded)	the other groups).	
		Clonidine 100 µg, 2 oral doses	(hematocrit <30%); intracranial	Postop %: 100	Overall attrition: 9%	
		Control (N=49 analyzed): No	events (stroke, bleeding,	Cancer %: NR		
		sedation	infection); fluid or electrolyte			
		Duration: One dose the night	disturbances; acute cardiac			
		before surgery and another 90	events; acute pulmonary events;			
		minutes before surgery	and medications including			
		Follow-up (days): POD 3	anticonvulsants, antihistamines,			
			and benzodiazepines			

ASA=American Society of Anesthesiologists; N=number; NR=not reported; POD=post-operative delirium; postop=post-operative; preop=pre-operative; RCT=randomized controlled trial; SD=standard deviation.

Ramelteon

Ramelteon vs. placebo

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
name		interventions, duration, and			rates	
		follow-up				
Gupta et al.	Design: RCT	Randomized N: 100	Inclusion: Age >65 years,	Mean (SD) age: 69.97 (3.91)	Main outcomes: Incidence	Moderate
(2019)	Setting:	Analyzed N: 100	admitted for surgery requiring	Female %: 32	of delirium was lower with	
	Preop, mixed	Intervention 1 (N=50):	neuraxial anesthesia with	Race %: NR	ramelteon compared with	
	Country: India	Ramelteon 8 mg tablets, 2	duration longer than 1 hour, and	Delirium %: NR (0% on POD 1)	placebo (4% vs. 12%), but	
	Funding: NR	doses	ASA physical status 1 and 2	ASA physical status ≥3 %: 0		

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
name		interventions, duration, and			rates	
		follow-up				
		Intervention 2 (N=50):	Exclusion: History of dementia,	Dementia %: 0 (excluded)	the difference was not	
		Placebo	severe infections, intracranial	Postop %: 100	statistically significant.	
		Duration: 1 tablet 12 hours	bleed, or acute cardiac event	Cancer %: NR	Overall attrition: 0%	
		before surgery and 1 tablet 1				
		hour before surgery				
		Follow-up (days): POD 3				
Jaiswal et al.	Design: RCT	Randomized N: 120	Inclusion: Age ≥18 years	Mean (SD) age: 57.1 (15.0)	Main outcomes:	Low
(2019)	Setting: Preop	Analyzed N: 117	undergoing elective pulmonary	Female %: 50	Ramelteon 8 mg did not	
	and postop,	Intervention 1 (N=59):	thromboendarterectomy	Race %: NR	prevent POD in patients	
	cardiothoracic	Ramelteon 8 mg	Exclusion: Cirrhosis or use of	Delirium %: NR	admitted for elective	
	Country: U.S.	Intervention 2 (N=61):	fluvoxamine	Baseline scale of function: NR	cardiac surgery (RR 0.9,	
	Funding:	Placebo		Dementia %: NR	95% CI 0.5 to 1.4).	
	Government	Duration: Nightly from the		Postop %: 100	Attrition: 0% vs. 5%	
		night before surgery for a		Cancer %: NR		
		maximum of 7 nights, or until				
		ICU discharge if sooner				
		Follow-up (days): ≤9				
Oh E.S. et al.	Design: RCT	Randomized N: 80	Inclusion: Age ≥65 years with	Mean (SD) age: 74.8 (5.3)	Main outcomes: Delirium	Low
(2021)	Setting: Preop	Analyzed N: 80	planned orthopedic surgery and	Female %: 54	incidence during the 2 days	
	and postop,	Intervention 1 (N=41):	inpatient stay following surgery	Race %:	following surgery was 7%	
	orthopedic	Ramelteon 8 mg	and MMSE >15 before surgery	-Caucasian: 73.7	(5/71) with no difference	
	Country: U.S.	Intervention 2 (N=39):	Exclusion: Delirium prior to	-Black/African American: 15	between ramelteon vs.	
	Funding: Non-	Placebo	surgery, current moderate to	-Asian: NR	placebo: 9% (3/33) and 5%	
	profit	Duration: Prior to surgery,	severe liver failure, or evidence	-Other: NR	(2/38), respectively	
		the night of surgery, and	of systemic inflammatory	Delirium %: 0 (excluded)	(adjusted OR 1.28, 95% CI	
		following postop day 1	response syndrome	Mean (SD) Charlson	0.21 to 7.93, z-value 0.27,	
		Follow-up (days): 1, 2		Comorbidity Index: 1.2 (1.3)	p=0.79).	
				Dementia %: NR	Attrition: 20% vs. 3%	
				Mean (SD) MMSE: 28.4 (1.7)		
				Postop %: 100		
				Cancer %: NR		

ASA=American Society of Anesthesiologists; Cl=confidence interval; ICU=intensive care unit; MMSE=Mini-Mental State Examination; N=number; NR=not reported; OR=odds ratio; POD=post-operative delirium; postop=post-operative; preop=pre-operative; RCT=randomized controlled trial; RR=relative risk; SD=standard deviation.

In Intensive Care Unit

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
name		interventions, duration,			rates	
		and follow-up				
Nishikimi et	Design: RCT	Randomized N: 92	Inclusion: Age ≥20 years	Median age: 68	Main outcomes: A	Moderate
al. (2018)	Setting: ICU	Analyzed N: 88	admitted to an emergency and	Female %: 35	statistically significant	
	Country: Japan	Intervention 1 (N=47):	medical ICU who could receive	Race %: NR	decrease in the occurrence	
	Funding:	Ramelteon 8 mg/day	medications orally or through a	Delirium %: NR	rate of delirium (24.4% vs.	
	University	nightly	nasogastric tube during the first	Mean (SD) APACHE II: 23.97	46.5%, p=0.044) was	
		Intervention 2 (N=45):	48 hours of ICU admission	(7.97)	observed in the ramelteon	
		Placebo (lactose powder 1	Exclusion: Receiving ramelteon	Dementia %: 8	group.	
		g/day)	or fluvoxamine maleate	Postop %: 0 (surgical ICU	Attrition: 4% vs. 4%	
		Duration: Until ICU		patients not included)		
		discharge		Cancer %: NR		
		Follow-up (days): ICU				
		discharge (median 5-6				
		days)				

APACHE II=Acute Physiology and Chronic Health Evaluation II; ICU=intensive care unit; N=number; NR=not reported; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

In General Inpatient Setting

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
name		interventions, duration,			rates	
		and follow-up				
Hatta et al.	Design: RCT	Randomized N: 67	Inclusion: Ages 65-89 years, newly	Mean (SD) age: 78.3 (6.7)	Main outcomes: After	Moderate
(2014b)	Setting: Mixed	Analyzed N:67	admitted to ICUs or "regular acute	Female %: 60	risk factors were	
	inpatient	Intervention 1 (N=33):	wards" due to serious medical	Race %: NR	controlled for,	
	Country: Japan	Ramelteon 8 mg/day	problems, and able to take medicine	Delirium %: 0 (excluded)	ramelteon was	
	Funding:	nightly	orally	Mean (SD) APACHE II: 14.1	associated with a lower	
	Government	Intervention 2 (N=34):	Exclusion: Expected stay or life	(2.9)	incidence of delirium	
		Placebo	expectancy <48 hours, severe liver	Mean (SD) ECOG performance	compared with placebo	
		Duration: For 7 days	dysfunction, Lewy body disease,	status: 3.3 (0.8)	(adjusted OR 0.07, 95%	
		Follow-up (days): 7	taking fluvoxamine, or delirious at	Dementia %: 19	CI 0.008 to 0.54).	
			admission	Postop %: NR	Overall attrition: 0%	
				Cancer %: NR		

APACHE II=Acute Physiology and Chronic Health Evaluation II; CI=confidence interval; ECOG=Eastern Cooperative Oncology Group; ICU=intensive care unit; N=number; NR=not reported; OR=odds ratio; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

Suvorexant

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
name		interventions, duration, and			rates	
		follow-up				
Azuma et al.	Design: RCT	Randomized N: 70	Inclusion: Age ≥20 years admitted	Mean (SD) age: 61.7 (20.7)	Main outcomes:	Moderate
(2018)	Setting: ICU	Analyzed N: 70	within 24 hours to mixed medical ICU	Female %: 23	Incidence of delirium	
	Country:	Intervention 1 (N=34):	Exclusion: Life expectancy <48 hours,	Race %: NR	was 14.7% in the	
	Japan	Suvorexant 20 mg (<65 years)	baseline dementia or treated delirium,	Delirium %: NR	suvorexant group	
	Funding: NR	or 15 mg (≥65 years) once	or severe liver dysfunction	Mean (SD) APACHE II: 11.1	compared with 33.3% in	
		daily)*		(7.5)	the usual care group	
		Control (N=36): Usual care)*		Dementia %: 0 (excluded)	(p=0.069).	
		*Both groups received ABCDEF		Postop %: 0 (medical ICU)	Overall attrition: 0%	
		multi-component intervention.		Cancer %: NR		
		Duration: At 9:00 pm for 7 days				
		or until patient developed				
		delirium				
		Follow-up (days): NR				
Hatta et al.	Design: RCT	Randomized N: 72	Inclusion: Ages 65-89 years, newly	Mean (SD) age: 78.4 (6.4)	Main outcomes:	Moderate
(2017)	Setting: Mixed	Analyzed N: 72	admitted to ICUs or "regular acute	Female %: 42	Delirium occurred	
	inpatient	Intervention 1 (N=36):	wards" due to emergency, and able to	Race %: Asian 100	significantly less often in	
	Country:	Suvorexant 15 mg/day nightly	take medicine orally	Delirium %: 0 (excluded)	patients taking	
	Japan	Intervention 2 (N=36): Placebo	Exclusion: Expected stay or life	Mean (SD) APACHE II,	suvorexant than those	
	Funding:	Duration: For 3 days	expectancy <48 hours, taking strong	Acute Physiology Score: 3.1	taking placebo (0% vs	
	Government	Follow-up (days): 7	CYP3A inhibitor drugs, narcolepsy,	(2.2)	17%, p=0.025).	
			cataplexy, severe liver dysfunction,	Mean (SD) ECOG	Attrition: 6% vs. 8%	
			severe respiratory dysfunction, or	performance status: 3.2		
			delirious at admission	(0.9)		
				Dementia %:25		
				Postop %: NR		
				Cancer %: NR		

APACHE II=Acute Physiology and Chronic Health Evaluation II; ECOG=Eastern Cooperative Oncology Group; ICU=intensive care unit; N=number; NR=not reported; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

Pharmacological Interventions for Treatment of Delirium

Dexmedetomidine

Author (year); trial	Study characteristics	Study protocol including numbers of participants,	Study population including main inclusion	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
name	undeteristics	interventions, duration, and	and exclusion criteria			Dido
		follow-up				
Bakri et al. (2015)	Design: RCT Setting: Postop, mixed Country: Saudi Arabia Funding: None	Randomized N: 96 Analyzed N: 96 Intervention 1 (N=32): Dexmedetomidine continuous IV infusion of 1 µg/kg twice a day Intervention 2 (N=32): Ondansetron continuous IV infusion 4 mg twice a day Intervention 3 (N=32): Haloperidol continuous IV infusion 5 mg twice a day Duration: For 3 consecutive days Follow-up (days): POD 3	Inclusion: Patients who screened positive for delirium within the first 3 days of ICU admission Exclusion: Severely injured, deeply comatose, moribund patients, underlying neurological diseases, significant hearing loss, intracranial injury, or ischemic/hemorrhagic stroke	Mean (SD) age: 31 (5.5) Female %: 9 Race %: NR Delirium %: 100 (required) Functioning scale: NR Dementia %: NR Postop %: 100 Cancer %: NR Mean (SD) duration of surgery, minutes: 211 (34) Mean (SEM) Injury Severity score: 25.4 (2.9) Patients on MV on ICU admission %: 27	Main outcomes: At the end of the study, the number of remaining delirious patients was 3, 6, and 2 in the dexmedetomidine, ondansetron, and haloperidol groups, respectively, without statistical significance. During the study period, no significant difference was found in the number of patients who needed "rescue haloperidol" between the dexmedetomidine and haloperidol groups (5 vs. 3, p=0.7), but the difference was significantly higher in the ondansetron and haloperidol groups (11 vs. 3, p=0.03). The mean total "rescue haloperidol" dose was significantly higher in the ondansetron group than the haloperidol group (p<0.001), but there was no difference between the dexmedetomidine and haloperidol groups (p=0.07).	Moderate
Liu et al. (2018)	Design: RCT Setting: Postop, mixed Country: China Funding: Nonprofit	Randomized N: 100 Analyzed N: 100 Intervention 1 (N=25): Dexmedetomidine IV 0.2 μg/kg bolus followed by 0.6 μg/kg/hour	Inclusion: Ages 20-40 years scheduled for general anesthesia Exclusion: Delirium preop	Mean (SD) age: 30.95 (4.87) Female %: 46 Race %: NR Delirium %: 100 ASA I, II %: 100	Attrition: NR Main outcomes: Dexmedetomidine and sufentanil decreased the duration of POD through 8 hours postop, but more individuals had delirium in the dexmedetomidine group at 8 hours	Low

Author	Study	Study protocol including	Study population	Sample demographics	Results including main outcomes and	Risk of
(year); trial	characteristics	numbers of participants,	including main inclusion		attrition rates	Bias
name		interventions, duration, and	and exclusion criteria			
		follow-up				
		Intervention 2 (N=25):		Dementia %: NR	than the other 3 groups (36% vs. 8% to	
		Sufentanil IV 0.2 μg/kg bolus		Postop %: 100	16%, p<0.05).	
		followed by 0.2 μg/kg/hour		Cancer %: NR	Overall attrition: 0%	
		Intervention 3 (N=25):				
		Sufentanil IV 0.2 μg/kg bolus				
		followed by combined				
		dexmedetomidine 0.6				
		μg/kg/hour and sufentanil 0.2				
		μg/kg/hour				
		Intervention 4 (N=25):				
		Sufentanil IV 0.2 μg/kg bolus				
		followed by combined				
		dexmedetomidine 0.3				
		μg/kg/hour and sufentanil 0.1				
		μg/kg/hour				
		Duration: Postop				
		Follow-up (days): Through 8				
		hours				
Yapici et al.	Design: RCT	Randomized N: 72	Inclusion: Patients	Mean (SD) age: 59.97	Main outcomes: At postop hour 60,	Moderate
(2011)	Setting:	Analyzed N: 72	undergoing elective	(9.88)	fewer patients given	
	Postop, cardiac	Intervention 1 (N=38):	CABG, valve	Female %: 63	dexmedetomidine to assist with	
	Country:	Dexmedetomidine IV 0.3-0.7	replacement, or both	Race %: NR	weaning off of MV had delirium	
	Turkey	μg/kg/hour	who had failed at least 1	Delirium %: 100	compared with patients given	
	Funding:	Intervention 2 (N=34):	extubation attempt	Dementia %: NR	midazolam (2.7% vs. 21%, p<0.05).	
	Unclear	Midazolam 0.05-0.2 mg/kg/hour	Exclusion: Patients who	Failed extubation %: 100	Attrition: NR	
		Duration: During MV	experienced postop	Postop %: 100 cardiac		
		Follow-up (days): Delirium	coma or death	surgery		
		assessed daily		Cancer %: 0		

ASA=American Society of Anesthesiologists; CABG=coronary artery bypass graf; ICU=intensive care unit; IV=intravenous; MV=medical ventilation; N=number; NR=not reported; POD=post-operative delirium; postop=post-operative; preop=pre-operative; RCT=randomized controlled trial; SD=standard deviation; SEM=standard error of the mean.

Author (year); trial name Liu et al.	Study characteristics Design:	Study protocol including numbers of participants, interventions, duration, and follow-up Analyzed N: 263	Study population including main inclusion and exclusion criteria Inclusion: Age ≥75 years	Sample demographics Mean age: 80.05 vs. 78.99	Results including main outcomes and attrition rates Main outcomes: RASS scores were	Risk of Bias Moderate
(2021)	Retrospective cohort Setting: ICU Country: China Funding: Government	Intervention 1 (N=118): Dexmedetomidine 0.1- 0.7 mcg/kg/hour Intervention 2 (N=145): Olanzapine 2.5-10 mg/day Duration: NR Follow-up (days): NR	diagnosed with delirium on the basis of DSM-5 in the ICU and given either dexmedetomidine or olanzapine Exclusion: Patients with endotracheal ventilation, underwent surgery during the hospital stay, advanced-stage tumors, brain tumors or recent brain trauma, underwent blood purification therapy during the use of olanzapine or dexmedetomidine, or with curative effects and adverse effects that could not be evaluated	Female %: 18.64 vs. 26.90 Race %: NR Delirium %: 100 Mean APACHE II: 18.91 vs. 18.59 Dementia %: 10.17 vs. 11.03 Postop %: NR Cancer %: 9.32 vs. 8.97	significantly higher in the olanzapine group than in the dexmedetomidine group (mean [SD] -0.57 [0.88] vs. 0.88 [0.73], p<0.001). No significant differences were found between the groups in mortality, long-term cognitive function, or recurrence of delirium (mortality 24.5% [29/118] vs. 21.4% [31/145], p=0.336; decrease in long-term cognitive function 23.7% [28/118] vs. 30.3% [44/145]; occurrence of delirium 27.12% [32/118] vs. 36.55% [53/145]). The hospital LOS was longer in the dexmedetomidine group than in the olanzapine group (mean [SD] 9.30 [4.90] vs. 8.83 [3.34], p<0.001). Attrition: NR	
Reade et al. (2016)	Design: RCT Setting: ICU Country: Australia Funding: Mixed	Randomized N: 74 Analyzed N: 71 Intervention 1 (N=41): Dexmedetomidine IV optional 1.0 µg/kg bolus followed by 0-1.5 µg/kg/hour Control (N=33): Standard care; saline Duration: During MV Follow-up (days): 7	Inclusion: Age ≥18 years with CAM-ICU scores that indicated delirium and who required MV only because their degree of agitation was so severe that lessening sedation and extubation was unsafe Exclusion: Patients with dementia that required professional nursing care	Median age: 57.3 Female %: 25 Race %: NR Delirium %: 100 Median APACHE II: 14 Dementia requiring professional care %: 0 Postop %: 59 Cancer %: NR	Main outcomes: Among patients with agitated delirium, the addition of dexmedetomidine to standard care compared with standard care alone resulted in more ventilator- free hours at 7 days (144.8 hours vs. 127.5 hours, p=0.01). Attrition: 5% vs. 3%	Low

In Intensive Care Unit Setting

APACHE II=Acute Physiology and Chronic Health Evaluation II; CAM-ICU=Confusion Assessment Method for the ICU; DSM-5=*Diagnostic and Statistical Manual of Mental Disorders*, Fifth Edition; ICU=intensive care unit; IV=intravenous; LOS=length of stay; MV=medical ventilation; N=number; NR=not reported; postop=post-operative; RASS=Richmond Agitation Sedation Scale; RCT=randomized controlled trial; SD=standard deviation.

Benzodiazepines

Author	Study	Study protocol including	Study population	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristics	numbers of participants,	including main inclusion		and attrition rates	Bias
name		interventions, duration, and	and exclusion criteria			
		follow-up				
Breitbart et	Design: RCT	Randomized N: 30	Inclusion: Inpatients with	Mean age: 39	Main outcomes: Treatment with	Moderate
al. (1996)	Setting:	Analyzed N: 30	AIDS with delirium	Female %: 23	either haloperidol or chlorpromazine	
	Inpatient	Intervention 1 (N=11):	Exclusion: Patients with	Race %:	resulted in significant improvements	
	Country: U.S.	Haloperidol loading dose oral	dementia or near end of	Caucasian: 13	in symptoms of delirium as measured	
	Funding:	0.25-5 mg, followed by	life (within 24 hours)	Black/African American:	by DRS. No improvement was seen	
	Government	maintenance dose of 1.2 the		57	with lorazepam. Treatment with	
		initial dose every 12 hours (IM		Asian: 3	haloperidol and chlorpromazine	
		dosing also allowed)		Delirium %: 100	resulted in very low prevalence of	
		Intervention 2 (N=13):		Mean Karnovsky: 52.3	extrapyramidal side effects.	
		Chlorpromazine loading dose		Dementia %: 0 (excluded)	All 6 patients receiving lorazepam	
		oral 10-200 mg followed by		Postop %: 0	developed treatment-limiting	
		maintenance dose of 1/2		Cancer %: NR	adverse effects.	
		loading dose every 12 hours (IM			Attrition: NR vs. NR vs. 100%	
		dosing allowed)				
		Intervention 3 (N=6):				
		Lorazepam loading dose oral				
		0.5-24 mg followed by				
		maintenance dose of 1/2				
		loading dose every 12 hours (IM				
		dosing allowed)				
		Duration: 6 days				
		Follow-up (days): 6				
Hui et al.	Design: RCT	Randomized N: 90	Inclusion: Adults with	Mean age: 65	Main outcomes: Lorazepam plus	High
(2017)	Setting:	Analyzed N: 58	advanced cancer in	Female %: 47	haloperidol resulted in a significantly	
	Palliative care	Intervention 1 (N=47):	palliative care with	Race %:	greater reduction of RASS score at 8	
	Country: U.S.	Lorazepam 3 mg plus	diagnosis of delirium	-Caucasian: 76	hours (-4.1 points) than placebo plus	
	Funding:	haloperidol 2 mg every 4 hours	Exclusion: Patients with	-Black/African American:	haloperidol (-2.3 points) (MD -1.9	
	Government	IV; additional 2 mg as needed	dementia	24	points, 95% CI -2.8 to -0.9, p<0.001).	

Author	Study	Study protocol including	Study population	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristics	numbers of participants,	including main inclusion		and attrition rates	Bias
name		interventions, duration, and	and exclusion criteria			
		follow-up				
		for agitation		-Asian: NR	The lorazepam plus haloperidol	
		Intervention 2 (N=43): Placebo		Delirium %: 100	group required less median rescue	
		plus haloperidol 2 mg every 4		Karnovsky:	neuroleptics (2.0 mg) than the	
		hours IV; additional 2 mg as		10%=21%, 20%=47%,	placebo plus haloperidol group (4.0	
		needed for agitation		30%=24%, 40%=9%	mg) (MD –1.0 mg, 95% CI –2.0 to 0,	
		Duration: Lorazepam or placebo		Dementia %: 0 (Excluded)	p=0.009). No significant between-	
		infused intravenously over 1.5		Postop %: 0	group differences were found in	
		minutes		Cancer %: 100	delirium-related distress and survival.	
		Follow-up: 8 hours			The most common adverse effect	
					was hypokinesia (3 patients in the	
					lorazepam plus haloperidol group	
					[19%] and 4 patients in the placebo	
					plus haloperidol group [27%]).	
					Attrition: 45% vs. 40%	
Yapici et al.	Design: RCT	Randomized N: 72	Inclusion: Patients	Mean (SD) age: 59.97	Main outcomes: At postop hour 60,	Moderate
(2011)	Setting: Postop,	Analyzed N: 72	undergoing elective CABG	(9.88)	fewer patients given	
	cardiac	Intervention 1 (N=38):	valve replacement, or	Female %: 63	dexmedetomidine to assist with	
	Country:	Dexmedetomidine IV 0.3-0.7	both who had failed at	Race %: NR	weaning off of MV had delirium	
	Turkey	μg/kg/hour	least 1 extubating	Delirium %: 100	compared with patients given	
	Funding:	Intervention 2 (N=34):	attempt	Dementia %: NR	midazolam (2.7% vs. 21%, p<0.05).	
	Unclear	Midazolam 0.05-0.2 mg/kg/hour	Exclusion: Patients who	Failed extubation %: 100	Attrition: NR	
		Duration: During MV	experienced postop coma	Postop %: 100 cardiac		
		Follow-up (days): Delirium	or death	surgery		
		assessed daily		Cancer %: 0		

CABG=coronary artery bypass graf; DRS=Delirium Rating Scale; IM=intramuscular injection; IV=intravenous; MD=mean difference; MV=medical ventilation; N=number; NR=not reported; postop=postoperative; RASS=Richmond Agitation Sedation Scale; RCT=randomized controlled trial; SD=standard deviation.

Antipsychotics

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and		and attrition rates	Bias
name		interventions, duration, and	exclusion criteria			
		follow-up				
Atalan et	Design: RCT	Randomized N: 53	Inclusion: Cardiac surgery	Mean (SD) age: 65.87 (9.03)	Main outcomes: Target RASS	High
al. (2013)	Setting: Postop,	Analyzed N: 53	patients with hyperactive-	Female %: 26	scores' percentages of the	
	cardiac	Intervention 1 (N=27):	type delirium	Race %: NR	morphine group were statistically	
	Country: Turkey	Morphine; 5mg morphine	Exclusion: Patients with	Delirium %: 3.0 vs. 2.9	higher than those of the haloperidol	
	Funding:	sulfate intramuscularly*	dementia, abnormal level	(RASS score)	group (p=0.042 and p=0.028,	
	Unclear	Intervention 2 (N=26):	of consciousness, recent	Mean APACHE II: 6.33 vs.	respectively). The number of	
		Haloperidol 5mg	seizures, or hypoactive-	5.69	patients requiring additive	
		intramuscularly*	type delirium patients	Dementia %: 0	sedatives was significantly more in	
		*Patients still agitated after		Postop %: 100 cardiac	the haloperidol group when	
		administration of 20 mg/day		surgeries	compared with the morphine group	
		of morphine/haloperidol also		Cancer %: NR	(p=0.011).	
		received 2.5 mg of lorazepam		Hepatic or renal	Attrition: NR	
		perorally, twice a day.		impairment: NR		
		Duration: Postop, up to 10		Alcohol use %: 19 vs. 4		
		days		Substance use %: 4 vs. 12		
		Follow-up: Every 12 hours		Medications taken at		
		until discharge or 10 days		baseline %: psychotropic		
				drugs 4 vs. 12		
Bakri et al.	Design: RCT	Randomized N: 96	Inclusion: Patients who	Mean (SD) age: 31 (5.5)	Main outcomes: At the end of the	Moderate
(2015)	Setting: Postop,	Analyzed N: 96	screened positive for	Female %: 9	study, the number of remaining	
	mixed	Intervention 1 (N=32):	delirium within the first 3	Race %: NR	delirious patients was 3, 6, and 2 in	
	Country: Saudi	Dexmedetomidine continuous	days of ICU admission	Delirium %: 100 (required)	the dexmedetomidine,	
	Arabia	IV infusion of 1 μ g/kg twice a	Exclusion: Severely injured,	Functioning scale: NR	ondansetron, and haloperidol	
	Funding: None	day	deeply comatose,	Dementia %: NR	groups, respectively, without	
		Intervention 2 (N=32):	moribund patients,	Postop %: 100	statistical significance. During the	
		Ondansetron continuous IV	underlying neurological	Cancer %: NR	study period, no significant	
		infusion 4 mg twice a day	diseases, significant	Mean (SD) duration of	difference was found in the number	
		Intervention 3 (N=32):	hearing loss, intracranial	surgery, minutes: 211 (34)	of patients who needed "rescue	
		Haloperidol continuous IV	injury, or	Mean (SEM) Injury Severity	haloperidol" between the	
		infusion 5 mg twice a day		score: 25.4 (2.9)	dexmedetomidine and haloperidol	

DRAFT February 3, 2025 NOT FOR CITATION

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
		Duration: For 3 consecutive days Follow-up (days): POD 3	ischemic/hemorrhagic stroke	Patients on MV on ICU admission %: 27	groups (5 vs. 3, p=0.7), but the difference was significantly higher in the ondansetron and haloperidol groups (11 vs. 3, p=0.03). The mean total "rescue haloperidol" dose was significantly higher in the ondansetron group than the haloperidol group (p<0.001), but there was no difference between the dexmedetomidine and haloperidol groups (p=0.07). Attrition: NR	
Fukata et al. (2017)	Design: RCT Setting: Postop, orthopedic and abdominal Country: Japan Funding: Government	Randomized N: 201 Analyzed N: 199 Intervention (N=101): Haloperidol IV 5 mg infusion once daily Control (N=100): No treatment Duration: 5 days Follow-up (days): 10	Inclusion: Age >75 years undergoing elective abdominal or orthopedic surgery with general or spinal anesthesia; only patients with Neecham score 20 to 24 were treated. Exclusion: Prior treatment with haloperidol for post- op delirium	Mean age: 81 Female %: 50 Race %: NR Delirium %: 0 Mean ADL (Berthel Index): 84 Dementia %: NR Postop %: 100 Cancer %: 62	Main outcomes: The incidence of severe POD in the haloperidol group (18.2%) was significantly lower than that in the control group (32.0%) (p=0.02). No adverse events were noted in the haloperidol group. Attrition: 2% vs. 0%	Moderate
Tagarakis et al. (2012)	Design: RCT Setting: Postop, cardiac Country: Greece Funding: NR	Randomized N: 80 Analyzed N: 80 Intervention 1 (N=40): Ondansetron 8 mg IV Intervention 2 (N=40): Haloperidol 5 mg IV Duration: Once for 10 minutes Follow-up (days): 1	Inclusion: Developed delirium post on-pump heart surgery, using a 4- point scale (threshold for delirium NR) Exclusion: History of severe psychiatric disease	Mean age: 71 Female %: 34 Race %: NR Delirium %: NR Baseline scale of function: NR Dementia %: NR Postop %: 100 Cancer %: NR	Main outcomes: A statistically significant improvement was shown after the administration of both ondansetron (percentage improvement 61.29%, p<0.01) and haloperidol (percentage improvement 58.06%, p<0.01), but no between group differences were found.	High

DRAFT February 3, 2025 NOT FOR CITATION

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and		and attrition rates	Bias
name		interventions, duration, and	exclusion criteria			
		follow-up				
					Attrition: NR	

ADL=Activities of Daily Living; APACHE II=Acute Physiology and Chronic Health Evaluation II; ICU=intensive care unit; MV=medical ventilation; N=number; NR=not reported; POD=post-operative delirium; postop=post-operative; RASS=Richmond Agitation Sedation Scale; RCT=randomized controlled trial; SD=standard deviation; SEM=standard error of the mean.

In Intensive Care Unit Setting

Author	Study	Study protocol including	Study population including main	Sample	Results including main outcomes and	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria	demographics	attrition rates	Bias
name		interventions, duration,				
		and follow-up				
Boncyk et al.	Design:	Analyzed N: 7,879	Inclusion: Age ≥18 years admitted	Median age: 62 vs.	Main outcomes: After adjusting for pre-	Moderate
(2021)	Retrospective	Intervention (N=3,770):	to medical, surgical, trauma, or	61	specified covariates, haloperidol and	
	cohort	Antipsychotics recipients	cardiovascular ICUs; with	Female %: 37 vs. 44.4	olanzapine were both independently	
	Setting: ICU	(97.6% of antipsychotics	delirium on the basis of CAM-ICU	Race %: NR	associated with an increased odds of	
	Country: U.S.	were haloperidol,	Exclusion: Patients with home	Delirium %: NR	delirium the following day (OR 1.48,	
	Funding: Non-	olanzapine, and	antipsychotic prescriptions	Baseline scale of	95% CI 1.30 to 1.65, p<0.001 and OR	
	profit	quetiapine)		function: NR	1.37, 95% Cl 1.20 to 1.56, p=0.003,	
		Control (N=4,109): Non-		Dementia %: NR	respectively). Haloperidol and	
		recipients		Postop %: 17.9 vs.	olanzapine use were independently	
		Duration: NR		19.0	associated with an increased hazard of	
		Follow-up (days): NR		Cancer %: NR	mortality (HR 1.46, 95% CI 1.10 to 1.93,	
					p=0.01 and HR 1.67, 95% CI 1.14 to	
					2.45, p=0.01, respectively), while	
					quetiapine use was associated with a	
					decreased hazard of mortality (HR 0.58,	
					95% CI 0.40 to 0.84, p=0.01).	
					Attrition: NR	
Devlin et al.	Design: RCT	Randomized N: 36	Inclusion: Adult ICU patients with	Mean age: 63	Main outcomes: Quetiapine was	Low
(2010)	Setting: ICU	Analyzed N: 36	delirium (ICDSC score>4),	Female %: 64	associated with a shorter time to first	
	Country: U.S.	Intervention 1 (N=18):	tolerating enteral nutrition, and	Race %: NR	resolution of delirium (1.0 days [IQR	
	Funding: Mixed	Quetiapine 50-200 mg,	without a complicating	Delirium %: 100	0.5-3.0] vs.4.5 days [IQR 2.0-7.0],	
		titrated by 50 mg; if	neurological condition	Mean APACHE II:	p=0.001) and a reduced duration of	
		needed, haloperidol was	Exclusion: Not receiving enteral	16.8	delirium (36 hours [IQR 12-87] vs. 120	
		received within last 24	nutrition, primary neurological	Dementia %: NR	hours [IQR 60-195], p=0.006). Incidence	

Author	Study	Study protocol including	Study population including main	Sample	Results including main outcomes and	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria	demographics	attrition rates	Bias
name		interventions, duration,				
		and follow-up				
		hours; every 12 hours	condition, advanced liver disease,	Postop %: 23	of QTc prolongation and extrapyramidal	
		Intervention 2 (N=18):	alcohol withdrawal, inability to	Cancer %: NR	symptoms were similar between the	
		Placebo	conduct ICDSC, no delirium,		groups. More somnolence was	
		Duration: Maximum of 10	inability to obtain informed		observed with quetiapine (22% vs. 11%,	
		days	consent, moribund, irreversible		p=0.66).	
		Follow-up (days): 10	brain disease, current medication		Attrition: NR	
			therapy w/agents affecting			
			quetiapine concentrations,			
			current medication therapy with			
			Class Ia, Ic or III antiarrhythmics,			
			or baseline QTc interval ≥500			
			msec			
Fox et al.	Design: Cohort,	Analyzed 40: Unclear	Inclusion: CAM-ICU positive	Mean age: 66 vs. 67	Main outcomes: No statistical	High
(2020)	reported as	Intervention 1 (N=20):	Exclusion: <72 hours in the ICU,	Female %: 45 vs. 50	difference was found between the	
	prospective	Quetiapine: an initial dose	received any other SGA during	Race %:	groups regarding time to delirium	
	but unclear	of 50 mg every 12 hours	the study period, alcohol	-White: 70 vs. 60	resolution: 3.2 days (2.4) in the	
	from methods	and increased every 1 to 2	withdrawal, or incarceration	-Black: 25 vs. 25	quetiapine group vs. 3.4 days (1.1) in	
	Setting: ICU	days up to a total of		Delirium %: 100	the lurasidone group. 65% (13/20) in	
	Country: U.S.	800 mg daily		Mean APACHE II: 32	the quetiapine group vs. 40% (8/20) in	
	Funding: None	Intervention 2 (N=20):		vs. 23.5	the lurasidone group had resolution of	
		Lurasidone: 20-40 mg		Dementia %: NR	delirium (CAM-ICU) (p=0.204). Mean	
		daily with adjustments		Postop %: NR	(SD) days of ICU LOS were 14.2 (5.6) in	
		every 3 to 4 days		Cancer %: NR	the quetiapine group vs. 12.1 (6.0) in	
		up to a dose of 120 mg			the lurasidone group (p=0.273)	
		daily			Attrition: NR	
		Duration: Varied				
		Follow-up (days): Varied				
Girard et al.	Design: RCT	Randomized N: 566	Inclusion: Adults in a medical or	Mean age: 61	Main outcomes: The median number of	Low
(2018)	Setting: ICU	Analyzed N: 566	surgical ICU, who were	Female %: 43	days alive without delirium or coma	
	Country: U.S.	Intervention 1 (N=190):	ventilated, on vasopressor drugs,	Race %:	was 8.5 (95% CI 5.6 to 9.9) in the	
	Funding:	Ziprasidone IV: 5 mg if <70	or an intraaortic balloon pump	-White: 83	placebo group, 7.9 (95% Cl 4.4 to 9.6) in	
	Government	years, 2.5 mg if >70 years	diagnosed with delirium	-Black/African	the haloperidol group, and 8.7 (95% Cl	

Author	Study	Study protocol including	Study population including main	Sample	Results including main outcomes and	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria	demographics	attrition rates	Bias
name		interventions, duration,				
		and follow-up				
		every 12 hours; titrated to	Exclusion: Severe cognitive	-American: 13	5.9 to 10.0) in the ziprasidone group	
		maximum of 40 mg/day	impairment or severe dementia	-Asian: NR	(p=0.26 for overall effect across trial	
		Intervention 2 (N=192):		Delirium %: 100	groups). The use of haloperidol or	
		Haloperidol IV: 2.5 mg if		Median APACHE II:	ziprasidone, as compared with placebo,	
		<70 years, 1.25 mg if >70		29	had no significant effect on the primary	
		years every 12 hours;		Dementia %: 0	end point (ORs 0.88 [95% CI 0.64 to	
		titrated to maximum of 20		(Excluded)	1.21] and 1.04 [95% Cl 0.73 to 1.48],	
		mg/day		Postop %: 28	respectively). There were no significant	
		Intervention 3 (N=184):		Cancer %: NR	between-group differences with	
		Placebo			respect to the secondary end points or	
		Duration: 14 days			the frequency of extrapyramidal	
		Follow-up (days): 14			symptoms.	
					Attrition: 4% vs. 2% vs. 3%	
Liu et al.	Design:	Analyzed N: 263	Inclusion: Age ≥75 years	Mean age: 80.05 vs.	Main outcomes: RASS scores were	Moderate
(2021)	Retrospective	Intervention 1 (N=118):	diagnosed with delirium on the	78.99	significantly higher in the olanzapine	
	cohort	Dexmedetomidine 0.1-0.7	basis of DSM-5 in the ICU and	Female %: 18.64 vs.	group than in the dexmedetomidine	
	Setting: ICU	mcg/kg/hour	given either dexmedetomidine or	26.90	group (mean [SD] -0.57 [0.88] vs. 0.88	
	Country: China	Intervention 2 (N=145):	olanzapine	Race %: NR	[0.73], p<0.001). No significant	
	Funding:	Olanzapine 2.5-10 mg/day	Exclusion: Patients with	Delirium %: 100	differences were found between the	
	Government	Duration: NR	endotracheal ventilation,	Mean APACHE II:	groups in mortality, long-term cognitive	
		Follow-up (days): NR	underwent surgery during the	18.91 vs. 18.59	function, or recurrence of delirium	
			hospital stay, advanced-stage	Dementia %: 10.17	(mortality 24.5% [29/118] vs. 21.4%	
			tumors, brain tumors or recent	vs. 11.03	[31/145], p=0.336; decrease in long-	
			brain trauma, underwent blood	Postop %: NR	term cognitive function 23.7% [28/118]	
			purification therapy during the	Cancer %: 9.32 vs.	vs. 30.3% [44/145]; occurrence of	
			use of olanzapine or	8.97	delirium 27.12% [32/118] vs. 36.55%	
			dexmedetomidine, or with		[53/145]). The hospital LOS was longer	
			curative effects and adverse		in the dexmedetomidine group than in	
			effects that could not be		the olanzapine group (mean [SD] 9.30	
			evaluated		[4.90] vs. 8.83 [3.34], p<0.001).	
					Attrition: NR	

Author	Study	Study protocol including	Study population including main	Sample	Results including main outcomes and	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria	demographics	attrition rates	Bias
name		interventions, duration,				
		and follow-up				
Skrobik et al.	Design: RCT	Randomized N: 80	Inclusion: Ages 18-75 years,	Mean age: 65	Main outcomes: Delirium Index	Moderate
(2004)	Setting: ICU	Analyzed N: 73	admitted to ICU, and diagnosed	Female %: 27	decreased over time in both groups, as	
	Country:	Intervention 1 (N=28	with delirium by ICU-DSC score	Race %: NR	did the administered dose of	
	Canada	analyzed): Olanzapine	≥4	Delirium %: 100	benzodiazepines. Clinical improvement	
	Funding:	starting dose 2.5-5 mg	Exclusion: Antipsychotic	Mean APACHE II:	was similar in both treatment arms. No	
	Industry	daily; mean 4.54 mg	medication use	12.7	side effects were noted in the	
		(range 2.5-13.5 mg); daily	within 10 days prior to hospital or	Dementia %: NR	olanzapine group, whereas the use of	
		Intervention 2 (N=45	ICU admission	Postop %: NR	haloperidol was associated with	
		analyzed): Haloperidol		Cancer %: NR	extrapyramidal side effects.	
		starting dose 0.5-5 mg			Overall attrition: 9%	
		every 8 hours; mean 6.5				
		mg (range 1-28 mg); three				
		times daily				
		Duration: 5 days				
		Follow-up (days): 5				
Smit et al.	Design:	Analyzed N: 1,165	Inclusion: Admitted to ICU and	Median age: 64	Main outcomes: The probability of	Moderate
(2021)	Retrospective	Intervention 1 (N=NR):	experienced an episode of	Female %: 34.5	delirium resolution was lower in	
	cohort	Haloperidol only	delirium	Race %: NR	delirious patients who received	
	Setting: ICU	Intervention 2 (N=NR):	Exclusion: ICU admission <24	Delirium %: 100	haloperidol (OR 0.47, 95% CI 0.39 to	
	Country:	Clonidine only	hours, readmissions, transfers	Median APACHE IV:	0.57), clonidine (OR 0.78, 95% Cl 0.63	
	Netherlands	Intervention 3 (N=NR):	from another ICU, or admission	69	to 0.97), or both (OR 0.45, 95% Cl 0.36	
	Funding: None	Haloperidol plus clonidine	with a primary acute neurological	Dementia %: NR	to 0.56) compared with untreated	
		Duration: NR	or neurosurgical disorder	(excluded primary	delirious patients. Delirious patients	
		Follow-up (days): 24,906	confounding the delirium	acute neurological or	who received haloperidol, clonidine, or	
		observation days	diagnosis; or another condition	neurosurgical	both had generally longer delirium	
			that could hamper the	disorder)	duration, more delirium and ventilation	
			assessment of delirium, such as	Postop %: 58.2	days, and spent more time in the ICU	
			intellectual disability and anoxic	Cancer %: NR	and in hospital than untreated delirious	
			brain injury after		patients.	
			cardiopulmonary resuscitation		Attrition: NR	

Author	Study	Study protocol including	Study population including main	Sample	Results including main outcomes and	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria	demographics	attrition rates	Bias
name		interventions, duration,				
		and follow-up				
Thom et al.	Design:	Analyzed N: 322	Inclusion: At least 1 positive	Mean age: 63 vs. 58	Main outcomes: Adjusted HRs for	Moderate
(2018)	Retrospective	Intervention 1 (N=90):	CAM-ICU score during ICU stay	vs. 62	delirium-coma resolution were 1.24	
	cohort	Early treatment*; <48	Exclusion: Alcohol or substance	Female %: 43 vs. 39	(95% CI 0.77 to 1.99) for the early	
	Setting: ICU	hours after diagnosis	withdrawal, missing CAM-ICU	vs. 52	treatment group and 1.91 (95% CI 0.98	
	Country: U.S.	Intervention 2 N=57): Late	data, or developmental delay	Race %:	to 3.73) for the late treatment group	
	Funding:	treatment*; >48 hours		-White: 81 vs. 79 vs.	compared with the no treatment group.	
	Nonprofit	Control (N=175): No		63	Mean (SD) hours alive without coma or	
		treatment		-Black: 8 vs. 2 vs. 18	delirium were 63.0 (86.7) for the early	
		*Antipsychotics used		Delirium %: 100	treatment group vs. 66.3 (91.8) for the	
		were haloperidol,		Mean APACHE II: 24	late treatment group vs. 89.3 (106.8)	
		risperidone, quetiapine,		vs. 25 vs. 24	for the no treatment group (adjusted	
		olanzapine, aripiprazole,		Dementia: NR	p=0.705). Adjusted HR for mortality at	
		or ziprasidone.		Postop: NR	10 days among those with early	
		Duration: NR		Cancer %: 10 vs. 11	treatment was 0.68 (95% CI 0.37 to	
		Follow-up (days): 10		vs. 7	1.22) and 0.30 (95% CI 0.10 to 0.88) for	
					those with late treatment compared	
					with those with no treatment. Posthoc	
					subgroup analysis excluding comatose	
					patients found no differences in	
					mortality.	
					Attrition: NR	
Weaver et	Design:	Analyzed N: 255	Inclusion: Positive delirium	Mean age: 57 vs. 61	Main outcomes: Time to resolution of	Moderate
al. (2017)	Retrospective	Intervention (N=69):	screen by ICDSC at least once	Female %: 42 vs. 47	delirium was longer in the	
	cohort	Treated with	during ICU stay	Race: NR	antipsychotics group (median 36.0 vs.	
	Setting: ICU	antipsychotics*	Exclusion: ICDSC not performed	Delirium %: 100	13.6, p<0.001), and ICU LOS was also	
	Country: U.S.	*Antipsychotics used	every 24 hours, history of	Mean SAPS III: 46 vs.	longer (median 5.7 days vs. 3.8 days,	
	Funding: None	were quetiapine,	dementia, "insufficient medical	47	p=0.005). There was no difference in	
	from industry	olanzapine, risperidone,	records," or benzodiazepines for	Dementia: NR	mortality (17.4% [12/69] vs. 18.3%	
		and haloperidol.	alcohol withdrawal	Postop: NR	[34/185], p=0.870).	
		Control (N=186): Not		Cancer: NR	Attrition: NR	
		treated with				
		antipsychotics				

Author	Study	Study protocol including	Study population including main	Sample	Results including main outcomes and	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria	demographics	attrition rates	Bias
name		interventions, duration,				
		and follow-up				
		Duration: NR				
		Follow-up (days): NR				

APACHE II=Acute Physiology and Chronic Health Evaluation II; APACHE IV=Acute Physiology and Chronic Health Evaluation IV; CAM-ICU=Confusion Assessment Method for the ICU; CI=confidence interval; DSM-5=*Diagnostic and Statistical Manual of Mental Disorders*, Fifth Edition; HR=hazard ratio; ICDSC=Intensive Care Delirium Screening Checklist; ICU=intensive care unit; ICU-DSC=ICU Delirium Screening Checklist; IQR=interquartile range; IV=intravenous; LOS=length of stay; N=number; NR=not reported; OR=odds ratio; postop=post-operative; RASS=Richmond Agitation Sedation Scale; RCT=randomized controlled trial; SAPS III=Simplified Acute Physiology Score III; SD=standard deviation.

In General Inpatient Setting

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and		and attrition rates	Bias
name		interventions, duration,	exclusion criteria			
		and follow-up				
Breitbart et	Design: RCT	Randomized N: 30	Inclusion: Inpatients with	Mean age: 39	Main outcomes: Treatment with	Moderate
al. (1996)	Setting:	Analyzed N: 30	AIDS with delirium	Female %: 23	either haloperidol or chlorpromazine	
	Inpatient	Intervention 1 (N=11):	Exclusion: Patients with	Race %:	resulted in significant improvements	
	Country: U.S.	Haloperidol loading dose	dementia or near end of life	-Caucasian: 13	in symptoms of delirium as	
	Funding:	oral 0.25-5 mg, followed	(within 24 hours)	-Black/African American: 57	measured by DRS. No improvement	
	Government	by maintenance dose of		-Asian: 3	was seen with lorazepam. Treatment	
		1.2 the initial dose every		Delirium %: 100	with haloperidol and chlorpromazine	
		12 hours (IM dosing also		Mean Karnovsky: 52.3	resulted in very low prevalence of	
		allowed)		Dementia %: 0 (excluded)	extrapyramidal side effects.	
		Intervention 2 (N=13):		Postop %: 0	All 6 patients receiving lorazepam	
		Chlorpromazine loading		Cancer %: NR	developed treatment-limiting	
		dose oral 10-200 mg			adverse effects.	
		followed by maintenance			Attrition: NR vs. NR vs. 100%	
		dose of 1/2 loading dose				
		every 12 hours. (IM				
		dosing allowed)				
		Intervention 3 (N=6):				
		Lorazepam loading dose				
		oral 0.5-24 mg followed				
		by maintenance dose of				

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and		and attrition rates	Bias
name		interventions, duration,	exclusion criteria			
		and follow-up				
		1/2 loading dose every 12				
		hours (IM dosing allowed)				
		Duration: 6 days				
		Follow-up (days): 6				
Boettger et	Design:	Analyzed N: 64	Inclusion: Patients meeting	Mean age: 62 vs. 67.5	Main outcomes: Delirium resolution	High
al. (2011)	Prospective	Intervention 1 (N=32):	DSM-IV-TR criteria for	Female %: 37.5 vs. 37.5	(MDAS <10) at 4-7 days was 68.8%	
	cohort	Haloperidol	delirium	Race %: NR	(22/32) in the haloperidol group vs.	
	Setting:	Intervention 2 (N=32):	Exclusion: Severe agitation,	Delirium %: 100	84.4% (27/32) in the risperidone	
	Inpatient	Risperidone	critical medical condition,	KPS score: 22 vs. 24	group (p=NS). Delirium severity	
	Country: U.S.	Duration: NR	and imminent death	Dementia %: NR	(MDAS) at 4-7 days was: mean 7.8	
	Funding: Not	Follow-up (days): 7		Postop %: NR	(SD 5.6) vs. 7.5 (SD 4.5).	
	industry			Cancer %: 100	Parkinsonism was found in 21.9%	
	sponsored				(7/32) vs. 3.1% (1/32) and dystonia	
					in 9.4% (3/32) vs. 3.1% (1/32).	
					Attrition: NR	
Boettger et	Design:	Analyzed N: 84	Inclusion: Patients meeting	Mean age: 64 vs. 67 vs. 70 vs.	Main outcomes: Delirium resolution	Moderate
al. (2015)	Retrospective	Intervention 1 (N=21):	DSM-IV-TR criteria for	66	after 4-7 days (MDAS ≤10) was 76.2%	
	cohort	Haloperidol	delirium	Female %: 62 vs. 52 vs. 52 vs.	(16/21) vs. 85.7% (18/21) vs. 76.2%	
	Setting:	Intervention 2 (N=21):	Exclusion: Severe agitation	62	(16/21) vs. 61.9% (13/21) (p=0.418).	
	Inpatient	Risperidone		Race: NR	Mean (SD) delirium severity after 4-7	
	Country: U.S.	Intervention 3 (N=21):		Delirium %: 100	days (MDAS) was 6.8 (4.8) vs. 7.1	
	Funding:	Aripiprazole		Baseline scale of function: NR	(5.1) vs. 8.3 (8.3) vs. 11.7 (8.8)	
	Government	Intervention 4 (N=21):		Dementia %: 24 vs. 24 vs. 29	(p=0.249). Olanzapine had most	
		Olanzapine		vs. 29	frequently caused side effects,	
		Duration: NR		Postop %: NR	followed by haloperidol,	
		Follow-up (days): 7		Cancer %: 100	aripiprazole, and risperidone.	
					Dystonia occurred in 9.5% (2/21) in	
					the haloperidol group vs. 0% in the	
					other groups (p=0.1). Parkinsonism	
					occurred in 19% (4/21) vs. 4.8%	
					(1/21) vs. 0% (0/21) vs. 0% (0/21)	
					(p=0.012).	

Author (year); trial	Study characteristics	Study protocol including numbers of participants,	Study population including main inclusion and	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
name		interventions, duration,	exclusion criteria			
		and follow-up				
					Attrition: NR	
Grover et al. (2011)	Design: RCT Setting:	Randomized N: 74 Analyzed N: 64	Inclusion: Adult inpatients (medical or surgical)	Mean age: 45 Female %: 30	Main outcomes: All groups had a significant reduction in DRS-R98	High
	Inpatient Country: India	Intervention 1 (N=26): Olanzapine IV 1.25-20 mg	diagnosed with delirium Exclusion: Dementia,	Race %: NR Delirium %: 100	severity scores and a significant improvement in MMSE scores over	
	Funding: Unclear	daily Intervention 2 (N=22): Risperidone IV 0.25-4 mg daily Intervention 3 (N=26): Haloperidol IV 0.25-10 mg daily Duration: As per clinical	alcohol or benzodiazepine withdrawal, or terminal illness	Function: NR Dementia %: 0 (excluded) Postop %: NR Cancer %: NR	the period of 6 days, with no significant differences between the groups. 4 patients in the haloperidol group, 6 subjects in the risperidone group, and 2 subjects in the olanzapine group experienced some side effects. Attrition: 12% vs. 5% vs. 23%	
Grover et al.	Design: RCT	judgement Follow-up (days): 6 Randomized N: 70	Inclusion: Age >18 years,	Mean age: 46	Main outcomes: At the end of the	High
(2016)	Setting: Inpatient Country: India Funding: NR	Analyzed N: 63 Intervention 1 (N=35): Quetiapine 12.5-75 mg daily Intervention 2 (N=35):	DSM-IV criteria for delirium, and referred to consultation liaison psychiatry service Exclusion: Dementia	Female %: 78 Race %: NR Delirium %: 100 Baseline scale of function: NR Dementia %: 0	trial, 68.75% and 67.74% of subjects in the haloperidol and quetiapine groups respectively had mean DRS-R- 98 scores below 10. By 6 th day, 12 (37.5%) patients in the haloperidol	
		Haloperidol 0.25-1.0 mg 2-3 times daily Duration: For 6 days Follow-up (days): 6		Postop %: NR Cancer %: NR	group and 9 (29.03%) patients in the quetiapine group had a score of "o" with no significant difference between the groups (p=0.47). Attrition: 11% vs. 9%	
Han and Kim (2004)	Design: RCT Setting: Inpatient Country: South Korea	Randomized N: 28 Analyzed N: 24 Intervention 1 (N=14): Risperidone 0.5-2.0 mg orally daily	Inclusion: Patients referred to consulting psychiatry division, with score of at least 13 on DRS Exclusion: Dementia	Mean age: 66 Female %: 46 Race %: NR Delirium %: 100 Baseline scale of function: NR	Main outcomes: No significant differences were found between the groups in MDAS score over 7 days. 1 patient in the haloperidol group experienced mild akathisia, but no	Moderate
	Funding: NR	Intervention 2 (N=14):		Dementia %: 0 (excluded)		

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and		and attrition rates	Bias
name		interventions, duration,	exclusion criteria			
		and follow-up				
		Haloperidol 1.0-3.0 mg		Postop %: NR	other patients reported clinically	
		orally daily		Cancer %: 8	significant side effects.	
		Duration: For 7 days			Attrition: 6% vs. 6%	
		Follow-up (days): 7				
Hatta et al.	Design:	Analyzed N: 2,453	Inclusion: Patients who	Mean age: 73.5 vs. 74 vs. 67	Main outcomes: With respect to the	High
(2014a)	Prospective	Intervention 1 (N=835):	developed delirium during	vs. 70 vs. 72	duration of delirium, 54% of patients	
	cohort	Risperidone	their admission due to	Female %: 35 vs. 39 vs. 39 vs.	were within 1 week, whereas 25% of	
	Setting:	Intervention 2 (N=779):	acute medical illness or	52 vs. 33	patients were more than 2 weeks.	
	Inpatient	Quetiapine	surgery, and who received	Race %: 100 Asian	The rate of delirium within 1 week	
	Country:	Intervention 3 (N=87):	antipsychotics for delirium	Delirium %: 100	was significantly higher in patients	
	Japan	Olanzapine	Exclusion: NR	Baseline scale of function: NR	with olanzapine than in other	
	Funding:	Intervention 4 (N=61):		Dementia %: 31 vs. 34 vs. 20	patients (67% vs. 54%, p=0.025).	
	Government	Aripiprazole		vs. 25 vs. 20	16% of patients died. The rate was	
		Intervention 5 (N=480):		Postop %: NR	significantly higher in patients with	
		Haloperidol		Cancer %: NR	haloperidol than in other patients	
		Intervention 6: (N=88):			(29% vs. 13%, p<0.0001). A total of	
		Perospirone			22 serious adverse events (0.9%)	
		Intervention 7: (N=123):			were reported, and there was no	
		Others			significant difference between the	
		Duration: NR			groups (p=0.40).	
		Follow-up (days): NR			Attrition: NR	
Jain et al.	Design: RCT	Randomized N: 132	Inclusion: Age ≥18 years old	Mean age: NR	Main outcomes: Mean duration of	High
(2017)	Setting:	Analyzed N: 100	admitted to ED with	Female %: NR	treatment in the olanzapine group	
	Inpatient	Intervention 1 (N=66):	delirium diagnosed per	Race %: NR	and the haloperidol group was 3.57	
	Country: India	Olanzapine 2.5-10 mg	DSM-IV criteria	Delirium %: 100	days and 3.37 days, respectively	
	Funding: None	orally; daily	Exclusion: Dementia	Baseline scale of function: NR	(p=NS). Mean MDAS scores at	
		Intervention 2 (N=66):		Dementia %: 0 (excluded)	endpoint were 8.43 and 8.00 with	
		Haloperidol 1-4 mg orally;		Postop %: NR	olanzapine and haloperidol	
		daily		Cancer %: NR	(p=0.765). 5 patients experienced	
		Duration: Until resolution			drug-related mild side effects.	
		Follow-up (days): Until			Attrition: 29% vs. 29%	
		resolution				

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and		and attrition rates	Bias
name		interventions, duration,	exclusion criteria			
		and follow-up				
Kim et al.	Design: RCT	Randomized N: 32	Inclusion: Patients with	Mean age: 67	Main outcomes: Risperidone and	Moderate
(2010)	Setting:	Analyzed N: 32	delirium (DSM-IV criteria)	Female %: 44	olanzapine were equally effective in	
	Inpatient	Intervention 1 (N=15):	Exclusion: Dementia	Race %: NR	reducing delirium symptoms.	
	Country:	Olanzapine 21.25-7.5 mg		Delirium %: 100	Response also did not differ	
	South Korea	orally; daily		Baseline scale of function: NR	significantly (risperidone group	
	Funding: NR	Intervention 2 (N=17):		Dementia %: NR	64.7% vs. olanzapine group 73.3%).	
		Risperidone 0.25-2 mg		Postop %: NR	There was no significant difference in	
		orally; daily		Cancer %: 72	the safety profiles, including	
		Duration: For 7 days			extrapyramidal side effects.	
		Follow-up (days): 7			Attrition: 47% vs. 29%	
Lee et al.	Design: RCT	Randomized N: 40	Inclusion: Patients with	Mean (SD) age: 62 (16)	Main outcomes: There was no	High
(2005)	Setting:	Analyzed N: 31	delirium (met DSM-IV	Female %: 35	significant difference in the baseline	
	Inpatient	Intervention 1 (N=20):	criteria for delirium)	Race %: NR	DRS-R-98 and CGI scores. After	
	Country:	Amisulpride; mean initial	Exclusion: Patients with	Delirium %: 100	treatment, DRS-R-98 scores were	
	South Korea	dose 96.9 (SD 12.5)	psychiatric disorder or	Mean (SD) DRS-R-98: 10.5	significantly decreased from the	
	Funding:	mg/day and mean daily	taking antipsychotics likely	(4.1) vs. 10.1 (4.1)	baseline in both treatment groups	
	Unclear	dose of 156.4 (SD 97.5)	to resolve spontaneously	CGI-S: Score NR, "no	(p<0.001) without group difference.	
		(range 50-800) mg/day	(e.g., those who	significant group differences"	Attrition: 20% vs. 25%	
		Intervention 2 (N=20):	immediately recovered	Dementia %: 0 (those with a		
		Quetiapine; mean initial	after a major operation)	previous history of psychiatric		
		dose of 63.3 (SD 22.9)		disorder, who had been		
		mg/day and mean daily		taking antipsychotics, and		
		dose of 113 (SD 85.5)		who were likely to resolve		
		(range 50-300) mg/day		spontaneously [e.g. those		
		Duration: During		who immediately recovered		
		hospitalization; treatment		after a major operation] were		
		was terminated when the		excluded from this study)		
		CGI had reached 2 or less.		Postop %: NR		
		Patients were monitored		Cancer %: NR		
		daily by the psychiatrist		Hepatic or renal impairment:		
		until the patient went into		NR		
		remission or was		Alcohol use: NR		

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and		and attrition rates	Bias
name		interventions, duration,	exclusion criteria			
		and follow-up				
		discharged.		Substance use: NR		
		Follow-up (days): Until		Mean number of medications		
		remission or discharge		taken at baseline: NR		
Liu et al.	Design:	Analyzed N: 77	Inclusion: DSM-IV criteria	Mean age: 68 vs. 50	Main outcomes: 95% (39/41) of the	High
(2004)	Retrospective	Intervention 1 (N=41):	for diagnosis	Female %: NR	risperidone group recovered from	
	cohort	Risperidone	Exclusion: NR	Race %: NR	delirium vs. 100% of the haloperidol	
	Setting:	Intervention 2 (N=36):		Delirium %: 100	group. Mean delirium severity after	
	Inpatient	Haloperidol		Baseline scale of function: NR	treatment (hyperactive) was 0.20 (SD	
	Country:	Intervention 1 duration:		Dementia %: NR	1.26) in the risperidone group vs. all	
	Northern	3-18 days (average 7.2 ±		Postop %: ≥8 (delirium with	recovered in the haloperidol group	
	Taiwan	3.7 day)		Postop etiology)	(p=NS). Mean delirium severity after	
	Funding:	Intervention 2 duration:		Cancer %: NR	treatment (hypoactive) was 0.40 (SD	
	Industry and	2-19 days (average 7.9 ±			0.96) in the risperidone group vs.	
	government	4.7 days)			0.06 (SD 0.33) in the haloperidol	
		Follow-up (days): NR			group (p=NS).	
					Attrition: NR	
Maneeton et	Design: RCT	Randomized N: 52	Inclusion: Ages 18-75 years	Mean age: 57	Main outcomes: Means of the DRS-	Moderate
al. (2013)	Setting:	Analyzed N: 52	meeting DSM-IV criteria for	Female %: 33	R-98 severity scores were not	
	Inpatient	Intervention 1 (N=24):	delirium (confirmed by	Race %: NR	significantly different between the	
	Country:	Quetiapine 25-100 mg	CAM) and who had been	Mean DRS-R-98: 29.4	quetiapine and haloperidol groups	
	Thailand	Intervention 2 (N=28):	referred to a consultation-	Function: NR	(–22.9 [SD 6.9] vs. –21.7 [SD 6.7],	
	Funding:	Haloperidol 0.5-2.0 mg,	liaison service evaluation	Dementia %: NR	p=0.59).	
	University	evaluated for continued	Exclusion: Substance-	Postop %: NR	Attrition: 46% vs. 21%	
		use after 24 hours	induced delirium and renal	Cancer %: 39		
		Duration: 7 days	or hepatic failure			
		Follow-up (days): 7				
Tahir et al.	Design: RCT	Randomized N: 42	Inclusion: Patients with	Mean age: 84	Main outcomes: The quetiapine	Moderate
(2010)	Setting:	Analyzed N: 29	delirium per DSM-IV criteria	Female %: 71	group recovered 82.7% faster (SE	
	Inpatient	Intervention 1 (N=21):	and DSR-R-98 score of ≥15	Race %: NR	37.1%, p=0.026) than the placebo	
	Country: U.K.	Quetiapine 25-175 mg	Exclusion: Major pre-	Delirium %: 100	group in terms of DRS-R-98 severity	
	Funding:	orally; daily	existing cognitive deficits,	Baseline scale of function: NR	score.	
	Industry		alcohol withdrawal, inability	Dementia %: NR	Attrition: 24% vs. 38%	

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and		and attrition rates	Bias
name		interventions, duration,	exclusion criteria			
		and follow-up				
		Intervention 2 (N=21):	to comply with the	Postop %: 45		
		Placebo	constraints of the trial, or	Cancer %: NR		
		Duration: For 10 days	use of medication that			
		Follow-up (days): 30	interacted with quetiapine			
van der Vorst	Design: RCT	Randomized N: 100	Inclusion: Age >18 years	Mean age: 69	Main outcomes: Delirium response	Moderate
et al. (2020)	Setting:	Analyzed N: 98	with advanced cancer and	Female %: 31	rate was 45% (95% CI 31 to 59) for	
	Inpatient	Intervention 1 (N=50):	with delirium diagnosed by	Race %: NR	olanzapine and 57% (95% CI 43 to	
	Country: The	Olanzapine 2.5-20 mg	DOS score 13 or > and	Delirium %: 100	71) for haloperidol (delirium	
	Netherlands	orally or intramuscularly;	confirmed with DRS-R-98	Baseline scale of function: NR	response change rate -12%, OR 0.61,	
	Funding:	daily	score of 17.75 or >	Dementia %: 0 (excluded)	95% CI 0.2 to 1.4, p=0.23). Grade ≥3	
	Government	Intervention 2 (N=50):	Exclusion: Dementia	Postop %: NR	treatment-related adverse events	
		Haloperidol 0.5-20 mg		Cancer %: 100	occurred in 5 patients (10.2%) and 10	
		orally or subcutaneously;			patients (20.4%) in the olanzapine	
		daily			and haloperidol arms, respectively.	
		Duration: For 7 days			Attrition: 20% vs. 18%	
		Follow-up (days): 7				
Yoon et al.	Design:	Analyzed N: 80	Inclusion: Age >50 years	Mean age: 74 vs. 70 vs. 69.5	Main outcomes: A significant serial	High
(2013)	Prospective	Intervention 1 (N=23):	meeting DSM-IV-TR criteria	vs. 73	decrease in the mean DRS-K severity	
	cohort	Haloperidol 0.5-10 mg	for delirium	Female %: 48 vs. 62 vs. 56 vs.	score was observed in all groups: on	
	Setting:	Intervention 2 (N=21):	Exclusion: Dementia or	56	day 6, mean (SD): 7.7 (5.4) vs. 8.3	
	Inpatient	Risperidone 0.25-4 mg	comorbid psychiatric	Race %: NR	(7.1) vs. 8.1 (5.5) vs. 6.5 (4.0)	
	Country:	Intervention 3 (N=18):	disorder, terminal illness,	Delirium %: 100	(p=0.779). There was no significant	
	South Korea	Olanzapine 1-20 mg	prolonged QTc, hearing	Baseline scale of function: NR	difference in the treatment response	
	Funding: NR	Intervention 4 (N=18):	loss, or neuroleptic	Dementia %: 0 (excluded)	rate (≥50% decrease in DRS-K	
		Quetiapine 25-200 mg	malignant syndrome	Postop %: NR	severity score) among the 4 groups:	
		Duration: Average		Cancer %: 26 vs. 4.7 vs. 17 vs.	65.2% (15/23) vs. 66.6% (14/21) vs.	
		4.9 ± 1.5 days		11	66.6% (12/18) vs. 72.2% (13/18)	
		Follow-up (days): 6			(p=0.969).	
					Attrition: 39% vs. 33% vs. 28% vs.	
					33%	

CAM=Confusion Assessment Method; CGI=Clinical global impression; CGI-S=Clinical global impression-Severity; CI=confidence interval; DOS=Delirium Observation Scale; DRS=Delirium Rating Scale; DRS-K=Delirium Rating Scale-Korean Version; DRS-R-98=Delirium Rating Scale-Revised-1998; DSM-IV= *Diagnostic and Statistical Manual of Mental Disorders*, Fourth Edition; DSM-IV-TR= *Diagnostic and Statistical Manual of Mental Disorders*, Fourth Edition, Text Revision; ED=emergency department; IM=intramuscular injection; IV=intravenous; KPS=Karnofsky Performance Status; MDAS Memorial Delirium Assessment Scale; MMSE=Mini-Mental State Examination; N=number; NS=not significant; NR=not reported; OR=odds ratio; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

In Pa	lliative	Care	Setting
-------	----------	------	---------

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
name		interventions, duration,				
		and follow-up				
Agar et al.	Design: RCT	Randomized N: 249	Inclusion: Adults in hospice or	Mean age: 75	Main outcomes: At 3 days, both	Moderate
(2017)	Setting:	Analyzed N: 247	palliative care with advanced,	Female %: 34	risperidone and haloperidol	
	Palliative care	Intervention 1 (N=82):	progressive disease, diagnosed	Race %: NR	patients had significantly higher	
	Country:	Risperidone oral	with delirium, MDAS of 7 or more,	Delirium %: 100	delirium symptom scores than	
	Australia	solution; for ≤65 years, 1	and target symptoms of distress	Australian Median	placebo patients (risperidone	
	Funding:	mg loading dose, 0.5 mg	Exclusion: Delirium due to	Karnovsky: 43	mean 0.48 units higher, 95% CI	
	Government	every 12 hours, and	substance withdrawal, history of	Dementia %: NR	0.09 to 0.86, p=0.02; and	
		titrated to max of 4	neuroleptic malignant syndrome,	Postop %: 0	haloperidol 0.24, 95% CI 0.06 to	
		mg/day; for >65 years,	previous adverse reaction to	Cancer %: 88	0.42, p=0.009). Both active arms	
		0.5 mg loadi/ng dose,	antipsychotic drugs,		had more extrapyramidal effects	
		0.25 mg every 12 hours,	extrapyramidal disorders,		(risperidone 0.73, 95% CI 0.09 to	
		and titrated to max 2	prolonged QT interval, clinician-		1.37, p=0.03; and haloperidol	
		mg/day	predicted survival of 7 days or		0.79, 95% Cl 0.17 to 1.41,	
		Intervention 2 (N=81):	fewer, or cerebrovascular accident		p=0.01). Participants in the	
		Haloperidol oral	or seizure in the prior 30 days		placebo group had better	
		solution; for ≤65 years 1			overall survival than those	
		mg loading dose, 0.5 mg			receiving haloperidol (HR 1.73,	
		every 12 hours, and			95% Cl 1.20 to 2.50, p=0.003),	
		titrated to max of 4			but this was not significant for	
		mg/day; for >65 years,			placebo vs. risperidone (HR	
		0.5 mg loading dose,			1.29, 95% CI 0.91 to 1.84,	
		0.25 mg every 12 hours,			p=0.14).	
		and titrated to max 2			Attrition: 43% vs. 25% vs. 26%	
		mg/day				
		Intervention 3 (N=86):				
		Placebo solution every				
		12 hours				
		Duration: For 72 hours				
		Follow-up (days): 3				

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
name		interventions, duration,				
		and follow-up				
Breitbart et	Design: RCT	Randomized N: 30	Inclusion: Inpatients with AIDS	Mean age: 39	Main outcomes: Treatment with	Moderate
al. (1996)	Setting:	Analyzed N: 30	with delirium	Female %: 23	either haloperidol or	
	Inpatient	Intervention 1 (N=11):	Exclusion: Patients with dementia	Race %:	chlorpromazine resulted in	
	Country: U.S.	Haloperidol loading dose	or near end of life (within 24	-Caucasian: 13	significant improvements in	
	Funding:	oral 0.25-5 mg, followed	hours)	-Black/African	symptoms of delirium as	
	Government	by maintenance dose of		American: 57	measured by DRS. No	
		1.2 the initial dose every		-Asian: 3	improvement was seen with	
		12 hours (IM dosing also		Delirium %: 100	lorazepam. Treatment with	
		allowed)		Mean Karnovsky: 52.3	haloperidol and chlorpromazine	
		Intervention 2 (N=13):		Dementia %: 0	resulted in very low prevalence	
		Chlorpromazine loading		(excluded)	of extrapyramidal side effects.	
		dose oral 10-200 mg		Postop %: 0	All 6 patients receiving	
		followed by		Cancer %: NR	lorazepam developed	
		maintenance dose of 1/2			treatment-limiting adverse	
		loading dose every 12			effects.	
		hours. (IM dosing			Attrition: NR vs. NR vs. 100%	
		allowed)				
		Intervention 3 (N=6):				
		Lorazepam loading dose				
		oral 0.5-24 mg followed				
		by maintenance dose of				
		1/2 loading dose every				
		12 hours (IM dosing				
		allowed)				
		Duration: For 6 days				
		Follow-up (days): 6				
Hui et al.	Design: RCT	Randomized N: 90	Inclusion: Adults with advanced	Mean age: 65	Main outcomes: Lorazepam plus	High
(2017)	Setting:	Analyzed N: 58	cancer in palliative care with	Female %: 47	haloperidol resulted in a	
	Palliative care	Intervention 1 (N=47):	diagnosis of delirium	Race %:	significantly greater reduction of	
	Country: U.S.	Lorazepam 3 mg plus	Exclusion: Patients with dementia	Caucasian: 76	RASS score at 8 hours (-4.1	
	Funding:	haloperidol 2 mg every 4		Black/African American:	points) than placebo plus	
	Government	hours IV; additional 2 mg		24	haloperidol (–2.3 points) (MD	

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
name		interventions, duration,				
		and follow-up				
		as needed for agitation		Asian: NR	-1.9 points, 95% CI -2.8 to -0.9,	
		Intervention 2 (N=43):		Delirium %: 100	p<0.001). The lorazepam plus	
		Placebo plus haloperidol		Karnovsky: 10%=21%,	haloperidol group required less	
		2 mg every 4 hours IV;		20%=47%, 30%=24%,	median rescue neuroleptics (2.0	
		additional 2 mg as		40%=9%	mg) than the placebo plus	
		needed for agitation		Dementia %: 0	haloperidol group (4.0 mg) (MD	
		Duration: Lorazepam or		(Excluded)	−1.0 mg, 95% CI −2.0 to 0,	
		placebo infused		Postop %: 0	p=0.009). No significant	
		intravenously over 1.5		Cancer %: 100	between-group differences	
		minutes			were found in delirium-related	
		Follow-up (days): 8 hours			distress and survival. The most	
					common adverse effect was	
					hypokinesia (3 patients in the	
					lorazepam plus haloperidol	
					group [19%] and 4 patients in	
					the placebo plus haloperidol	
					group [27%]).	
					Attrition: 45% vs. 40%	
Lin et al.	Design: RCT	Randomized N: 30	Inclusion: Patients with advanced	Mean age: 64	Main outcomes: The results	High
(2008)	Setting:	Analyzed N: 12	cancer who were being treating in	Female %: 57	showed that delirium improved	
	Palliative care	Intervention 1 (N=16):	a hospice and palliative care	Race %: NR	in both groups but no statistic	
	Country:	Olanzapine 5 mg to max	center and had been referred to a	Mean DRS-C: 17. 07	difference comparing both	
	Taiwan	15 mg daily	consultation-liaison psychiatry	Function: NR	groups.	
	Funding: NR	Intervention 2 (N=14):	service for evaluation of mental	Dementia %: NR	Attrition: NR	
		Haloperidol 5 mg to max	status change and met DSM-IV	Postop %: NR		
		15 mg per day, evaluated	criteria for delirium	Advanced Cancer %:		
		for continued use after	Exclusion: In a coma, unable to	100		
		24 hours daily	swallow oral medication, and			
		Duration: 7 days	treated with neuroleptic agents			
		Follow-up (days): 7	within 4 weeks prior to the			
			enrollment			

Cl=confidence interval; DRS=Delirium Rating Scale; DRS-C=Delirium Rating Scale-Chinese Version; DSM-IV=*Diagnostic and Statistical Manual of Mental Disorders*, Fourth Edition; HR=hazard ratio; IM=intramuscular injection; IV=intravenous; MD=mean difference; MDAS Memorial Delirium Assessment Scale; N=number; NR=not reported; postop=post-operative; RASS=Richmond Agitation Sedation Scale; RCT=randomized controlled trial.

Melatonin/Ramelteon

Author	Study	Study protocol	Study population	Sample demographics	Results including main outcomes and	Risk of
(year); trial	characteristics	including numbers of	including main inclusion		attrition rates	Bias
name		participants,	and exclusion criteria			
		interventions, duration,				
		and follow-up				
Lange et al.	Design: RCT	Randomized N: 29	Inclusion: Age ≥70 years	Mean (SD) age: 85.6 (5.5)	Main outcomes: No adverse effects	Low
(2021)	Setting:	Analyzed N: 28	inpatients with CAM	Female %: 53.6	occurred due to melatonin. In the	
	Inpatient	Intervention 1 (N=14):	positive hyperactive or	Race %: NR	treatment group, the mean change in	
	Country: The	Melatonin 5 mg orally	mixed delirium	Delirium %: 100	MDAS from baseline during treatment	
	Netherlands	nightly	Exclusion: Had exclusively	Mean (SD) Charlson	period was 2.5±5.0 points vs. 2.1±4.1	
	Funding:	Intervention 2 (N=15):	hypoactive delirium or	Comorbidity Index: 6.1 (1.6)	points in the placebo group, a non-	
	Government	Placebo	expected prognosis or	History of Dementia %: 50	significant difference. A power	
		Duration: For 5 nights	planned further admission	IQCODE ≥3.45 %: 57.1	calculation accounting for drop-out	
		Follow-up (days): 7	to hospital <7 days	IQCODE ≥3 and/or history %: 75	(31.0%) suggests 120 participants	
				Mean (SD) MMSE: 10.6 (7.4)	would be required to demonstrate with	
				Postop %: NR	90% power that melatonin 5mg	
				Cancer %: NR	reduces the severity of delirium by 3	
				Use of anticholinergics %: 7.1	points or more on MDAS.	
				Use of opioids %: 21.4	Attrition at follow-up: 29% vs. 33%	
				Use of antipsychotics %: 10.7		
Thom et al.	Design:	Analyzed N: 322	Inclusion: ≥1 positive	Mean age: 64 vs. 61	Main outcomes: Adjusted HR delirium-	Moderate
(2019)	Retrospective	Intervention 1 (N=77):	CAM-ICU score during ICU	Female %: 49 vs. 47	coma resolution for ramelteon was	
	cohort	Ramelteon, ≥1 dose	admission	Race %:	1.05 (95% Cl 0.54 to 2.01). Median	
	Setting: ICU	Intervention 2 (N=245):	Exclusion: Antipsychotic	-White: 81 vs. 68	hours alive without delirium or coma	
	Country: U.S.	Placebo	treatment before	-Black: 5 vs. 15	did not differ between the ramelteon	
	Funding:	Duration: NR	admission, CAM-ICU	-Other: 14 vs. 17	and placebo groups: 0 (IQR 0-196) vs.	
		Follow-up (days): 10	scores not recorded every	Delirium %: 100	46 (IQR 0-168) (adjusted p-value	
			8 hours, alcohol or	Mean APACHE II: 24.5 vs. 24	0.105).	
			substance withdrawal, or	Dementia: NR	Attrition: NR	
			developmental delay	Postop: NR		
				Cancer %: 10 vs. 8		

APACHE II=Acute Physiology and Chronic Health Evaluation II; CAM=Confusion Assessment Method; CAM-ICU=Confusion Assessment Method for the ICU; CI=confidence interval; HR=hazard ratio; ICU=intensive care unit; IQCODE=Informant Questionnaire on Cognitive Decline in the Elderly; IQR=interquartile range; MDAS Memorial Delirium Assessment Scale; MMSE=Mini-Mental State Examination; N=number; NR=not reported; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

Appendix E. Risk of Bias Ratings for Individual Studies Supporting Guideline Statements

Citation	Randomization/alloc	Groups similar	Patients/provider/outcome	ITT	Acceptable levels	Risk of bias
	ation concealment	at baseline?	assessors masked?	analysis?	of	
	adequate?				overall/differenti	
					al attrition?	
Abbasi et al. 2018	Yes; Yes	No	Yes; Yes; Unclear	No	No; Yes	Moderate
Abbasinia et al. 2021	Yes; No	Yes	No; No; Unclear	Yes	Yes; Yes	Moderate
Abdelgalel 2016	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Abraham et al. 2021	Unclear; NR	Yes	No; No; No	No	Yes; Yes	High
Agar et al. 2017	Yes; Yes	Unclear	Yes; Yes; Yes	Yes	No; No	Moderate
Al Tmimi et al. 2020	Yes; Unclear	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Al-Qadheeb et al. 2016	Yes; Yes	Yes	Yes; Yes; Unclear	Yes	Yes; Yes	Low
Alvarez et al. 2017	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Arttawejkul et al. 2020	Yes; NR	Yes	No; No; Yes	Yes	Yes; Yes	Moderate
Atalan et al. 2013	Unclear; Unclear	No	NR; Yes; NR	Unclear	Yes; No	High
Avendano-Cespedes et	Yes; Yes	Yes	No; No; Yes	Yes	Yes; Yes	Moderate
al. 2016						
Avidan et al. 2017	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Azuma et al. 2018	Yes; Unclear	Unclear	NR; NR; NR	Yes	Yes; Yes	Moderate
Bakri et al. 2015	Yes; Unclear	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Moderate
Beaussier et al. 2006	Yes; Yes	Yes	Yes; Yes; Yes	Unclear	Yes; Yes	Low
Bellapart et al. 2020	Unclear; Unclear	Yes	Yes; Yes; Yes	No	No; No	High
Bielza et al. 2020	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Boockvar et al. 2020	Unclear/no; Unclear	No	No; No; Yes	Yes	Yes; Yes	High
Boustani et al. 2012	Yes; Unclear	No	NR; NR; NR	Yes	Yes; Yes	Moderate
Breitbart et al. 1996	Unclear; Yes	Unclear	Unclear; Unclear; Unclear	Yes	Yes; Yes	Moderate
Brown et al. 2019	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Browning et al. 2020	Unclear; Unclear	No	No; No; No	Yes	Yes; Yes	High
Bruera et al. 2013	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low

Citation	Randomization/alloc	Groups similar	Patients/provider/outcome	ITT	Acceptable levels	Risk of bias
	ation concealment	at baseline?	assessors masked?	analysis?	of	
	adequate?				overall/differenti	
					al attrition?	
Brummel et al. 2014	Yes; Unclear	Yes	No; No; Yes	Yes	Yes; Yes	Moderate
Campbell et al. 2019	Yes; Yes	Yes	No; No; Yes	Yes	Yes; Yes	Moderate
Caplan et al. 2006	Yes; Yes	Yes	No; No; No	Yes	No; Yes	Moderate
Chan et al. 2013	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Chang et al. 2018	Yes; Yes	Yes	Yes; No; No	Yes	Yes; Yes	Moderate
Chen 2020	Yes; Unclear	Yes	Unclear; Unclear; Unclear	Unclear	Yes; Yes	High
Chen et al. 2011	No; Unclear	No	No; No; Yes	Yes	Yes; Yes	Moderate
Chen et al. 2017	Yes; Yes	Yes	No; No; Yes	Yes	Yes; Yes	Moderate
Chen et al. 2021	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Chevillon et al. 2015	Unclear; NR	Yes	No; No; No	Yes	Yes; Yes	Moderate
Clarke et al. 2014	Yes; Yes	Yes	Yes; Yes; Yes	Unclear	Yes; Yes	Moderate
Clarke et al. 2015	Yes; Yes	Yes	Yes; Yes; Yes	Yes	No; Yes	Moderate
Clemmesen et al. 2018	Yes; Unclear	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Coburn et al. 2018	Yes; No	Yes	Unclear; Unclear; Yes	Yes	Yes; Yes	Moderate
Cole et al. 1994	Unclear; Unclear	Yes	No; No; Yes	Unclear	Yes; Yes	Moderate
Cole et al. 2002	Yes; Yes	Unclear	No; No; Yes	Yes	Yes; Yes	Moderate
Cotae et al. 2021	Unclear; Unclear	No	Unclear; Unclear; Unclear	No	No; Yes	Moderate
Dai et al. 2021	Unclear; Unclear	Yes	No; No; Unclear	Yes	Yes; Yes	High
de Jonghe et al. 2014	Yes; Yes	Yes	Yes; Yes; Unclear	No	Yes; Yes	Moderate
Deng et al. 2020	Yes; Yes	Yes	No; No; No	Yes	Yes; Yes	Moderate
Devlin et al. 2010	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Dieleman et al. 2012	Yes; Yes	Unclear	Yes; Yes; Unclear	Yes	Yes; Yes	Low
Djaiani et al. 2016	Yes; No	Yes	Yes; No; No	Yes	Yes; Yes	Moderate
Dong et al. 2020	Yes; No	Yes	NR; NR; NR	Yes	Yes; Yes	Moderate

Citation	Randomization/alloc	Groups similar	Patients/provider/outcome	ITT	Acceptable levels	Risk of bias
	ation concealment	at baseline?	assessors masked?	analysis?	of	
	adequate?				overall/differenti	
					al attrition?	
Eghbali-Babadi et al.	Yes; Unclear	Yes	No; No; Yes	Yes	Yes; Yes	Moderate
2017						
Fahimi et al. 2020	Yes; Yes	Yes	No; Yes; Yes	Yes	Yes; Yes	Moderate
Fazlollah et al. 2021	Yes; Yes	Yes	No; No; Unclear	Yes	Yes; Yes	Moderate
Ford et al. 2020	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Fu et al. 2020	Unclear; Unclear	Yes	Yes; No; No	No	Yes; Yes	High
Fukata et al. 2014	Yes; Yes	Yes	No; No; No	Yes	Yes; Yes	Moderate
Fukata et al. 2017	Yes; Yes	Yes	No; No; No	Unclear	Yes; Yes	Moderate
Gamberini et al. 2009	Yes; Yes	Unclear	Yes; Yes; Unclear	No	No; Yes	Moderate
Gandolfi et al. 2020	Yes; Yes	Yes	Yes; Yes; No	No	Yes; Yes	Moderate
Gao et al. 2018	Yes; Unclear	Yes	Unclear; NR; Yes	Yes	Yes; Yes	Moderate
Girard et al. 2008	Yes; Yes	Yes	NR; No; No	Yes	Yes; Yes	Moderate
Girard et al. 2018	Yes; Unclear	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Giraud et al. 2016	No; No	Yes	No; No; No	Yes	Yes; Yes	Moderate
Gregersen et al. 2015	Yes; Yes	Yes	Yes; No; Unclear	Yes	Yes; Yes	Moderate
Grover et al. 2011	Unclear; Unclear	Yes	No; No; Yes	No	Yes; No	High
Grover et al. 2016	Yes; Unclear	Yes	No; No; Yes	No	Yes; Yes	High
Gruber-Baldini et al. 2013	Yes; Yes	No	NR; No; No	Yes	Yes; Yes	Moderate
Guo et al. 2016	Yes; Yes	Yes	No; No; Yes	Unclear	Yes; Yes	Moderate
Gupta et al. 2019	Yes; Unclear	Yes	Yes; Unclear; Yes	Yes	Yes; Yes	Moderate
Hamzehpour et al. 2018	Unclear; Unclear	Unclear	Yes; Yes; Yes	Yes	Yes; Yes	Moderate
Han et al. 2004	Unclear; Unclear	Yes	No; No; Yes	No	Yes; Yes	Moderate
Hassan et al. 2021	Unclear; Unclear	Yes	Yes; Yes; Unclear	Yes	Yes; Yes	Moderate
Hatta et al. 2014b	Yes; Unclear	No	No; Unclear; Yes	Yes	No; Yes	Moderate
Hatta et al. 2017	Yes; Unclear	Unclear	Yes; Unclear; Yes	Yes	Yes; Yes	Moderate

Citation	Randomization/alloc	Groups similar	Patients/provider/outcome	ITT	Acceptable levels	Risk of bias
	ation concealment	at baseline?	assessors masked?	analysis?	of	
	adequate?				overall/differenti	
					al attrition?	
He et al. 2018	Yes; Unclear	Yes	Unclear; Unclear; Unclear	Unclear	Unclear; Unclear	Moderate
Hempenius et al. 2013	Yes; Yes	Yes	No; No; Yes	Unclear	Yes; Yes	Moderate
Hollinger et al. 2021	Yes; Yes	Yes	Yes; Yes; NR	No	Yes; Yes	Moderate
Hosie et al. 2020	Yes; Unclear	Yes	No; No; No	Yes	Yes; Yes	Moderate
Hov et al. 2019	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Hu et al. 2020	Yes; Unclear	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Hu et al. 2021	Yes; Unclear	Yes	Yes; No; Yes	No	Yes; Yes	Moderate
Hudetz et al. 2009	Unclear; No	Yes	Unclear; Unclear; Yes	Unclear	Yes; Yes	Moderate
Hui et al. 2017	Unclear; Yes	No	Yes; Yes; Yes	No	No; Yes	High
Humeidan et al. 2021	Yes; Yes	Yes	No; No; Yes	No (6%)	Yes; Yes	Moderate
Huyan et al. 2019	Unclear; Unclear	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Moderate
Ishii et al. 2016	Unclear; Unclear	Yes	NR; Yes; Unclear	Yes	Yes; Yes	Moderate
Jain et al. 2017	Yes; Unclear	Unclear	No; No; Unclear	No	No; Yes	High
Jaiswal et al. 2018	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; No	Moderate
Jaiswal et al. 2019	Yes; Yes	Unclear	Yes; Yes; Unclear	Yes	Yes; Yes	Low
Jakob et al. 2012	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Javaherforoosh Zadeh et	Yes; Yes	Yes	Yes; Unclear; Unclear	Yes	Yes; Yes	Moderate
al. 2021						
Jeffs et al. 2013	Unclear; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Moderate
Jia et al. 2014	Yes; Yes	Yes	NR; NR; NR	Yes	Yes; Yes	Moderate
L. Jin et al. 2020	Yes; NR	Yes	No; No; NR	Unclear	Yes; Yes	Moderate
Johnson et al. 2018	Unclear; Unclear	Yes	No; No; Unclear	No	Unclear; Yes	High
Kalisvaart et al. 2005	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Karadas and Ozdemir 2016	Yes; Unclear	Unclear	NR; NR; NR	Yes	Yes; Yes	Moderate

Citation	Randomization/alloc	Groups similar	Patients/provider/outcome	ITT	Acceptable levels	Risk of bias
	ation concealment	at baseline?	assessors masked?	analysis?	of	
	adequate?				overall/differenti	
					al attrition?	
Kawazoe et al. 2017	Yes; Yes	Yes	No; No; No	Yes	Yes; Yes	Moderate
Khalifezadeh et al. 2011	Unclear; Unclear	Yes	No; No; Unclear	Unclear	No; Unclear	High
Khan et al. 2013	Yes; Unclear	Yes	NR; NR; NR	Yes	Yes; Yes	Moderate
Khan et al. 2018	Yes; Yes	Unclear	Yes; Yes; Yes	Yes	Yes; Yes	Low
Khan et al. 2019	Yes; Unclear	Yes	NR; No; NR	Yes	Yes; Yes	Moderate
Khan et al. 2020	Yes; Unclear	Yes	No; NR; Yes	Yes	Yes; Yes	High
Khera et al. 2021	Yes; Unclear	Mostly	Yes; Yes; Yes	Yes	Yes; Yes	Moderate
Kim et al. 1996	Unclear; Yes	Unclear	NR; NR; Yes	No	Yes; Unclear	Moderate
Kim et al. 2010	Unclear; Unclear	Yes	No; No; Yes	Yes	No; No	Moderate
Y. Kim et al. 2019	Yes; Yes	Unclear	Yes; Yes; Yes	Yes	Yes; Yes	Moderate
J.A. Kim et al. 2019	Yes; Yes	Yes	Yes; Yes; Yes	No	Yes; Yes	Low
Kluger et al. 2021	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Kolanowski et al. 2011	Unclear; Unclear	Yes	No; No; Unclear	Yes	Unclear; Unclear	Moderate
Kolanowski et al. 2016	Yes; Yes	Yes	No; No; Yes	Yes	Yes; Yes	Moderate
Kunst et al. 2020	Yes; Yes	Yes	Yes; Yes; Yes	No	Yes; Yes	Moderate
Lange et al. 2021	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Lapane et al. 2011	Unclear; Unclear	Yes	No; No; Unclear	Unclear	Unclear; Unclear	High
Larsen et al. 2010	Unclear; Yes	Unclear	Yes; Yes; Yes	No	Yes; Yes	Moderate
Lawlor et al. 2020	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Unclear; Yes	Low
Lee et al. 2005	Unclear; Unclear	No	NR; NR; NR	No	No; No	High
Lee et al. 2018	Yes; Yes	Yes	Yes; No; Yes	Yes	Yes; No	Moderate
Lee et al. 2019	Yes; Yes	Yes	Yes; Yes; Yes	No	Yes; Yes	Low
Lei et al. 2017	Unclear; Unclear	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Moderate
Leong et al. 2021	Yes; Yes	Yes	No; No; Yes	Yes	Yes; Yes	Moderate
Leung et al. 2006	Yes; Yes	Yes	NR; NR; Yes	Unclear	Unclear; Unclear	Moderate

Citation	Randomization/alloc	Groups similar	Patients/provider/outcome	ITT	Acceptable levels	Risk of bias
	ation concealment	at baseline?	assessors masked?	analysis?	of	
	adequate?				overall/differenti	
					al attrition?	
Leung et al. 2017	Yes; Yes	Yes	Unclear; Unclear; Yes	No	Yes; Yes	Moderate
Levy et al. 2022	No; No	No	No; No; No	Yes	Yes; Yes	High
Y.N. Li et al. 2017	Unclear; Unclear	Yes	NR; NR; NR	Yes	Yes; Yes	Moderate
X. Li et al. 2017	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Li et al. 2019	Yes; Unclear	Yes	NR; NR; NR	Unclear	Yes; Unclear	High
Li et al. 2020	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Li et al. 2021	Yes; Yes	Yes	No; No; Yes	Yes	Yes; Yes	Moderate
Likhvantsev et al. 2021	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Lin et al. 2008	Unclear; Unclear	Yes	No; No; Yes	Unclear	Unclear; Unclear	High
Liptzin et al. 2005	Unclear; Yes	No	Yes; Yes; Yes	No	No; Unclear	Moderate
Y. Liu et al. 2016	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
X. Liu et al. 2016	Yes; Unclear	Yes	Yes; Unclear; Yes	No	Yes; Yes	Moderate
Liu et al. 2017	Unclear; Unclear	Yes	Yes; Unclear; Yes	Yes	Yes; Yes	Moderate
Liu et al. 2018	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Lundström et al. 2005	Unclear; NR	No	No; No; No	Yes	Yes; Yes	Moderate
Lundström et al. 2007	Unclear; Yes	No	No; No; Yes	Yes	Yes; Yes	Moderate
Luo et al. 2015	Yes; Yes	Yes	Unclear; Unclear; Yes	Yes	Yes; Yes	Moderate
Lurati Buse et al. 2012	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
MacLaren et al. 2015	Yes; Unclear	Yes	Yes; Unclear; Yes	Yes	Yes; Yes	Moderate
Mahrose et al. 2021	Unclear; Unclear	Yes	Unclear; Unclear; Unclear	Yes	Yes; Yes	Moderate
Mailhot et al. 2017	Yes; Yes	No	No; No; Unclear	Yes	Yes; Yes	Moderate
Makinian et al. 2015	No; No	Unclear	No; No; NR	Unclear	Unclear; Unclear	High
Maldonado et al. 2009	Unclear; Unclear	Yes	Yes; Unclear; Yes	Yes	Yes; Yes	Moderate
Maneeton et al. 2013	Yes; Yes	Yes	Yes; Yes; Yes	Yes	No; No	Moderate
Mann et al. 2000	Yes; Unclear	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Moderate

Citation	Randomization/alloc	Groups similar	Patients/provider/outcome	ITT	Acceptable levels	Risk of bias
	ation concealment	at baseline?	assessors masked?	analysis?	of	
	adequate?				overall/differenti	
					al attrition?	
Marcantonio et al. 2001	Yes; No	Yes	No; No; Yes	Yes	Yes; Yes	Moderate
Marcantonio et al. 2010	Unclear; Unclear	Yes	No; No; Yes	Unclear	No; Yes	High
Mardani and Bigdelian	Unclear; Unclear	Unclear	NR; NR; NR	No	Yes; Unclear	High
2012						
Martinez et al. 2012	Yes; Yes	Yes	No; No; Yes	Yes	Yes; Yes	Moderate
Martinez-Velilla et al.	Yes; Yes	Yes	Unclear; No; Yes	Yes	Yes; Yes	Moderate
2019						
Massoumi et al. 2019	Yes; Unclear	Unclear	NR; Yes; Yes	No	Yes; Yes	Moderate
Mehta et al. 2012	Yes; Yes	Yes	No; No; No	Yes	Yes; Yes	Moderate
Mei et al. 2018	Yes; Yes	Yes	Yes; Unclear; Yes	Yes	Yes; Yes	Low
B. Mei et al. 2020	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Moderate
X. Mei et al. 2020	Yes; Unclear	Yes	Unclear; Yes; Yes	No	No; Yes	Moderate
Mitchell et al. 2017	Yes; Yes	Yes	Unclear; No; Yes	Yes	Yes; Yes	Moderate
Mohammadi et al. 2016	Unclear; Yes	Unclear	Yes; Yes; Unclear	No	Yes; Yes	Moderate
Mokhtari et al. 2020	Yes; Unclear	Unclear	Yes; Yes; Unclear	No	No; Yes	Moderate
Momeni et al. 2021	Yes; Yes	Yes	Yes; Yes; Yes	Unclear	Yes; Yes	Moderate
Moon and Lee 2015	Unclear; No	Yes	Yes; No; No	Unclear	Yes; Yes	Moderate
Morris et al. 2016	Yes; Unclear	Yes	No; No; Yes	Yes	No; Yes	Moderate
Moslemi et al. 2020	Yes; Unclear	Yes	Yes; Yes; Yes	No	No; Yes	Moderate
Mouzopoulos et al. 2009	Yes; Unclear	Yes	Yes; NR; NR	No	Yes; Yes	Moderate
Munro et al. 2017	Yes; Yes	Yes	NR; NR; NR	Yes	Yes; Yes	Moderate
Nadler et al. 2017	Yes; Yes	Yes	No; No; Yes	Yes	Yes; Yes	Moderate
Nakamura et al. 2021	Yes; Yes	Yesg	Yes; Unclear; Unclear	Yes	Yes; Yes	Moderate
Nassar Junior and Park	Unclear; Unclear	Yes	No; No; No	Yes	Yes; Yes	Moderate
2014						

Citation	Randomization/alloc	Groups similar	Patients/provider/outcome	ITT	Acceptable levels	Risk of bias
	ation concealment	at baseline?	assessors masked?	analysis?	of	
	adequate?				overall/differenti	
					al attrition?	
Nishikawa et al. 2004	Unclear; Unclear	Yes	NR; Yes; Yes	Yes	Yes; Yes	Moderate
Nishikimi et al. 2018	Yes; Unclear	No	Yes; Yes; Yes	Yes	Unclear; Unclear	Moderate
Nydahl et al. 2020	Yes; Unclear	Yes	No; No; Yes	Yes	Yes; Yes	Moderate
Nydahl et al. 2022	Yes; Unclear	Yes	No; No; No	Yes	Yes; Yes	Moderate
Obanor et al. 2021	Unclear; Unclear	Unclear	No; No; Unclear	Yes	Yes; Yes	Moderate
O'Gara et al. 2020	Yes; Yes	Yes	No; Yes; Yes	No	Yes; Yes	Moderate
E.S. Oh et al. 2021	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Unclear; No	Low
C.S. Oh et al. 2021	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Olsen et al. 2020	Yes; Yes	Yes	NR; NR; NR	Yes	Yes; Yes	Moderate
Ono et al. 2011	Yes; Yes	Yes	NR; NR; NR	Yes	Yes; Yes	Moderate
Overshott et al. 2010	Unclear; Yes	No	Yes; Yes; Yes	Unclear	No; No	Moderate
Papadopoulos et al. 2014	Unclear; Unclear	Yes	Unclear; Unclear; Unclear	Yes	Yes; Yes	Moderate
Papaioannou et al. 2005	Unclear; Unclear	Yes	NR; NR; NR	Yes	Yes; Yes	High
Park et al. 2014	Unclear; Unclear	Yes	NR; NR; NR	Unclear	Unclear; Unclear	Moderate
Pitkälä et al. 2006	Yes; Yes	Yes	NR; NR; NR	Yes	Yes; Yes	Moderate
Potharajaroen et al. 2018	Unclear; Unclear	Yes	No; No; Yes	Yes	Yes; Yes	Moderate
Prakanrattana and	Yes; Yes	Yes	Yes; Yes; Yes	Unclear	Unclear; Unclear	Moderate
Prapaitrakool 2007						
Radtke et al. 2013	Unclear; Unclear	Yes	Unclear; No; Yes	Yes	Yes; Yes	Moderate
Reade et al. 2016	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Rice et al. 2017	Yes; Yes	Yes	NR; NR; NR	Unclear	Yes; Yes	Moderate
Robinson et al. 2014	Yes; Yes	Yes	Yes; Yes; Unclear	Yes	Yes; Yes	Low
Rood et al. 2021	Unclear; Unclear	Yes	No; No; No	Yes	Yes; Yes	Moderate
Rosa et al. 2019	Yes; Yes	Yes	No; No; Unclear	Yes	Yes; Yes	Moderate
Royse et al. 2017	Yes; Yes	Unclear	Yes; Yes; Yes	No	Yes; Yes	Moderate

Citation	Randomization/alloc	Groups similar	Patients/provider/outcome	ITT	Acceptable levels	Risk of bias
	ation concealment	at baseline?	assessors masked?	analysis?	of	
	adequate?				overall/differenti	
					al attrition?	
Rubino et al. 2010	Unclear; Unclear	Yes	Yes; Yes; Yes	Unclear	Unclear; Unclear	Moderate
Ruokonen et al. 2009	Unclear; Unclear	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Moderate
Saager et al. 2015	Yes; Yes	Yes	Unclear; Unclear; Yes	Yes	Yes; Yes	Moderate
Sampson et al. 2007	Unclear; Yes	No	Yes; Yes; Yes	No	No; Unclear	Moderate
Schomer et al. 2020	Yes; NR	Unclear	Unclear; Yes; Unclear	Yes	Yes; Yes	Moderate
Schrijver et al. 2018	Unclear; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Moderate
Schweickert et al. 2009	Yes; Yes	Yes	No; No; Yes	Yes	Yes; Yes	Moderate
Sharaf et al. 2018	Yes; Unclear	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Shehabi et al. 2009	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Sheikh et al. 2018	Yes; Yes	Yes	Yes; Unclear; Unclear	Unclear	Unclear; Unclear	High
Shi et al. 2019*	Yes; Yes	Yes	Yes; Unclear; Yes	Yes	Yes; Yes	Low
Shi et al. 2020	Yes; Yes	Yes	Yes; NR; Yes	Yes	Yes; Yes	Low
Shirvani et al. 2020	No; No	Yes	Unclear; Unclear; Unclear	Yes	Yes; Yes	High
Shokri and Ali 2020	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Shu et al. 2017	Yes; Unclear	Yes	NR; NR; NR	Yes	Yes; Yes	Moderate
Shu et al. 2019	Unclear; Unclear	No	NR; NR; NR	Yes	Yes; Yes	Moderate
Siddiqi et al. 2016	Yes; Yes	Yes	No; No; Unclear	Unclear	No; Yes	High
Sieber et al. 2010	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Sieber et al. 2018	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Siepe et al. 2011	Yes; Unclear	Yes	NR; NR; Yes	No	Yes; Yes	Moderate
Simons et al. 2016	Yes; No	No	No; No; NR	Yes	Yes; Yes	High
Skrobik et al. 2004	No; No	Unclear	No; No; Yes	No	Yes; Unclear	High
Skrobik et al. 2018	Yes; Yes	No	Yes; Yes; Yes	Yes	Yes; Yes	Moderate
Soh et al. 2020	Yes; Unclear	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Spence et al. 2020	Yes; NR	Yes	NR; No; No	Yes	Yes; Yes	Moderate

Citation	Randomization/alloc	Groups similar	Patients/provider/outcome	ITT	Acceptable levels	Risk of bias
	ation concealment	at baseline?	assessors masked?	analysis?	of	
	adequate?				overall/differenti	
					al attrition?	
Spies et al. 2021	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Stoppe et al. 2013	Unclear; Unclear	Yes	Unclear; Unclear; Yes	Yes	Yes; Yes	Moderate
Strike et al. 2019	Yes; Yes	Yes	NR; NR; NR	Yes	Yes; Yes	Moderate
Strøm et al. 2010	Unclear; Unclear	No	No; No; No	No	Yes; Yes	Moderate
Su et al. 2016	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Sultan 2010	Unclear; Yes	Unclear	Unclear; Yes; Unclear	No	Yes; Unclear	High
Sun et al. 2019*	Yes; Yes	No	Yes; Yes; Yes	Yes	Yes; Yes	Low
Susheela et al. 2017	Unclear; Unclear	Yes	Unclear; Unclear; Unclear	Yes	Yes; Yes	Moderate
Szwed et al. 2021	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Tagarakis et al. 2012	No; No	Yes	No; No; No	Unclear	Unclear; Unclear	High
Taguchi et al. 2007	Yes; Unclear	No	NR; NR; NR	No	No; Yes	High
Tahir et al. 2010	Yes; Yes	Yes	Yes; Yes; Unclear	No	No; Yes	Moderate
Tanaka et al. 2017	Yes; Unclear	No	Yes; Yes; Yes	Yes	Yes; Yes	Moderate
Tang et al. 2018	Unclear; Unclear	Yes	Unclear; Unclear; Yes	Yes	Yes; Yes	Moderate
C.J. Tang et al. 2020	Yes; Unclear	Yes	NR; Yes; Yes	No	Yes; Yes	Moderate
C. Tang et al. 2020	Yes; NR	Yes	Unclear; Yes; Unclear	Yes	Yes; Yes	Moderate
Tang et al. 2021	Yes; Yes	Yes	Yes; Unclear; Yes	Unclear	Yes; Yes	Moderate
Thanapluetiwong et al.	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
2021						
Turan et al. 2020.	Yes; Yes	Yes	NR; Yes; Yes	Yes	Yes; Yes	Moderate
Unneby et al. 2020	No; Unclear	Yes	NR; NR; NR	No	No; Yes	High
Uysal et al. 2020	Unclear; Unclear	Yes	Unclear; Unclear; Unclear	No	Yes; Yes	Moderate
van den Boogaard et al.	Unclear; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
2018						
van der Vorst et al. 2020	Unclear; Yes	Yes	No; No; Yes	Yes	Yes; Yes	Moderate

Citation	Randomization/alloc	Groups similar	Patients/provider/outcome	ITT	Acceptable levels	Risk of bias
	ation concealment	at baseline?	assessors masked?	analysis?	of	
	adequate?				overall/differenti	
					al attrition?	
van Eijk et al. 2010	Yes; Yes	No	Yes; Yes; Unclear	Yes	Yes; Yes	Moderate
van Norden et al. 2021	Unclear; Yes	Yes	Yes; Yes; Yes	Yes	No ; Yes	Moderate
Van Rompaey et al. 2012	Yes; Yes	No	No; No; Yes	Unclear	Unclear; Unclear	Moderate
Verloo et al. 2015	Unclear; Yes	Yes	No; No; Yes	Unclear	Yes; Yes	Moderate
Vlisides et al. 2019	Unclear; Unclear	Yes	No; No; Yes	Unclear	Yes; No	High
Wang et al. 2012	Yes; Unclear	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Moderate
Wang et al. 2015	Unclear; Unclear	Yes	NR; NR; Yes	Yes	Yes; Yes	Moderate
Wang et al. 2019	Yes; Unclear	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Moderate
J. Wang et al. 2020	Yes; NR	Yes	Unclear; Yes; Yes	No	Yes; Yes	Moderate
Y.Y. Wang et al. 2020	Yes; Yes	Yes	No; No; Yes	Yes	Yes; Yes	Moderate
Watne et al. 2014	Yes; Yes	Yes	Unclear; No; Yes	Yes	Yes; Yes	Moderate
Wildes et al. 2019	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Williams-Russo et al.	Yes; Unclear	Yes	Unclear; Unclear; Unclear	Yes	Unclear; Unclear	Moderate
1995						
Winings et al. 2021	No; No	Yes	NR; NR; NR	Yes	Yes; Yes	Moderate
Wu et al. 2016	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Xin et al. 2017	Yes; Unclear	Yes	Unclear; Unclear; Unclear	Yes	Yes; Yes	Moderate
Xin et al. 2021	Yes; Unclear	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Moderate
Xu et al. 2020	Yes; NR	Yes	NR; No; Yes	No	Yes; Yes	Moderate
Xuan et al. 2018	Yes; Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Low
Xue et al. 2020	Unclear; Unclear	Yes	No; No; NR	Yes	Yes; Yes	Moderate
Yang et al. 2012	Yes; Yes	No	No; No; NR	Yes	Yes; Yes	Moderate
Yang et al. 2015	Yes; Unclear	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Moderate
Yapici et al. 2011	Unclear; Unclear	No	NR; NR; NR	Yes	Yes; Yes	Moderate
Youn et al. 2017	Yes; Yes	No	No; Yes; Yes	No	Unclear; Unclear	Moderate

Citation	Randomization/alloc	Groups similar	Patients/provider/outcome	ITT	Acceptable levels	Risk of bias
	ation concealment	at baseline?	assessors masked?	analysis?	of	
	adequate?				overall/differenti	
					al attrition?	
Young et al. 2020	Yes; Unclear	Yes	No; No; No	Yes	Yes; Yes	Moderate
Yu et al. 2017	Yes; Unclear	Yes	NR; NR; NR	Yes	Yes; Yes	Moderate
Zhang et al. 2020	Yes; NR	Yes	Yes; No; Yes	Yes	Yes; Yes	Moderate
K.S. Zhang et al. 2021	Yes; Unclear	No	No; No; No	No	No; Yes	High
Zhao et al. 2020	Unclear; Unclear	No	Yes; Yes; Yes	Yes	Yes; Yes	Moderate
Zhou et al. 2018	Yes; Unclear	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Moderate

*This study was identified as part of the systematic review by the Pacific Northwest Evidence-Based Practice Center but was subsequently retracted. ITT=Intent to treat; NR=Not reported.

Appendix F. Review of Benefits and Harms, Patient Preferences, and Other Practice Guidelines

Assessment and Treatment Planning

Statement 1 – Structured Assessments for Delirium

APA *recommends* **(1C)** that patients with delirium or who are at risk for delirium undergo regular structured assessments for the presence or persistence of delirium using valid and reliable measures.

Benefits

Use of regular structured and validated assessments in patients with delirium or who are at risk for delirium can help identify the presence or persistence of delirium. Once delirium is identified, possible contributors can be identified and addressed. Thus, the indirect benefits of identifying delirium can potentially include decreases in morbidity due to delirium and its underlying physiological causes. Also, when delirium is identified, education of the patient (where feasible), family, and other care givers can enhance understanding and management of the patient's symptoms.

Harms⁷

The harms of regular structured assessments in patients with delirium or who are at risk for delirium include time spent conducting assessments that could be used on other activities of benefit to the patient. In addition, some patients may become frustrated with repeated questions that are part of the assessment. If structured assessment is erroneous in suggesting the presence of delirium, a patient could undergo unnecessary evaluations, including laboratory or other testing. There can also be false negative results of structured assessments, which can provide a false sense of security and lead reversible conditions to be overlooked.

Patient Preferences

No specific information is available on patient preferences related to structured assessments for delirium. However, clinical experience suggests that many patients are willing to be assessed. The manifestations of delirium can make it challenging for patients to cooperate with assessment and some patients may choose to avoid repeating questioning.

Balancing of Benefits and Harms

The potential benefits of this recommendation were viewed as far outweighing the potential harms.

The level of research evidence is rated as low because evidence on the benefits of structured assessment is indirect and does not come from rigorous clinical studies. However, expert opinion suggests that the harms of structured assessment are negligible compared with the potential benefit of

⁷ Harms may include serious adverse events, less serious adverse events that affect tolerability, minor adverse events, negative effects of the intervention on quality of life, barriers and inconveniences associated with treatment and other negative aspects of the treatment that may influence decision making by the patient, the clinician or both. Harms may also include opportunity costs for the clinician who may have to forgo another clinical activity that would be more beneficial for the patient.

such assessments in improving the identification of delirium. For additional discussion of the research evidence, see Appendix C, Statement 1.

Differences of Opinion Among Writing Group Members

There were no differences of opinion. The writing group voted unanimously in favor of this recommendation.

Review of Available Guidelines from Other Organizations

Most (Aldecoa et al. 2017; American College of Emergency Physicians 2014; BC Centre for Palliative Care 2017a; Cancer Care Ontario 2010; Devlin et al. 2018; Gage and Hogan 2014; Martin et al. 2010; Mohanty et al. 2016; Potter et al. 2006; Scottish Intercollegiate Guidelines Network 2019; Tropea et al. 2008) but not all (Bush et al. 2018) of other clinical practice guidelines suggest use of routine screening with validated scales to identify patients with delirium. Some guidelines specifically mention the need to confirm the diagnosis according to DSM or ICD criteria (BC Centre for Palliative Care 2017a; National Institute for Health and Care Excellence 2023), whereas others note the need for training in the use of the specific rating scales that are chosen for use (Gage and Hogan 2014; Scottish Intercollegiate Guidelines Network 2019; Tropea et al. 2008). Specific scales that are mentioned in other guidelines include the CAM (Gage and Hogan 2014; Potter et al. 2006; Tropea et al. 2008), CAM-ICU (Gage and Hogan 2014; Martin et al. 2010; Mohanty et al. 2016; Scottish Intercollegiate Guidelines Network 2019; Tropea et al. 2016; Scottish Intercollegiate Guidelines Network 2019; Tropea et al. 2016; Scottish Intercollegiate Guidelines Network 2019; Tropea et al. 2008), ICDSC (Mohanty et al. 2016; Scottish Intercollegiate Guidelines Network 2019), Delirium Rating Scale (DRS; Tropea et al. 2008), Delirium Symptom Interview (Gage and Hogan 2014; Tropea et al. 2008), Germany Care Delirium Screening Checklist (Martin et al. 2010), and the 4AT (Scottish Intercollegiate Guidelines Network 2019).

Statement 2 – Determination of Baseline Neurocognitive Status

APA *recommends* **(1C)** that a patient's baseline neurocognitive status be determined to permit accurate interpretation of delirium assessments.

Benefits

Determining a patient's baseline neurocognitive status can permit accurate interpretation of delirium assessments and allow delirium to be identified when it is present. Once delirium is identified, possible contributors can be identified and addressed. Knowledge of the patient's baseline neurocognitive status also facilitates longitudinal monitoring to determine when the patient's delirium has resolved, including in individuals who had some neurocognitive impairment prior to the onset of delirium. If pre-existing neurocognitive impairments were present, these may also warrant additional evaluation, treatment, or follow-up, each of which could have additional benefits for patients.

Harms

The harms of determining a patient's baseline neurocognitive status include time spent in obtaining this information (e.g., from collateral history, from electronic records, from clinical assessment), which could be used on other activities of benefit to the patient.

Patient Preferences

No specific information is available on patient preferences related to determination of neurocognitive status. However, clinical experience suggests that many patients are willing to be assessed and have staff contact family members or others for collateral information. The vast majority of patients would want staff to review prior records for relevant information that would have the potential to improve their care and their outcomes.

Balancing of Benefits and Harms

The potential benefits of this recommendation were viewed as far outweighing the potential harms.

The level of research evidence is rated as low because evidence on the benefits of obtaining baseline neurocognitive status is indirect and does not come from rigorous clinical studies. However, expert opinion suggests that the harms of delineating the patient's neurocognitive baseline functioning are negligible compared with the potential benefit of such assessments in improving the recognition of and accurate identification of delirium. For additional discussion of the research evidence, see Appendix C, Statement 2.

Differences of Opinion Among Writing Group Members

There were no differences of opinion. The writing group voted unanimously in favor of this recommendation.

Review of Available Guidelines from Other Organizations

In patients whose characteristics would place them at increased risk for developing delirium, a few other guidelines suggest obtaining cognitive assessment, as part of routine outpatient care (Tropea et al. 2008), pre-operatively (Chow et al. 2012), or on admission to the hospital (Potter et al. 2006). The potential role of collateral information from a relative or caregiver was also noted (Potter et al. 2006) as was the importance of being aware of pre-existing cognitive impairment in making a diagnosis of delirium (Devlin et al. 2018; Potter et al. 2006).

Statement 3 – Review for Predisposing or Contributing Factors

APA *recommends* **(1C)** that patients with delirium or who are at risk for delirium undergo a detailed review of possible predisposing or contributing factors.

Benefits

In patients with delirium or who are at risk for delirium, a detailed review of possible predisposing or contributing factors can help in identifying issues that warrant clinical intervention and ultimately improve patient outcomes. Doing this in a systematic fashion can help to minimize cognitive biases such as anchoring biases.

Harms

The harms of conducting a detailed review of possible predisposing or contributing factors include time spent on assessment that could be used on other activities of benefit to the patient. If structured assessment is erroneous in identifying predisposing or contributing factors, a patient could undergo

unnecessary evaluations, with associated costs and patient discomfort as well as incidental findings that would not have required additional intervention.

Patient Preferences

No specific information is available on patient preferences related to review of predisposing or contributing factors of delirium. However, clinical experience suggests that the vast majority of patients would want and would value having a careful and thorough review of possible predisposing or contributing factors, with the potential to improve their care and their outcomes.

Balancing of Benefits and Harms

The potential benefits of this recommendation were viewed as far outweighing the potential harms.

The level of research evidence is rated as low because evidence on review of possible predisposing or contributing factors is indirect and does not come from rigorous clinical studies. However, expert opinion suggests that the benefits of a review of predisposing or contributing factors of delirium outweigh the harms of such a review, which appear to be minimal. For additional discussion of the research evidence, see Appendix C, Statement 3.

Differences of Opinion Among Writing Group Members

There were no differences of opinion. The writing group voted unanimously in favor of this recommendation.

Review of Available Guidelines from Other Organizations

Although the specific lists of potential predisposing or contributing factors varies among guidelines, guidelines on delirium are consistent in discussing the importance of reviewing factors that may place individuals at risk for developing delirium or are associated with precipitating, maintaining, or exacerbating delirium (Aldecoa et al. 2017; American College of Emergency Physicians 2014; American Geriatrics Society Expert Panel on Postoperative Delirium in Older Adults 2015; BC Centre for Palliative Care 2017a; Chow et al. 2012; Devlin et al. 2018; Gage and Hogan 2014; Martin et al. 2010; Mohanty et al. 2016; National Institute for Health and Care Excellence 2023; Potter et al. 2006; Registered Nurses' Association of Ontario 2016; Scottish Intercollegiate Guidelines Network 2019; Tropea et al. 2008).

Statement 4 – Review of Medications

APA *recommends* (1C) that a detailed medication review be conducted in patients with delirium or who are at risk for delirium, especially those with pre-existing cognitive impairment.

Benefits

Conducting a detailed medication review in patients with delirium or who are at risk for delirium can help in identifying medications that may be contributing to delirium. Medication review can also identify medications that may be associated with other adverse effects, drug-disease interactions, or drug-drug interactions. Once identified, tapering or discontinuing of non-essential medications can reduce side effects for patients and lower medication costs.

Harms

The harms of conducting a detailed medication review include time spent on assessment that could be used on other activities of benefit to the patient. If medication review is erroneous in identifying potentially problematic medications, a necessary medication could be inappropriately stopped.

Patient Preferences

No specific information is available on patient preferences related to review of medications that may be contributing to delirium. However, clinical experience suggests that the vast majority of patients would want and would value having a careful and thorough review of medications, with the potential to improve their care and their outcomes.

Balancing of Benefits and Harms

The potential benefits of this recommendation were viewed as far outweighing the potential harms.

The level of research evidence is rated as low because there is limited evidence on the benefits of medication reconciliation and deprescribing. The majority of studies that have examined medication-related interventions in patients with delirium have been small multi-component trials or retrospective or observational studies. However, expert opinion suggests that the benefits of a detailed medication review outweigh the harms of such a review, which appear to be minimal. For additional discussion of the research evidence, see Appendix C, Statement 4.

Differences of Opinion Among Writing Group Members

There were no differences of opinion. The writing group voted unanimously in favor of this recommendation.

Review of Available Guidelines from Other Organizations

The Canadian Coalition for Seniors' Mental Health, National Institute for Health and Care Excellence, and Scottish Intercollegiate Guidelines Network explicitly recommend medication review in patients with delirium or at risk for delirium (Gage and Hogan 2014; National Institute for Health and Care Excellence 2023; Scottish Intercollegiate Guidelines Network 2019). Many other guidelines comment on the importance of specific medications (e.g., psychotropic agents, opioids, anticholinergic agents) or multiple medications as a risk factor for delirium and include assessment of medications as part of reviewing risk factors for delirium (see Statement 3). In addition, this recommendation is generally consistent with that from the American Geriatrics Society Choosing Wisely recommendations, which note the importance of a medication review before prescribing medications (Choosing Wisely 2021).

Statement 5 – Use of Restraints

APA *recommends* **(1C)** that physical restraints not be used in patients with delirium, except in situations where injury to self or others is imminent and only:

- after review of factors that can contribute to racial/ethnic and other biases in decisions about restraint;
- with frequent monitoring; and

• with repeated reassessment of the continued risks and benefits of restraint use as compared with less restrictive interventions.

Benefits

The benefits of limiting restraint use in patients with delirium, explicitly considering whether biases are involved in its use, and engaging in appropriate monitoring and reassessment are manifold. These include reduced likelihood of patient injury related to restraint, less emotional distress related to being restrained, and less potential for inequitable use of physical restraint.

Harms

The harms of limiting restraint use in patients with delirium include possible increases in injury to the patient or others due to agitation or other behaviors that pose an imminent risk.

Patient Preferences

Studies of patient preferences related to restraint have typically been small qualitative studies and often focus on the experiences of patients in psychiatric settings rather than patients with delirium (Siegrist-Dreier et al. 2023; Tingleff et al. 2017). Clinical experience suggests that few individuals would wish to be physically restrained and that physical restraint is often perceived as a coercive intervention. Thus, it seems likely that patients would be in agreement with a recommendation that limits restraint, insofar as possible, and aims to preserve patient safety and equitable treatment.

Balancing of Benefits and Harms

The potential benefits of this recommendation were viewed as far outweighing the potential harms.

The level of research evidence is rated as low because there are a limited number of studies that address potential benefits and harms of physical restraint in general and in individuals with delirium in particular. Multiple studies show disparities in the use of physical restraint, but these do not typically include individuals with delirium. Studies that do involve patients with delirium can be difficult to interpret because of concomitant disorders and other confounding factors. For example, individuals with more severe illness may be more likely to have severe hyperactive delirium with agitation but may also be more likely to experience associated morbidity and mortality regardless of restraint use. However, expert opinion and regulatory policy (Code of Federal Regulations 2019) support the appropriateness of limiting restraint use to situations that pose imminent risk and of using ongoing monitoring and frequent reassessment of restraint use as a way to mitigate restraint-related risks. In addition, expert opinion suggests that all interventions, including physical restraint, should be delivered in an equitable fashion without bias on the basis of race, ethnicity, or other factors. For additional discussion of the research evidence, see Appendix C, Statement 5.

Differences of Opinion Among Writing Group Members

There were no differences of opinion. The writing group voted unanimously in favor of this recommendation.

Review of Available Guidelines from Other Organizations

A number of other guidelines recommend avoiding the use of physical restraints insofar as possible (American College of Emergency Physicians 2014; BC Centre for Palliative Care 2017a; Cancer Care Ontario 2010; Gage and Hogan 2014; National Institute for Health and Care Excellence 2023; Potter et al. 2006; Registered Nurses' Association of Ontario 2016; Tropea et al. 2008). Some of these guidelines also provide specific information on use of de-escalation techniques, less restrictive interventions, and frequent monitoring (e.g., Gage and Hogan 2014, National Institute for Health and Care Excellence 2023). In addition, this recommendation is consistent with that from the American Geriatrics Society Choosing Wisely recommendations on managing behavioral symptoms of hospitalized adults with delirium (Choosing Wisely 2021). Factors related to bias in the use of physical restraints in patients with delirium do not seem to have been noted in other guidelines.

Statement 6 – Person-Centered Treatment Planning

APA *recommends* **(1C)** that patients with delirium have a documented, comprehensive, and personcentered treatment plan.

Benefits

Development and documentation of a comprehensive, person-centered treatment plan assures that the clinician has considered available treatment options in the context of individual patient needs, including health-related social needs, with a goal of improving overall outcome. Documentation of a treatment plan also promotes accurate communication among all those caring for the patient.

Harms

The potential harms from this recommendation relate to the time spent in discussion and documentation of a comprehensive treatment plan that may reduce the opportunity to focus on other aspects of the evaluation.

Patient Preferences

No specific information is available on patient preferences related to treatment planning in patients with delirium. Clinical experience suggests that families and, insofar as possible, patients are cooperative with and accepting of efforts to establish treatment plans, particularly when they are patient centered.

Balancing of Benefits and Harms

The potential benefits of this recommendation were viewed as far outweighing the potential harms.

The level of research evidence is rated as low because no information is available on the harms of a comprehensive, person-centered treatment plan. There is also minimal research on whether developing and documenting a specific treatment plan improves outcomes as compared with assessment and documentation as usual. However, indirect evidence, including expert opinion, supports the benefits of comprehensive treatment planning. For additional discussion of the research evidence, see Appendix C, Statement 6.

Differences of Opinion Among Writing Group Members

There were no differences of opinion. The writing group voted unanimously in favor of this recommendation.

Review of Available Guidelines from Other Organizations

Although guidelines implicitly describe multiple aspects of the treatment plan that warrant consideration, explicit mention of treatment planning or person-centered care is relatively limited (BC Centre for Palliative Care 2017a, 2017b; Gage and Hogan 2014). Guidelines also vary in the scope of treatment plan elements that are explicitly considered with some focused on geriatric (American College of Emergency Physicians 2014; Potter et al. 2006), post-operative (Aldecoa et al. 2017; American Geriatrics Society Expert Panel on Postoperative Delirium in Older Adults 2015; Chow et al. 2012; Martin et al. 2010; Mohanty et al. 2016; Tropea et al. 2008), or oncology/palliative care patients (BC Centre for Palliative Care 2017a, 2017b; Bush et al. 2018; Cancer Care Ontario 2010) with others being broader (Danish Health Authority 2021; Devlin et al. 2018; Gage and Hogan 2014; National Institute for Health and Care Excellence 2023; Scottish Intercollegiate Guidelines Network 2019) in their recommendations related to delirium. In these general guidelines related to delirium, examples of treatment plan elements include aspects of assessment (e.g., physical examination, laboratory tests, imaging studies, electroencephalography, lumbar puncture, evaluation for infection), addressing patient needs (e.g., communication, safety, mobility, pain, bowel and bladder function, sleep, hydration, nutrition, oxygenation, fluid and electrolyte balance, sensory impairment), modifying environmental risk factors, and providing education about delirium to the patient, family, and other care partners.

Nonpharmacological Interventions

Statement 7 – Multi-component Nonpharmacological Interventions

APA *recommends* (1B) that patients with delirium or who are at risk for delirium receive multicomponent nonpharmacological interventions to manage and prevent delirium.

Benefits

Use of multi-component nonpharmacological interventions in patients who are at risk for delirium can reduce the incidence and severity of delirium as well as reducing the duration of delirium in individuals who develop it. Other outcomes that are not specific to delirium but are reduced by multi-component nonpharmacological interventions such as the ABCDEF bundle include reductions in hospital death within 7 days, coma, next-day mechanical ventilation, physical restraint use, ICU readmission, and discharge to a facility other than home (Pun et al. 2019).

Harms

The harms of multi-component nonpharmacological interventions include time spent conducting these interventions that could be used on other activities of benefit to the patient. Because multi-component interventions are delivered predominantly by nursing staff, time spent delivering multi-component interventions may also reduce time available for addressing the care needs of other patients.

Patient Preferences

No specific information is available on patient preferences related to multi-component interventions. Although some patients may not wish to engage with all of these interventions, clinical experience and expert opinion suggest that patients are generally accepting of the elements of multi-component interventions and that family members and other caregivers are also interested in collaborating with the treatment team in the delivery of multi-component interventions.

Balancing of Benefits and Harms

The potential benefits of this recommendation were viewed as far outweighing the potential harms of implementing multi-component nonpharmacological interventions for patients with delirium or at risk for delirium.

The level of research evidence is rated as moderate because multiple large studies were available that assessed the effects of multi-component interventions, with almost all of the studies having a moderate rather than a high risk of bias. There was also a dose-response effect for the number of components implemented and the consistency of implementation, which suggests an increased level of confidence in the research evidence findings. For additional discussion of the research evidence, see Appendix C, Statement 7.

Differences of Opinion Among Writing Group Members

There were no differences of opinion. The writing group voted unanimously in favor of this recommendation.

Review of Available Guidelines from Other Organizations

Many guidelines on delirium specifically recommend multi-component nonpharmacological interventions as a primary intervention (American Geriatrics Society Expert Panel on Postoperative Delirium in Older Adults 2015; BC Centre for Palliative Care 2017a; Danish Health Authority 2021; Devlin et al. 2018; Gage and Hogan 2014; Mohanty et al. 2016; National Institute for Health and Care Excellence 2023; Registered Nurses' Association of Ontario 2016; Scottish Intercollegiate Guidelines Network 2019; Tropea et al. 2008). Typically, they do not recommend use of a specific bundle of interventions (e.g., ABCDEF bundle, HELP bundle) but do describe typical interventions that warrant inclusion.

Pharmacological Interventions

Statement 8 – Principles of Medication Use

APA *recommends* **(1C)** that medications, including antipsychotic agents, be used to address neuropsychiatric disturbances of delirium only when all the following criteria are met:

- verbal and non-verbal de-escalation strategies have been ineffective;
- contributing factors have been assessed and, insofar as possible, addressed; and
- the disturbances cause the patient significant distress and/or present a risk of physical harm to the patient or others.

Benefits

Limiting use of antipsychotic agents and other medications to address neuropsychiatric disturbances of delirium can reduce the risk of side effects from these medications, which can include increases in weight, diabetes mellitus, metabolic syndrome, parkinsonism, acute dystonic reactions, dysphagia, dyskinetic movements, falls, orthostatic hypotension, and anticholinergic effects, among others (see Statement 8, Implementation). In individuals with dementia, which is a risk factor for delirium and can co-occur with delirium, use of antipsychotic medication has been associated with increases in mortality and cerebrovascular adverse events. Limiting use of antipsychotic agents can also reduce the risk of drug-drug interactions and decrease the likelihood that unneeded antipsychotic medications will be continued after transitioning to another setting of care.

Harms

The potential harms of this statement are that a patient who might benefit from an antipsychotic or other medication will not receive it. Additionally, for a patient who is in significant distress or presenting a risk to self or others, harm could occur if a delay in treatment contributed to greater distress or harm.

Patient Preferences

No specific information is available on patient preferences related to use of antipsychotic agents or other medications to address neuropsychiatric disturbances in individuals with delirium. Clinical experience, including that with other psychiatric disorders in which antipsychotic medications are used, suggests that patients prefer to avoid use of an antipsychotic medication whenever possible.

Balancing of Benefits and Harms

The potential benefits of this recommendation were viewed as far outweighing the potential harms.

The level of research evidence is rated as low because there was a moderate to high risk of bias in the vast majority of available studies on antipsychotic medications in preventing or treating delirium. Evidence on the use of other medications to address neuropsychiatric disturbances of delirium is even more limited. For antipsychotic medications, studies show minimal to no benefits of treatment in patients with delirium, and the potential harms of antipsychotic side effects (including potential mortality in some patient subgroups) outweigh the benefits of their use. For additional discussion of the research evidence, see Appendix C, Statement 8.

Differences of Opinion Among Writing Group Members

There were no differences of opinion. The writing group voted unanimously in favor of this recommendation.

Review of Available Guidelines from Other Organizations

Many guidelines recommend that nonpharmacological interventions be used as a primary approach to treatment of neuropsychiatric and behavioral symptoms of delirium with a psychotropic medication considered only in situations in which nonpharmacological interventions are unsuccessful and when patients are significantly distressed or at risk of harming themselves or others (American Geriatrics Society Expert Panel on Postoperative Delirium in Older Adults 2015; BC Centre for Palliative Care 2017a; Danish Health Authority 2021; Gage and Hogan 2014; Mohanty et al. 2016; National Institute for

Health and Care Excellence 2023; Scottish Intercollegiate Guidelines Network 2019; Tropea et al. 2008). This recommendation is also consistent with that from the American Geriatrics Society Choosing Wisely recommendations on managing behavioral symptoms of hospitalized adults with delirium (Choosing Wisely 2021).

When a psychotropic medication does appear to be indicated for an individual patient, antipsychotic medications are typically suggested in lieu of benzodiazepines, unless there are specific indications for benzodiazepine use. However, if antipsychotic medications are considered for use, other guidelines offer caveats about using low doses, adjusting doses cautiously, and using second-generation antipsychotic agents rather than haloperidol for patients with Parkinson's disease or dementia with Lewy Bodies (American Geriatrics Society Expert Panel on Postoperative Delirium in Older Adults 2015; BC Center for Palliative Care 2017b; Gage and Hogan 2014; Mohanty et al. 2016; National Institute for Health and Care Excellence 2023).

Statement 9 – Antipsychotic Agents

APA recommends (1C) that antipsychotic agents not be used to prevent delirium or hasten its resolution.

Benefits

Available studies on antipsychotic medications suggest minimal benefits in preventing or treating delirium. Limiting use of antipsychotic agents would reduce the risk of side effects from these medications (see Statement 8, Implementation). In individuals with dementia, which is a risk factor for delirium and can co-occur with delirium, use of antipsychotic medication has been associated with increases in mortality and cerebrovascular adverse events. Limiting use of antipsychotic agents can also reduce the risk of drug-drug interactions and decrease the likelihood that unneeded antipsychotic medications will be continued after transitioning to another setting of care.

Harms

The potential harms of this statement are that a patient who might benefit from an antipsychotic medication will not receive it.

Patient Preferences

No specific information is available on patient preferences related to the use of antipsychotic agents to address neuropsychiatric disturbances in individuals with delirium. Clinical experience, including that with other psychiatric disorders in which antipsychotic medications are used, suggests that patients prefer to avoid use of an antipsychotic medication whenever possible.

Balancing of Benefits and Harms

The potential benefits of this recommendation were viewed as far outweighing the potential harms.

The level of research evidence is rated as low because there was a moderate to high risk of bias in the vast majority of available studies on antipsychotic medications in preventing or treating delirium. Because these studies show minimal to no benefits of antipsychotic treatment in patients with delirium or at risk for delirium, the potential harms of antipsychotic side effects (including potential mortality in

some patient subgroups) were viewed as outweighing the benefits of their use. For additional discussion of the research evidence, see Appendix C, Statement 8.

Differences of Opinion Among Writing Group Members

There were no differences of opinion. The writing group voted unanimously in favor of this recommendation.

Review of Available Guidelines from Other Organizations

The majority of guidelines on delirium (American Geriatrics Society Expert Panel on Postoperative Delirium in Older Adults 2015; BC Centre for Palliative Care 2017a; Danish Health Authority 2021; Devlin et al. 2018; Gage and Hogan 2014; Scottish Intercollegiate Guidelines Network 2019), but not all (Martin et al. 2010), note that there is insufficient evidence to support the use of antipsychotic medication to prevent delirium in at risk patients. In the treatment of delirium, particularly neuropsychiatric symptoms of delirium, a large number of guidelines recommend that nonpharmacological interventions be used as a primary approach to treatment of neuropsychiatric symptoms of delirium with a psychotropic medication considered only in situations in which nonpharmacological interventions are unsuccessful and when patients are significantly distressed or at risk of harming themselves or others (American Geriatrics Society Expert Panel on Postoperative Delirium in Older Adults 2015; BC Centre for Palliative Care 2017b; Danish Health Authority 2021; Gage and Hogan 2014; Mohanty et al. 2016; National Institute for Health and Care Excellence 2023; Scottish Intercollegiate Guidelines Network 2019; Tropea et al. 2008). However, several guidelines note that antipsychotic medications may have some role in treatment even when symptoms are less severe (Aldecoa et al. 2017; Cancer Care Ontario 2010; Martin et al. 2010). If an antipsychotic medication does seem appropriate for use in a patient with delirium, several guidelines suggest the need for additional caution in patients with Parkinson's disease or dementia with Lewy Bodies and that a second-generation antipsychotic would be preferred rather than haloperidol (BC Center for Palliative Care 2017 (FPON); Gage and Hogan 2014; National Institute for Health and Care Excellence 2023).

Statement 10 – Benzodiazepines

APA *recommends* (1C) that benzodiazepines not be used in patients with delirium or who are at risk for delirium, including those with pre-existing cognitive impairment, unless there is a specific indication for their use.

Benefits

Available studies on benzodiazepines suggest that they have minimal benefits in preventing or treating delirium. Limiting use of benzodiazepines would reduce the risk of side effects, drug-drug interactions, or medication misuse and decrease the likelihood that unneeded benzodiazepines will be continued after transitioning to another setting of care.

Harms

For conditions other than delirium, there are some circumstances in which a benzodiazepine may be an optimal treatment. The potential harms of this statement are that a patient who might benefit from a benzodiazepine will not receive it. However, I

Patient Preferences

No specific information is available on patient preferences related to the use of benzodiazepines in patients with delirium or who are at risk for delirium. Clinical experience suggests that patients prefer to avoid use of medication whenever possible unless it is clinically indicated.

Balancing of Benefits and Harms

The potential benefits of this recommendation were viewed as far outweighing the potential harms.

The level of research evidence is rated as low because the number of studies was small, and the available research had a moderate to high risk of bias and inconsistent findings. Because these studies show minimal to no benefits of benzodiazepines in patients with delirium or at risk for delirium, the potential harms of benzodiazepine side effects or medication misuse were viewed as outweighing the benefits of their use, unless another indication for benzodiazepine treatment was present. For additional discussion of the research evidence, see Appendix C, Statement 10.

Differences of Opinion Among Writing Group Members

There were no differences of opinion. The writing group voted unanimously in favor of this recommendation.

Review of Available Guidelines from Other Organizations

The majority of guidelines note that benzodiazepines should generally not be used in individuals with delirium (American Geriatrics Society Expert Panel on Postoperative Delirium in Older Adults 2015; BC Center for Palliative Care 2017b; Cancer Care Ontario 2010; Chow et al. 2012; Gage and Hogan 2014; Martin et al. 2010; Potter et al. 2006). Some guidelines note that a benzodiazepine may be indicated in individuals experiencing alcohol or sedative withdrawal (American Geriatrics Society Expert Panel on Postoperative Delirium in Older Adults 2015; Cancer Care Ontario 2010; Gage and Hogan 2014; Martin et al. 2010) and in those already taking a benzodiazepine (Chow et al. 2012). Several guidelines note that benzodiazepines may be appropriate in the context of oncological and palliative care (BC Centre for Palliative Care 2017a; Bush et al. 2018; Danish Health Authority 2021). If a benzodiazepine is used, one guideline notes that paradoxical agitation may occur (Danish Health Authority 2021).

Statement 11 – Dexmedetomidine to Prevent Delirium

APA *suggests* (2B) that dexmedetomidine be used rather than other sedating agents to prevent delirium in patients who are undergoing major surgery or receiving mechanical ventilation in a critical care setting.

Benefits

Use of dexmedetomidine in patients who are undergoing major surgery or receiving mechanical ventilation in a critical care setting is associated with variable but consistent benefits in reducing the incidence of delirium relative to placebo or other sedating medications.

Harms

Potential harms of using dexmedetomidine in patients who are undergoing major surgery or receiving mechanical ventilation in a critical care setting include bradycardia and hypotension.

Patient Preferences

No information is available on patient preferences related to the use of dexmedetomidine patients at risk for delirium in relation to surgery or critical care settings.

Balancing of Benefits and Harms

The potential benefits of this suggestion in reducing the incidence of delirium were viewed as likely outweighing the potential harms of bradycardia and hypotension but there may be individual variations in potential risks of dexmedetomidine treatment depending on the patient's clinical status.

The level of research evidence is rated as moderate for reductions in the incidence of delirium because there were a substantial number of studies that had a low to moderate risk of bias and a large number of participants in the trials when taken together. The consistency of the findings in post-operative and ICU patients and in placebo-controlled and head-to-head comparisons increased the confidence in findings. For adverse effects of dexmedetomidine, the strength of research evidence was low, and most studies showed no significant differences in adverse effects between the dexmedetomidine and comparison groups. Nevertheless, the potential balancing of benefits and harms was less clear because of the potential for bradycardia or hypotension in individual patients in the context of a post-operative or critical care setting. For additional discussion of the research evidence, see Appendix C, Statement 11.

Differences of Opinion Among Writing Group Members

There were no differences of opinion. The writing group voted unanimously in favor of this recommendation.

Review of Available Guidelines from Other Organizations

Few guidelines comment on the use of dexmedetomidine to prevent delirium. The Canadian Coalition for Seniors' Mental Health suggests that dexmedetomidine should be considered as a sedative alternative to benzodiazepines and propofol to reduce delirium risk in mechanically ventilated patients (Gage and Hogan 2014). In contrast, the Society of Critical Care Medicine suggests that dexmedetomidine not be used to prevent delirium in all critically ill adults (Devlin et al. 2018).

Statement 12 – Dexmedetomidine in Patients with Delirium

APA *suggests* **(2C)** that when patients with delirium are sedated for mechanical ventilation in a critical care setting, dexmedetomidine be used rather than other sedating agents.

Benefits

Use of dexmedetomidine in patients who are sedated for mechanical ventilation in a critical care setting is associated with variable but greater response of delirium relative to placebo or other sedating medications. It may also reduce time to weaning from mechanical ventilation.

Harms

Potential harms of using dexmedetomidine in patients who are receiving mechanical ventilation in a critical care setting include bradycardia and hypotension.

Patient Preferences

No information is available on patient preferences related to the use of dexmedetomidine in patients with delirium in relation to surgery or critical care settings.

Balancing of Benefits and Harms

The potential benefits of this suggestion in the response of delirium symptoms to dexmedetomidine were viewed as likely outweighing the potential harms of bradycardia and hypotension with treatment, but there may be individual variations in potential risks of dexmedetomidine treatment depending on the patient's clinical status.

The level of research evidence is rated as low for response of delirium symptoms, facilitation of weaning from mechanical ventilation, and adverse effects of dexmedetomidine because the number of studies and the total number of patients was small. The potential balancing of benefits and harms favored use of dexmedetomidine but was less clear because of the potential for bradycardia or hypotension in individual patients in the context of a critical care setting. For additional discussion of the research evidence, see Appendix C, Statement 12.

Differences of Opinion Among Writing Group Members

There were no differences of opinion. The writing group voted unanimously in favor of this recommendation.

Review of Available Guidelines from Other Organizations

Few guidelines comment on the use of dexmedetomidine in critical care patients with delirium. In this regard, the Society of Critical Care Medicine suggests that dexmedetomidine can be used "in mechanically ventilated adults where agitation is precluding weaning/extubation" (Devlin et al. 2018).

Statement 13 – Melatonin and Ramelteon

APA suggests (2C) that melatonin and ramelteon not be used to prevent or treat delirium.

Benefits

Limiting use of melatonin and ramelteon is beneficial by not giving a medication that does not appear to have benefits for patients in preventing or treating delirium.

Harms

The potential harms of this statement are that a patient who might benefit from melatonin or ramelteon will not receive it.

Patient Preferences

No information is available on patient preferences related to the use of melatonin or ramelteon in individuals with delirium or at risk for delirium. Clinical experience suggests that many individuals would benefit from and prefer an enhanced amount and quality of sleep while hospitalized and may be interested in taking a medication to facilitate this even if the benefits are minimal or inconsistent.

Balancing of Benefits and Harms

The potential benefits of this suggestion were viewed as likely outweighing the potential harms.

Although the benefits of melatonin and ramelteon were minimal in preventing or treating delirium, these medications have been used for treatment of insomnia, particularly in relation to circadian rhythm disturbances, and there are few side effects of these medications. Thus, the potential benefits as well as the potential risks of using melatonin and ramelteon appear to be small, and the balance of benefits and harms is unclear.

The level of research evidence is rated as low because most studies had a moderate risk of bias, many had small samples, and only a few studies were available that assessed effects of these medications in patients with delirium. For additional discussion of the research evidence, see Appendix C, Statement 13.

Differences of Opinion Among Writing Group Members

There were no differences of opinion. The writing group voted unanimously in favor of this recommendation.

Review of Available Guidelines from Other Organizations

Several guidelines note that there is insufficient evidence to support the use of melatonin in patients with delirium or at risk for delirium (BC Centre for Palliative Care 2017a; Danish Health Authority 2021; Gage and Hogan 2014). Other guidelines do not comment on the use of ramelteon in preventing or treating delirium.

Transitions of Care

Statement 14 – Medication Review at Transitions of Care

APA *recommends* **(1C)** that, in patients with delirium or who are at risk for delirium, a detailed medication review, medication reconciliation, and reassessment of the indications for medications, including psychotropic medications, be conducted at transitions of care within the hospital.

Benefits

In patients with delirium or who are at risk for delirium, a detailed medication review, medication reconciliation, and reassessment of the indications for medications at transitions of care within the hospital can help in identifying medications that may be contributing to delirium. Medication review can also identify medications that may be associated with other adverse effects, drug-disease interactions, or drug-drug interactions. Once identified, tapering or discontinuing of non-essential medications can reduce medication costs and side effects for patients.

Harms

The harms of conducting a detailed medication review, medication reconciliation, and reassessment of the indications for medications include time spent on assessment that could be used on other activities of benefit to the patient. If medication review is erroneous in identifying potentially problematic medications, a necessary medication could be inappropriately stopped.

Patient Preferences

No specific information is available on patient preferences related to a detailed review of medications that may be contributing to or could predispose someone to developing delirium. However, clinical

experience suggests that the vast majority of patients would want and would value having a careful and thorough review of medications, with the potential to improve their care and their outcomes.

Balancing of Benefits and Harms

The potential benefits of this recommendation were viewed as far outweighing the potential harms.

The level of research evidence is rated as low because there is limited evidence on the benefits of medication review, medication reconciliation, or reassessment of the indications for medication. The majority of studies that have examined medication-related interventions in patients with delirium have been small multi-component trials or retrospective or observational studies. However, expert opinion suggests that the benefits of a detailed medication review outweigh the harms of such a review, which appear to be minimal. For additional discussion of the research evidence, see Appendix C, Statement 14.

Differences of Opinion Among Writing Group Members

There were no differences of opinion. The writing group voted unanimously in favor of this recommendation.

Review of Available Guidelines from Other Organizations

Guidelines on delirium do not specifically recommend medication review at transitions of care but they do emphasize the importance of reviewing patients' medications or avoiding use of medications that appear to increase the risk of developing or exacerbating delirium (Aldecoa et al. 2017; American Geriatrics Society Expert Panel on Postoperative Delirium in Older Adults 2015; BC Centre for Palliative Care 2017a; Bush et al. 2018; Cancer Care Ontario 2010; Danish Health Authority 2021; Devlin et al. 2018; Gage and Hogan 2014; Mohanty et al. 2016; National Institute for Health and Care Excellence 2023; Potter et al. 2006; Registered Nurses' Association of Ontario 2016; Scottish Intercollegiate Guidelines Network 2019; Tropea et al. 2008). As such, this recommendation is generally consistent with that from the American Geriatrics Society Choosing Wisely recommendations, which note the importance of a medication review before prescribing medications (Choosing Wisely 2021).

Statement 15 – Follow-up Planning at Transitions of Care

APA *recommends* (1C) that, when patients with delirium are transferred to another setting of care, plans for follow-up include:

- continued assessments for persistence of delirium;
- detailed medication review, medication reconciliation, and reassessment of the indications for medications, including psychotropic medications;
- assessment of consequences of delirium (e.g., post-traumatic symptoms, cognitive impairment); and
- psychoeducation about delirium for patients and their care partners.

Benefits

Attention to follow-up plans when patients with delirium are transferred to another setting of care can help assure that patients are monitored for persistence of delirium and its consequences after transitioning to another setting. Promoting enhanced understanding of delirium in patients and their care partners may aid in follow-up and help individuals understand emotionally upsetting perceptions or behaviors that may have occurred while a patient was delirious. A detailed medication review, medication reconciliation, and reassessment of the indications for medications at transitions of care can help in identifying medications that may be perpetuating delirium and may identify medications, such as antipsychotic agents or benzodiazepines, that are no longer needed. Once identified, tapering or discontinuing of non-essential medications can reduce medication costs, side effects, and drug-disease or drug-drug interactions.

Harms

The harms of developing a follow-up plan on transfer to another setting of care include time spent that could be used on other activities of benefit to the patient. If medication review is erroneous in identifying potentially problematic medications, a necessary medication could be inappropriately stopped.

Patient Preferences

No specific information is available on patient preferences related to developing a follow-up plan or conducting a detailed review of medications. However, clinical experience suggests that the vast majority of patients would want and would value having a careful and thorough plan for follow-up care as well as a detailed review of medications, with the potential to improve their care and their outcomes.

Balancing of Benefits and Harms

The potential benefits of this recommendation were viewed as far outweighing the potential harms.

The level of research evidence is rated as low because there is limited evidence on the benefits of developing a follow-up plan or conducting a detailed review of medications. However, these benefits appear to outweigh the harms of a follow-up plan and detailed medication review, which appear to be minimal. For additional discussion of the research evidence, see Appendix C, Statement 15.

Differences of Opinion Among Writing Group Members

There were no differences of opinion. The writing group voted unanimously in favor of this recommendation.

Review of Available Guidelines from Other Organizations

Few guidelines discuss aspects of follow-up care for individuals with delirium. Principles of medication review on transitioning to another setting are consistent with recommendations for medication reconciliation (The Joint Commission 2023) and general guideline recommendations related to medication review (Aldecoa et al. 2017; American Geriatrics Society Expert Panel on Postoperative Delirium in Older Adults 2015; BC Centre for Palliative Care 2017a; Bush et al. 2018; Cancer Care Ontario 2010; Choosing Wisely 2021; Danish Health Authority 2021; Devlin et al. 2018; Gage and Hogan 2014; Mohanty et al. 2016; National Institute for Health and Care Excellence 2023; Potter et al. 2006; Registered Nurses' Association of Ontario 2016; Scottish Intercollegiate Guidelines Network 2019; Tropea et al. 2008). Several guidelines also note the importance of follow-up communication and documentation (Gage and Hogan 2014; Scottish Intercollegiate Guidelines Network 2019; Tropea et al. 2008) as well as patient, family, and other caregiver education after discharge (Tropea et al. 2008).

Appendix G. Description of Additional Studies Reviewed

The Pacific Northwest EPC systematic review included other studies that did not have a sufficient strength of research evidence or evidence of benefits relative to harms to be incorporated into a guideline statement. These are summarized in the sections that follow.

Additional Nonpharmacological Interventions for Prevention of Delirium

Nonpharmacological studies identified in the Pacific Northwest EPC systematic review aimed at prevention of delirium included post-operative use of liberal versus restrictive red blood cell transfusion (Gregersen et al. 2015; Gruber-Baldini et al. 2013); use of "fast-track" surgery or enhanced recovery after surgery—an approach to perioperative management designed to prevent post-operative delirium (Jia et al. 2014); variations on mechanical ventilation (e.g., giving patients no sedation, using interrupted sedation, using continuous sedation [Girard et al. 2008; Mehta et al. 2012; Nassar Junior and Park 2014]); and a trial of fluid therapy (Bruera et al. 2013). These interventions largely showed inconsistent or non-significant effects, although "fast-track" colorectal carcinoma surgery was associated with significantly lower delirium incidence versus usual care (3.4% vs. 12.9%, *P*=0.008) (Jia et al. 2014).

Some of these interventions were explored within subpopulations of ICU patients and showed few significant differences in delirium incidence, mortality, adverse events, or length of stay. In two studies, in a total of 813 ICU patients on mechanical ventilation, a protocol of no sedation was compared with one of sedation that included daily interruption until patients awakened (Olsen et al. 2020; Strøm et al. 2010). In the smaller of the two studies (N=113) comparing no sedation with sedation, the incidence of hyperactive delirium was significantly greater in patients who were not sedated (20% vs. 7%, P=0.04) but the presence of hypoactive delirium was not assessed (Strøm et al. 2010). In this study, patients without sedation had shorter ICU stays (mean 13 days vs. 23 days with interrupted sedation, P=0.032) (Strøm et al. 2010). Hospital stay was a mean of 34 days in patients who received no sedation as compared with 58 days in patients who received sedation with daily interruption of sedation (P=0.004) (Strøm et al. 2010). By contrast, the larger of the two studies (N=700) found that patients given no sedation had 1 more day without coma or delirium than those sedated (median 27 days vs. 26 days, 95% CI 0-2 for the difference) (Olsen et al. 2020). Another two trials (N=758) used sedation with an opioid, benzodiazepine, and/or propofol, and compared daily interruption of sedation with continuous sedation (Girard et al. 2008; Mehta et al. 2012). A fifth trial with high risk of bias also assessed daily interruption of sedation, and compared it with "intermittent" sedation, where interruption was attempted three times daily in 60 participants (Nassar Junior and Park 2014). A sixth study compared Synchronized Intermittent Mandatory Ventilation with Pressure Support (SIMV+PS) with Assist/Control (A/C) ventilation in 40 patients with acute respiratory distress syndrome who were intubated (Luo et al. 2015). The two trials comparing interrupted with continuous sedation found no difference in the incidence of delirium (62% vs. 62%, RR 1.02, 95% Cl 0.92–1.14, I²=0%) (Girard et al. 2008; Mehta et al. 2012). Interruption once a day compared with 3 times daily (intermittent sedation) also did not have a significant effect on delirium incidence (40% vs. 30%, P=0.47) (Nassar Junior and Park 2014). There was again no statistically significant difference in delirium incidence between SIMV+PS (0%) and A/C ventilation groups (20%, P=0.11) (Luo et al. 2015).

Eight trials (N=1,254) assessed various mechanical interventions for the prevention of delirium in the surgical setting, including cerebral and cerebral oximetry monitoring (Lei et al. 2017), transcutaneous electrical acupoints stimulation (TEAS; Gao et al. 2018), "fast-track" surgery (Jia et al. 2014), variations in mean arterial pressure (MAP) intra-operatively (Brown et al. 2019; Xu et al. 2020), variations in mechanical ventilation (Wang et al. 2015; J. Wang et al. 2020), and continuous positive airway pressure (CPAP; Nadler et al. 2017). "Fast-track" surgery was not well described but reportedly included preoperative oral purgatives, thoracic epidural, and early out of bed mobilization. Comparisons were usual care (Brown et al. 2019; Fu et al. 2020; Jia et al. 2014; Lei et al. 2017; Nadler et al. 2017; Wang et al. 2015; J. Wang et al. 2020), sham TEAS (Gao et al. 2018), and varying levels of MAP (Xu et al. 2020). Assessment times ranged from the second post-operative day until discharge. Outcome reporting was uneven, but the most common outcomes were incidence of delirium and length of hospital or ICU stay. Three studies enrolled patients from the United States or Canada (Brown et al. 2019; Lei et al. 2017; Nadler et al. 2017), and five studies enrolled patients in China (Gao et al. 2018; Jia et al. 2014; Wang et al. 2015; J. Wang et al. 2020; Xu et al. 2020). One additional trial (N=55) compared mild hyperthermia (nasopharyngeal temperature of 34°C to 35°C) with usual care (36°C) after acute aortic dissection (Fu et al. 2020). Sample sizes were generally small; most had fewer than 200 subjects. The weighted mean age of patients was 70 years old, and 51% were female. Race was only reported in one trial, which included 13.1% Black patients and 5.5% patients of another race (Brown et al. 2019). Patients with cognitive impairments, such as dementia, were either not reported or excluded, except in one study that included 2% of patients with dementia or severe cognitive impairment (Nadler et al. 2017). The scales used to assess delirium included CAM, CAM-ICU, DSM-IV, DRS-R-98, and RASS.

All nine trials reported incidence of delirium (Table G-1). Two trials found variable lung protective mechanical ventilation during surgery resulted in significantly fewer cases of delirium (Wang et al. 2015; J. Wang et al. 2020). Three other interventions that were associated with a significantly lower incidence of delirium included TEAS during spine surgery (Gao et al. 2018), "fast-track" colorectal carcinoma surgery (Jia et al. 2014), and increased MAP during cardiac bypass surgery (Brown et al. 2019). In the latter study, delirium duration was shorter with the intervention than the control group (median 0 day for elevated MAP vs. 1 day, P=0.05), but delirium severity did not differ (median 7 vs. 8 respectively, P=0.10) (Brown et al. 2019). The remaining studies did not find statistically significant differences in incidence of delirium and used CPAP in orthopedic surgery patients (Nadler et al. 2017), reduced MAP in older orthopedic surgery patients (Xu et al. 2020), and cerebral oximetry monitoring in cardiac surgery patients (Lei et al. 2017).

The effects of these interventions on length of stay were variable. Overall, hospital length of stay was reduced compared with usual care with "fast-track" colorectal carcinoma surgery (9.01 days vs. 13.21 days respectively, P<0.001 [Jia et al. 2014]), but not with cerebral oximetry monitoring (median of 8 days in both groups [Lei et al. 2017], variable protective mechanical ventilation (10.3 days vs. 10.7 days respectively, P=0.49 [Wang et al. 2015]), or mild hyperthermia (mean of 20.40 days vs. 22.78 days, P=0.31 [Fu et al. 2020]). For ICU length of stay, mild hyperthermia was associated with a shorter length of stay (mean of 5.53 days vs. 9.35 days, P=0.38 [Fu et al. 2020]), but cerebral oximetry monitoring was not (both median 2.04 days [Lei et al. 2017]). Regarding mortality and adverse events, one trial that

compared cerebral oximetry monitoring with usual care during cardiac surgery reported no difference between the intervention and control groups on incidence of mortality (2.4% vs. 3% respectively) (Lei et al. 2017). Adverse events reported were limited to surgical complications.

In palliative care patients, one trial (*N*=101) explored daily fluid therapy with 1000 mL of normal saline compared with 100 mL saline given as placebo and only found a statistically significant difference between groups for the NuDESC night score, which deteriorated more between baseline and day 4 for placebo than for treated patients (*P*=0.03) (Bruera et al. 2013).

Study			
Risk of Bias	Interventions		
Sample Size	Duration	Population	Main Findings
Study: Nadler et al. 2017 RoB: Low	Interventions: CPAP vs. usual care Duration: During surgery	Age: ≥50 years Surgery type: hip or knee surgery	Difference in delirium incidence not statistically significant (21% vs. 16%, OR 1.36, 95% Cl 0.52–
N: 114			3.54 <i>, P</i> =0.53)
Study: Brown et al. 2019 RoB: Low N: 199	Interventions: Elevated MAP during cardiac bypass based above pre-bypass evaluating autoregulation level vs. usual care Duration: During surgery	Age: ≥55 years Surgery type: cardiac surgery	Difference in delirium incidence significantly lower with elevated MAP (POD 3: 38% vs. 53%, OR 0.55, 95% CI 0.31– 0.97, <i>P</i> =0.04)
Study: Xu et al. 2020 RoB: Moderate <i>N</i> : 150	Interventions: Intra-operative MAP maintained at 10% to 20% below baseline vs. baseline to 10% below vs. 10% above baseline Duration: During surgery	Age: >65 years Surgery type: orthopedic surgery (hip)	Difference between groups not statistically significant (POD 3: 4% vs. 2% vs. 0%, <i>P</i> =0.360)
Study: Lei et al. 2017 RoB: Moderate <i>N</i> : 249	Interventions: Cerebral oximetry monitoring vs. usual care Duration: Through POD 7	Age: ≥60 years Surgery type: cardiac surgery	Difference in delirium incidence not statistically significant (24% vs. 25%, OR 0.98, 95% CI 0.55– 1.76, P=0.97)
Study: Gao et al. 2018 RoB: Moderate <i>N</i> : 64	Interventions: TEAS vs. sham Duration: During surgery	Age: ≥55 years Surgery type: spine surgery	Difference in delirium incidence significantly lower with TEAS (6.3% vs. 25.0%, <i>P</i> =0.039)
Study: Jia et al. 2014 RoB: Moderate <i>N</i> : 233	Interventions: "Fast-track" surgery vs. usual care Duration: Through POD 3	Age: 70–88 years Surgery type: colorectal carcinoma surgery	Difference in delirium incidence significantly lower with "fast- track" surgery (3.4% vs. 12.9%, <i>P</i> =0.008)
Study: Wang et al. 2015 RoB: Moderate <i>N</i> : 174	Interventions: Variable lung protection mechanical ventilation vs. usual care Duration: During surgery	Age: ≥60 years Surgery type: gastrointestinal tumor resection	Difference in delirium incidence significantly lower with lung protection (15% vs. 29%, <i>P</i> =0.036)

Table G-1. Delirium incidence in other prevention studies

Study			
Risk of Bias	Interventions		
Sample Size	Duration	Population	Main Findings
Study: Wang J.	Interventions: Lung protection	Age: ≥65 years	Difference in delirium incidence
et al. 2020	ventilation vs. usual care	Surgery type:	significantly lower with lung
RoB: Moderate	Duration: During surgery	mixed surgery	protection (6% vs. 25%,
N: 71			<i>P</i> =0.039)
Study: Fu et al.	Interventions: Mild	Age: 18–75 years	Difference in delirium incidence
2020	hyperthermia vs. usual care	Surgery type: acute	not statistically significant (37%
RoB: High	Duration: 24 hours	aortic dissection	vs. 465 <i>, P</i> =0.48)
N: 55			

Cl=confidence interval; CPAP=continuous positive airway pressure; MAP=mean arterial pressure; N=number; OR=odds ratio; POD=post-operative day; RoB=risk of bias; TEAS=transcutaneous electrical acupoint stimulation. *Source*. Brown et al. 2019; Fu et al. 2020; Gao et al. 2018; Jia et al. 2014; Lei et al. 2017; Nadler et al. 2017; Wang et al. 2015; J. Wang et al. 2020; Xu et al. 2020.

Additional Pharmacological Interventions for Prevention of Delirium

The Pacific Northwest EPC systematic review included additional pharmacological interventions aimed at prevention of delirium. Bispectral index (BIS)-guided anesthesia demonstrated a lower incidence of delirium, but none of the pooled analyses for other anesthetic comparisons showed significant differences between groups. Steroids resulted in a significant reduction in incident delirium in post-operative patients. Opioid and GABAergic medications generally had no effect on incidence or related outcomes (e.g., mortality, delirium duration, ICU/hospital length of stay). Cholinesterase inhibitors demonstrated no impact on delirium incidence in post-operative patients, but subgroup analyses showed a significant reduction in orthopedic patients. Finally, among miscellaneous pharmacological interventions, some did show a significant reduction in delirium incidence in post-operative patients, including hypertonic saline, ondansetron, and methylene blue but the number of studies was small.

Electroencephalography-Guided Anesthesia

The Pacific Northwest EPC identified nine trials (*N*=4,030) of electroencephalography-guided anesthesia (e.g., BIS) as compared with usual anesthesia care (Chan et al. 2013; Cotae et al. 2021; Kunst et al. 2020; Radtke et al. 2013; Sieber et al. 2010, 2018; C.J. Tang et al. 2020; Wildes et al. 2019; Zhou et al. 2018). The aim of electroencephalography-guided anesthesia was to optimize the depth of anesthesia and avoid deep sedation, although differing anesthetic parameters were used among the studies. Orthopedic surgery was performed in two trials (Sieber et al. 2010, 2018), cardiac surgery in one trial (Kunst et al. 2020), colorectal surgery in one trial (Zhou et al. 2018), trauma surgery in one trial (Cotae et al. 2021), and a variety of surgeries in four trials (Chan et al. 2013; Radtke et al. 2013; C.J. Tang et al. 2020; Wildes et al. 2019). Five trials were rated as having a moderate risk of bias.

BIS-guided anesthesia resulted in a very small but statistically significant difference in incidence of delirium compared with usual anesthesia (8 RCTs, N=3,956; 19.8% vs. 23.8%, RR 0.78, 95% CI 0.61–0.98, I²=64%) (Chan et al. 2013; Kunst et al. 2020; Radtke et al. 2013; Sieber et al. 2010, 2018; C.J. Tang et al. 2020; Wildes et al. 2019; Zhou et al. 2018). The findings did not differ significantly by type of surgery or study risk of bias (interaction *P*-values 0.15). No BIS-guided anesthesia trial reported severity of delirium, but depth of anesthesia did not alter the duration of delirium significantly (N=331; MD -0.01 days, 95%

CI -0.35–0.33, I²=0% [Sieber et al. 2010; Wildes et al. 2019]). There was also no significant difference in length of hospital stay (6 trials, N=3,665; MD -0.10, 95% CI -0.82–0.61, I²=78%) or length of ICU stay (N=1,727; MD 0.03 days, 95% CI -0.06–0.12, I²=11%) between BIS-guided and usual anesthesia care. Mortality across five trials did not differ significantly between BIS-guided anesthesia and usual anesthesia care (N=2,785; 2.8% vs. 4.1%, RR 0.56, 95% CI 0.24–1.30, I²=50%) (Kunst et al. 2020; Radtke et al. 2013; Sieber et al. 2010, 2018; Wildes et al. 2019). In terms of post-operative complications or adverse effects, findings were mixed. One trial (N=902) reported significantly fewer post-operative complications in the BIS-guided anesthesia group compared with the usual care group (10.7% vs. 20.8%, P=0.01) (Chan et al. 2013), and another trial comparing usual anesthesia care plus anesthesia depth monitoring and nociception reported fewer patients experienced at least 1 episode of hypotension with anesthesia depth monitoring than in the usual care group (18 vs. 36, P=0.001) (Cotae et al. 2021). In contrast, one trial found no difference in the number of patients with one or more complications (N=114; 46% light sedation vs. 53% deep sedation, P=0.57) (Sieber et al. 2010), and another trial found no difference in the risk of experiencing any adverse event (N=204; 14% intervention vs. 16% standard care, RR 0.88, 95% CI 0.45–1.69) (C.J. Tang et al. 2020).

Additional Anesthetic Comparisons

26 trials (N=5,819) evaluated other anesthesia comparisons: three of xenon gas versus sevoflurane gas (Al Tmimi et al. 2020; Coburn et al. 2018; Stoppe et al. 2013); four of sevoflurane gas versus propofol (Ishii et al. 2016; Lurati Buse et al. 2012; X. Mei et al. 2020; Nishikawa et al. 2004); one of desflurane versus propofol (Tanaka et al. 2017); three of ketamine versus normal saline (Avidan et al. 2017; Hollinger et al. 2021; Hudetz et al. 2009); nine of a form of regional anesthesia versus placebo, general anesthesia, or opioid therapy (L. Jin et al. 2020; Li et al. 2021; Mann et al. 2000; Mouzopoulos et al. 2009; Papaioannou et al. 2005; Strike et al. 2019; Unneby et al. 2020; Uysal et al. 2020; Williams-Russo et al. 1995); one of a pecto-intercostal fascial plane block versus placebo (Khera et al. 2021), one of a deep versus standard neuromuscular blockade (rocuronium) (C.S. Oh et al. 2021), one of anaortic offpump coronary bypass with total arterial revascularization versus carbon dioxide field flooding or use of vein grafts (Szwed et al. 2021), one of unilateral spinal anesthesia versus combined lumbar-sacral plexus block plus general anesthesia (Tang et al. 2021); and two of high-versus low-pressure systemic perfusion (Hu et al. 2021; Siepe et al. 2011). Cardiac surgery was performed in six trials (Hudetz et al. 2009; Khera et al. 2021; Siepe et al. 2011; Stoppe et al. 2013; Strike et al. 2019; Szwed et al. 2021), orthopedic surgery in seven trials (Coburn et al. 2018; X. Mei et al. 2020; Mouzopoulos et al. 2009; Tanaka et al. 2017; Unneby et al. 2020; Uysal et al. 2020; Williams-Russo et al. 1995), abdominal surgery in three trials (Ishii et al. 2016; Mann et al. 2000; Nishikawa et al. 2004), one trial of esophageal surgery (L. Jin et al. 2020), and a variety of major surgeries in seven trials (Avidan et al. 2017; Hu et al. 2021; Li et al. 2021; Lurati Buse et al. 2012; C.S. Oh et al. 2021; Papaioannou et al. 2005; Tang et al. 2021). Five trials were rated as having a low risk of bias, one as having a high risk of bias, and the remainder were rated as having moderate risk of bias.

None of the pooled analyses for other anesthetic comparisons showed significant differences between groups. On the basis of three trials, incidence of delirium was not reduced by the use of ketamine (N=821; RR 0.50, 95% Cl 0.21–1.71, l²=58%) (Avidan et al. 2017; Hollinger et al. 2021; Hudetz et al.

2009). A subgroup analysis was not possible with only three studies, but the two studies that enrolled patients undergoing a variety of types of surgeries clearly showed no effect of ketamine, whereas the single study of patients undergoing cardiac surgery did show a benefit (*N*=58; 3.4% vs. 31%, RR 0.11, 95% CI 0.02–0.82 [Hudetz et al. 2009]). The incidence of delirium did not differ significantly in comparisons of xenon gas with sevoflurane gas, and sevoflurane or desflurane with propofol, regardless of surgery type (Coburn et al. 2018; Ishii et al. 2016; Lurati Buse et al. 2012; X. Mei et al. 2020; Nishikawa et al. 2004; Stoppe et al. 2013; Tanaka et al. 2017).

Eight trials compared regional/epidural anesthesia with general anesthesia (L. Jin et al. 2020; Papaioannou et al. 2005; Unneby et al. 2020; Williams-Russo et al. 1995), opioids (Mann et al. 2000; Strike et al. 2019), IV acetaminophen (Uysal et al. 2020), or placebo (block given for pain prophylaxis [Mouzopoulos et al. 2009]). A pooled analysis of two trials that compared paravertebral block in cardiac surgery (Strike et al. 2019) or in esophagectomy (L. Jin et al. 2020) found less delirium with the block (N=211; 12.3% vs. 26.7%, RR 0.48, 95% CI 0.26–0.88). One trial enrolled hip fracture patients aged 70 years or older who were deemed to be at intermediate or high risk for delirium and reported that prophylactic fascia iliac compartment block was associated with lower delirium incidence than placebo (10.8% vs. 23.8%, RR 0.45, 95% CI 0.24–0.87) (Mouzopoulos et al. 2009). The difference in absolute incidence of delirium post-operatively was large (14%) in a small study (N=92) of high-pressure systemic perfusion compared with low-pressure perfusion, but the difference was not statistically significant (Siepe et al. 2011). In one cardiac surgery trial, there was no difference between a pecto-intercostal fascial plane block and placebo for midline sternotomy pain on delirium incidence (7.5% vs. 12.5%, RR 0.60, 95% CI 0.15–2.34) (Khera et al. 2021). In another cardiac surgery trial, however, anaortic off-pump coronary bypass with total arterial revascularization resulted in a lower incidence of delirium than offpump coronary artery bypass with carbon dioxide surgical field flooding (12.7% vs. 32.8%, RR 0.39, 95% CI 0.19–0.81) (Szwed et al. 2021). In the same trial, anaortic off-pump coronary bypass with total arterial revascularization also resulted in less delirium than conventional off-pump coronary bypass with vein grafts (12.7% vs. 35.9%, RR 0.35, 95% CI 0.17–0.73), whereas there was no difference in delirium incidence between the two comparisons groups (RR 0.91, 95% CI 0.57–1.48) (Szwed et al. 2021). In a trial in patients having non-cardiothoracic surgery with general anesthesia, maintaining a high mean arterial pressure versus a low mean arterial pressure resulted in fewer patients with delirium (11.6% vs. 25.2%, RR 0.46, 95% CI 0.28–0.77) (Hu et al. 2021). There was also a lower incidence of delirium in patients having noncardiac thoracic or abdominal surgery with general anesthesia plus an epidural versus general anesthesia alone (1.8% vs. 5.0%, RR 0.35, 95% Cl 0.20–0.63) (Li et al. 2021). In patients with hip fracture, there was no difference in delirium incidence between unilateral spinal anesthesia compared with combined lumbar-sacral plexus block plus general anesthesia (10.9% vs. 14.3%, RR 0.76, 95% CI 0.28–2.06) (Tang et al. 2021). In the trial in patients having a hip replacement, patients received a deep neuromuscular blockade with additional rocuronium or a standard neuromuscular blockade and found no difference in delirium incidence base on rocuronium dose (17.1% vs. 34.1%, RR 0.50, 95% CI 0.23-1.11) (C.S. Oh et al. 2021).

In terms of other delirium outcomes, there was no difference in delirium duration between intraoperative xenon gas and servoflurane gas in a pooled analysis of two trials (*N*=108; MD -0.08 days, 95% CI, -0.69–0.54) (Al Tmimi et al. 2020; Coburn et al. 2018). In a comparison of fascial iliac compartment block and placebo, the duration of delirium was significantly shorter in study participants who experienced it (*N*=36; MD -5.75 days, 95% CI -9.85 to -1.97) (Mouzopoulos et al. 2009). All patients received the same epidural anesthesia during surgery in this study. In a trial in patients having noncardiothoracic surgery with general anesthesia, maintaining a high mean arterial pressure versus a low mean arterial pressure resulted in a shorter duration of delirium (median 2 days vs. 3 days, *P*=0.006) (Hu et al. 2021). The iliac block group also had significantly lower severity of delirium (moderate size of effect), on the basis of the highest value of the DRS-R-98 (14.34 vs. 18.61 in the placebo group, MD 4.27, 95% CI 1.8–5.64) in one small trial (*N*=11; Mouzopoulos et al. 2009). Delirium severity was also lower with sevoflurane gas than with propofol in a small trial (*N*=50; Nishikawa et al. 2004) of patients having abdominal surgery (3 points to 5 points on post-operative days 2 to 3) but not different between groups in a trial (*N*=209; X. Mei et al. 2020) of patients having orthopedic surgery. A trial comparing xenon gas with servoflurane gas in cardiac surgery patients also reported no difference in delirium severity postoperatively (Al Tmimi et al. 2020).

Length of ICU stay after cardiac surgery was significantly shorter with paravertebral block compared with patient-controlled opioid analgesia in a single small study (N=44; MD -5.73 days, 95% CI -8.64 to -2.82) (Strike et al. 2019). Other trials in patients undergoing cardiac surgery found no differences on duration of ICU stay between xenon gas and sevoflurane gas (2 trials, N=220; MD -0.17 days, 95% CI -0.63–0.29 [Al Tmimi et al. 2020; Stoppe et al. 2013]), between ketamine 0.5 mg/kg and normal saline (1 trial, N=58; MD 0.00 days, 95% CI -0.81–0.81 [Hudetz et al. 2009]), or between high-pressure perfusion and low-pressure perfusion (1 trial, N=92; -0.80 days, 95% CI -2.11–0.51 [Siepe et al. 2011]). One trial of pecto-intercostal fascial plane block versus placebo for midline sternotomy pain found no difference between groups in duration of ICU stay (MD -0.30 days, 95% CI -0.98–0.38) or in length of hospital stay (MD 0.83 days, 95% CI, -0.51–2.18) (Khera et al. 2021). In noncardiac surgery patients who received epidural plus general anesthesia versus general anesthesia alone, the duration of ICU stay was slightly shorter (HR 1.30, 95% CI 1.05–1.62, P=0.017) but the hospital length of stay did not differ (HR 1.01, 95% CI 0.92–1.12, P=0.778) (Li et al. 2021).

One trial found shorter hospital stays with paravertebral block in esophagectomy compared with patient-controlled systemic opioid analgesia (*N*=167; MD -0.90 days, 95% CI -1.24 to -0.55) (L. Jin et al. 2020) although there was no difference in hospital stay with paravertebral block versus patient controlled systemic opioids in cardiac surgery (*N*=44; MD 0.80 days, 95% CI -3.85–5.45) (Strike et al. 2019) or with femoral nerve block compared with conventional pain management in hip surgery (*N*=231; MD 1.6 days, 95% CI -2.77–5.97) (Unneby et al. 2020). In a pooled analysis of three trials (*N*=476) of xenon gas versus sevoflurane gas, there was also no difference in length of hospital stay (MD -0.28 days, 95% CI -1.24–0.67) (Al Tmimi et al. 2020; Coburn et al. 2018; Stoppe et al. 2013). Similarly, one trial each of ketamine versus normal saline (*N*=58; MD 1.00 days, 95% CI -2.67–3.47 [Siepe et al. 2009]); high-versus low-pressure systemic perfusion (*N*=92; MD 0.40 days, 95% CI -2.67–3.47 [Siepe et al. 2011]); and sufentanil plus a bupivacaine epidural followed by sufentanil plus bupivacaine in a patient-controlled anesthesia (PCA) epidural pump versus sufentanil IV followed by a PCA morphine pump (*N*=64; MD -0.50 days, 95% CI -3.26–2.26 [Mann et al. 2000]) found no differences between comparisons in hospital stay.

One trial in noncardiac surgery comparing high mean arterial pressure with low mean arterial pressure also found no difference in length of hospital stay (MD 0 days, 95% CI -4.24–4.24) (Hu et al. 2021).

Regarding mortality and adverse events, one trial each reported no deaths with xenon gas or sevoflurane gas (*N*=30; Stoppe et al. 2013) or with high- or low-pressure systemic perfusion (*N*=92; Siepe et al. 2011) among cardiac surgery patients. There was no difference in reported deaths in one trial each of: xenon gas versus sevoflurane gas in orthopedic surgery patients (*N*=256; 0% vs. 4.5%, RR 0.10, 95% CI 0.01–1.73 [Coburn et al. 2018]), sevoflurane gas versus propofol in patients who underwent a variety of surgeries (*N*=385; 13.6% vs. 11.4%, RR 1.19, 95% CI 0.70–2.02 [Lurati Buse et al. 2012]), and paravertebral block versus patient controlled systemic opioids in cardiac surgery patients (*N*=44; 4.5% vs. 9.1%, RR 0.50, 95% CI 0.05–5.12 [Strike et al. 2019]). There were no differences between high mean arterial pressure and low mean arterial pressure in in-hospital mortality (0% vs. 0.6% [Hu et al. 2021]) and between general anesthesia plus epidural versus general anesthesia alone in 30-day mortality (0.7% vs. 0.2%) after noncardiac surgery (Li et al. 2021). There was also no difference between off-pump coronary artery bypass methods (1.5% vs. 1.5% vs. 0%) in in-hospital mortality after cardiac surgery (Szwed et al. 2021). An additional study reported that one death occurred but did not report what intervention the patient received (Khera et al. 2021).

There was an increased incidence of systolic hypotension in patients (N=64) undergoing major abdominal surgery with sufentanil plus a bupivacaine epidural followed by sufentanil plus bupivacaine in a PCA epidural pump versus sufentanil IV followed by a PCA morphine pump (16% vs. 0%, P<0.05) (Mann et al. 2000). Significant differences in adverse events (114 vs. 124, P=0.27) or severe adverse events (13 vs. 22, P=0.14) were not found between study participants who received xenon gas or sevoflurane gas (N=256; Coburn et al. 2018). Another trial (N=30) also reported no difference in the number of participants who experienced any adverse event (40% vs. 53%, P=0.46) between xenon gas and sevoflurane gas (Stoppe et al. 2013). There was also no difference in the mean number of complications in one trial of femoral nerve block versus conventional pain management in hip fracture surgery (N=236, mean 5.6 vs. 5.7, P=0.841) (Unneby et al. 2020). There were no differences in adverse events (Hu et al. 2021; Szwed et al. 2021; Tang et al. 2021) or in "intervention-related" adverse events (Khera et al. 2021) between intervention and control groups post-operatively. One trial reported that intra-operative hypotension was more likely with combined general and epidural anesthesia, whereas intra-operative and post-operative hypertension was more likely with general anesthesia alone in patients undergoing noncardiac surgery (Li et al. 2021).

GABAergic Anticonvulsant Medications

Among post-operative populations, four trials (*N*=1,042) assessed gabapentin (3 trials; Dighe et al. 2014; Leung et al. 2006, 2017) and pregabalin (1 trial; Farlinger et al. 2018) compared with placebo. For two of the studies (Dighe et al. 2014; Farlinger et al. 2018), data on delirium was obtained through chart review and post-hoc analysis of trials intended to assess pain (Clarke et al. 2014, 2015). The patients were all undergoing orthopedic surgeries, with three enrolling patients with a mean age 60 to 63 (Dighe et al. 2014; Farlinger et al. 2018; Leung et al. 2006), and one enrolling patients over 65 years (mean 73 years [Leung et al. 2017]). Gabapentin was dosed at 600 mg to 900 mg daily, and pregabalin was dosed at 100 mg daily given 1 to 2 hours pre-operatively, and then for 3 days to 4 days post-operatively. All four trials reported delirium incidence, with two trials using the CAM instrument (Leung et al. 2006, 2017) and two using unspecified methods of chart review (Dighe et al. 2014; Farlinger et al. 2018). Assessment time was 3 days to 4 days after surgery. The incidence of delirium was not different compared with placebo (18% vs. 17%, RR 1.00, 95% CI 0.62–1.63, I²=18%). In one trial of gabapentin, analyses stratified by type of surgery or anesthesia did not alter the findings on incidence of delirium (Leung et al. 2017). In patients who developed delirium, its duration was 1 day in the two post-hoc analyses that reported it (Dighe et al. 2014; Farlinger et al. 2018). None of the studies reported severity of delirium. Three trials reported on hospital length of stay, with no difference between groups (MD 0.16 days, 95% CI -0.13–0.46, I²=0%) (Dighe et al. 2014; Farlinger et al. 2018; Leung et al. 2017). Regarding mortality and adverse events in post-operative populations, there were no deaths in any of the trials. Incidences of sedation and dizziness were reported as not significantly different in all four trials (data could not be pooled due to heterogeneous reporting).

Cholinesterase Inhibitors

Three moderate risk of bias trials (*N*=232) assessed cholinesterase inhibitors compared with placebo or no treatment to prevent delirium in post-operative patients (Gamberini et al. 2009; Sampson et al. 2007; Youn et al. 2017). One enrolled older patients undergoing elective cardiac surgery (Gamberini et al. 2009), and two enrolled patients undergoing orthopedic surgeries (1 hip replacement, 1 hip fracture in patients with cognitive impairment at baseline) (Sampson et al. 2007; Youn et al. 2017). Rivastigmine was used in two trials—one with oral dosing of 1.5 mg 3 times a day starting the evening before surgery and continuing for 6 days, and the other used a transdermal patch (4.6 mg) daily, starting 2 days to 3 days prior to surgery and continuing for 7 days (Gamberini et al. 2009; Youn et al. 2017). The third trial used donepezil 5 mg daily starting immediately following surgery and continuing for 3 days (Sampson et al. 2007). In the trial of rivastigmine patch, patients ages 65 and older were included if their cognitive status was judged to be impaired, as reflected by scores of 10 to 26 on the MMSE and 3 to 5 on the Global Deterioration Scale (Youn et al. 2017).

A pooled analysis of the three trials did not find a significant impact on incidence of delirium (24% vs. 35%, RR 0.56, 95% CI 0.23–1.37, I^2 =66%). A subgroup analysis by type of surgery found reduction in incidence on the basis of the combined estimate from the two orthopedic surgery studies (14% vs. 42%, RR 0.34, 95% CI 0.16–0.73, I^2 =0% [Sampson et al. 2007; Youn et al. 2017]); however, the *P*-value for the subgroup interaction term was not statistically significant (*P*=0.25) and it is not clear whether there is a meaningful difference between orthopedic and cardiac surgery.

Two trials reported on the duration of delirium, with only small, non-significant differences between groups (Gamberini et al. 2009; Sampson et al. 2007). In one trial, rivastigmine resulted in a median duration of 2.5 days (range 1 to 5) compared with 3 days (range 1 to 6) in the placebo group (Gamberini et al. 2009). In the other, donepezil resulted in a median duration of 1.5 days compared with 1.8 days in the placebo group (MD -0.3 days, 95% CI -0.38–1.41) (Sampson et al. 2007).

The trial of rivastigmine patch in orthopedic surgery patients with cognitive impairment at baseline reported on the severity of delirium (Youn et al. 2017). Using the DRS, this trial found that severity was significantly lower in the rivastigmine group (DRS 2.2 vs. 6.2, *P*=0.03).

Rivastigmine and placebo groups did not differ in length of ICU stay or overall hospital stay in older cardiac surgery patients (median 2 days for ICU stay and median 13 days for hospital stay) (Gamberini et al. 2009). The trial of patients undergoing hip replacement (mean age 68) found a significantly lower length of hospital stay with donepezil than placebo (mean 9.9 days vs. 12.1 days, MD -2.19, 95% CI - 0.39–4.78) (Sampson et al. 2007). However, this study was conducted in England, from 2003 to 2004, and the clinical relevance of this finding to the United States is limited.

Similar numbers of patients in the trial of rivastigmine in cardiac surgery patients required rescue medication treatment with haloperidol (32% vs. 30%, RR 0.96, 95% CI 0.55–1.67) (Gamberini et al. 2009). This trial also reported no differences between groups on measures of cognition, such as the MMSE change from baseline to day 2 or minimum value, or the Clock Drawing test.

Mortality was rare in the one trial that reported it (1 of 59 vs. 1 of 61) (Gamberini et al. 2009). All three trials reported on adverse events that are typical with cholinesterase inhibitors, mainly gastrointestinal effects, with no differences between groups (Gamberini et al. 2009; Sampson et al. 2007; Youn et al. 2017). One trial reported there were no serious adverse events (Sampson et al. 2007).

Opioid Medications

Three trials (N=297) assessed the effect of opioids on post-operative delirium (Beaussier et al. 2006; Liu et al. 2017; Wang et al. 2019). Trials enrolled an older population undergoing major surgery. Incidence of delirium was not significantly different between pre-operative intrathecal morphine 300 µg followed by post-operative PCA systemic morphine 0.3 mg and subcutaneous saline in a trial (N=52; Beaussier et al. 2006) of patients over 70 years undergoing major abdominal surgery (34.6% vs. 38.5%, RR 0.90, 95% CI 0.44–1.85). Length of hospital stay and mortality were also not different between groups in this study (length of stay MD -0.50 days, 95% CI -1.51–0.51; and mortality 0% vs. 3.7%, RR 0.35, 95% CI 0.02–0.12) (Beaussier et al. 2006). Delirium incidence was not significantly different between post-operative flurbiprofen axetil 300 mg plus sufentanil 150 µg in a PCA pump for 3 days and sufentanil 150 µg alone in a PCA pump in patients over 65 years undergoing major noncardiac surgery (N=140, 12.9% vs. 18.6%, RR 0.69, 95% CI 0.32–1.51) (Wang et al. 2019). In a comparison of fentanyl versus remifentanil versus placebo, where all three groups received midazolam, there was no difference in delirium incidence between fentanyl versus placebo (n=70; 40% vs. 57%, RR 0.70, 95% CI 0.42–1.15) or between fentanyl and remifentanil (n=70; 40% vs. 23%, RR 1.75, 95% CI 0.84–3.64), but there was less delirium with remifentanil compared with placebo (n=70; 23% vs. 57%, RR 0.40, 95% CI 0.20–0.78) (Liu et al. 2017). There was no difference between fentanyl, remifentanil, and placebo on duration of delirium or on length of hospital stay (Liu et al. 2017).

Steroid Medications

Four placebo-controlled trials in patients undergoing cardiac surgery (*N*=5,151)—three of dexamethasone (*n*=4,654; Dieleman et al. 2012; Kluger et al. 2021; Mardani and Bigdelian 2012) and one of methylprednisolone (*n*=498; Royse et al. 2017)—assessed steroids for decreasing inflammation and preventing delirium. The first dose of steroids was given pre-operatively (Kluger et al. 2021; Mardani and Bigdelian 2012), at induction (Royse et al. 2017), or intra-operatively (Dieleman et al. 2012). Dose regimens consisted of 1 dose (Dieleman et al. 2012), 1 dose (Royse et al. 2017), or 1 dose pre-

operatively followed by 3 days of steroid therapy (Mardani and Bigdelian 2012). Two trials were rated as having a moderate risk of bias, one as having a low risk of bias, and one as having a high risk of bias.

The pooled analysis of delirium incidence was significantly lower with steroids compared with placebo (5 trials, N=5,269; 9.2% vs. 12.0%, RR 0.76, 95% CI, 0.65–0.89, I²=0%); however, these results are driven by one large trial (N=4,482; Dieleman et al. 2012) of a single dose of dexamethasone 1 mg/kg given intraoperatively in patients having cardiac surgery with cardiopulmonary bypass. In one of the sites that participated in this large multicenter trial (n=737), patients who developed delirium showed no significantly difference in its duration regardless of whether they received dexamethasone or placebo (median 2 days vs. 2 days, P=0.45) (Sauer et al. 2014). One trial in hip fracture patients found severity of delirium, measured with the MDAS, was significantly lower in the dexamethasone group (N=14; median 5 vs. 9, P=0.010) but no difference in delirium incidence at post-operative day 3 (15% vs. 23%, P=0.360) (Kluger et al. 2021). An additional trial (N=117) of a single, pre-operative IV dose of 125 mg methylprednisolone in older hip fracture patients showed no significant difference in delirium severity score over the first 3 post-operative days as measured by the CAM ([range]) cumulative between the methylprednisolone and placebo groups (median 1 [IQR 0–6] vs. median 2 [IQR 0–10], P=0.294) (Clemmesen et al. 2018).

Two trials of dexamethasone reported duration of ICU stay. One trial (*N*=4,482; Dieleman et al. 2012) of a single dose of intra-operative dexamethasone 1 mg/kg versus placebo found a statistically shorter ICU stay with dexamethasone (MD -0.013 days, 95% CI, -0.023 to -0.004), but the difference is very small (19 minutes) and not likely to be clinically significant. The second trial of dexamethasone 8 mg preoperatively and 24 mg daily for 3 days post-operatively also found shorter ICU stays with dexamethasone (*N*=93; MD -0.82 days, 95% CI -1.36 to -0.29) (Mardani and Bigdelian 2012). The same two trials also reported shorter hospital stays with dexamethasone (*N*=4,482, MD -0.33 days, 95% CI -0.59 to -0.07 [Dieleman et al. 2012]; and *N*=93, MD -0.71 days, 95% CI -1.28 to -0.14 [Mardani and Bigdelian 2012]). The pooled analysis indicated a small but significant difference, favoring steroids (4 trials, *N*=4,561; MD -0.40, 95% CI -0.63 to -0.1, I²=0%). Stratifying by surgery type (cardiac vs. orthopedic) did not alter the findings.

A single site analysis from a large multicenter trial (Dieleman et al. 2012) reported on mortality and found no significant difference with a single dose of dexamethasone 1 mg/kg versus placebo (1.1% vs. 0.54%, RR 2.02, 95% CI 0.37–10.94) (Sauer et al. 2014). The overall multicenter trial of single-dose dexamethasone reported a primary composite outcome of death, stroke, renal failure, and respiratory failure, finding no significant difference (7% vs. 8.5%, RR 0.83, 95% CI 0.67–1.01) (Dieleman et al. 2012). Infection risk was reported in two studies of dexamethasone, with different regimens and different results. In the large multicenter trial, there was a statistically significantly lower risk of any post-operative infection with dexamethasone (9.5% vs. 14.8%, RR 0.64, 95% CI 0.54–0.75) than with placebo (Dieleman et al. 2012). A second trial of dexamethasone (pre-operative 8 mg and 24 mg daily post-operatively for 3 days) did not find a significant difference in infection risk (*N*=93; 7.0% vs. 4.0%, RR 1.74, 95% CI 0.31–9.96) (Mardani and Bigdelian 2012). The study in hip fracture patients reported low incidence of mortality at 30 days (0 in dexamethasone vs. 1 in placebo) and between 1 and 6 months (1 dexamethasone vs. 0 placebo) (Kluger et al. 2021). Although adverse events occurred more frequently in

the dexamethasone group, differences were not statistically significant (hyperglycemia 15% vs. 11%, *P*=0.526; infection 20% vs. 8%, *P*=0.193) (Kluger et al. 2021).

Additional Medications

Thirteen trials (N=1,916) in post-operative patients studied other drugs, with generally one trial per specific drug class or type of intervention (Bielza et al. 2020; Deng et al. 2020; Kim et al. 1996; Y.N. Li et al. 2017; Mohammadi et al. 2016; Moslemi et al. 2020; Nakamura et al. 2021; Papadopoulos et al. 2014; Robinson et al. 2014; Rubino et al. 2010; Saager et al. 2015; Spies et al. 2021; Xin et al. 2017). The classes of drugs were calcium channel blocker, nonsteroidal anti-inflammatory drug, antiemetic, antihistamine (1 histamine-1 and 1 histamine-2 blocker), central alpha agonist, an amino acid, hypertonic saline, insulin clamping, iron, thiamine, physostigmine, and methylene blue. All but one study compared the drug with a placebo or usual care (insulin clamp); the study of histamine-1 blockers was a head-to-head trial. These trials are summarized in Table G-2 below.

Study Risk of Bias Sample size	Drug and dose	Duration (follow-up time)	Population	Delirium incidence ^a
Study: Kim et al. 1996 RoB: Moderate N: 127	Cimetidine 900 mg/day IV vs. ranitidine 150 mg/day IV	Post-operative until discharge (mean 8.8 days)	Age: Adults Surgery type: Cardiac	25% vs. 25%, adjusted OR 0.72, 95% CI 0.29–1.80
Study: Rubino et al. 2010 RoB: Moderate N: 30	Clonidine 0.5 mcg/kg IV bolus followed by 1-2 mcg/kg/h infusion vs. placebo	During weaning from mechanical ventilation (POD 7)	Age: Adults Surgery type: Cardiothoracic	40% vs. 33.3% (<i>P></i> 0.05)
Study: Mohammadi et al. 2016 RoB: Moderate <i>N</i> : 45	Cyproheptadine 4 mg three times daily vs. placebo	7 days (POD 7)	Age: Adults Surgery type: Noncardiac, ICU	15% vs. 35%, adjusted OR 0.14, 95% CI 0.09–0.86, <i>P</i> =0.04; severity DRS: NSD on days 1-7
Study: Saager et al. 2015 RoB: Low N: 203	Insulin clamp, titrated to blood glucose 80–110 mg/dL vs. usual care	Intra- operatively only (POD 5)	Age: Adults Surgery type: Cardiac	28% vs. 14%, RR 1.89, 95% CI 1.06–3.37, <i>P</i> =0.03
Study: Xin et al. 2017 RoB: Moderate <i>N</i> : 120	Hypertonic saline (7.5%) 4 ml/kg vs. normal saline	Pre-operatively only (POD 3)	Age: >65 years Surgery type: Orthopedic, hip fracture	12% vs. 38%, OR 0.13, 95% Cl 0.04–0.41, <i>P</i> =0.001

Table G-2. Miscellaneous drugs for prevention of delirium in surgical patients post-operatively

Study Risk of Bias Sample size	Drug and dose	Duration (follow-up time)	Population	Delirium incidence ^a
Study: Robinson et al. 2014 RoB: Low <i>N</i> : 301	L-tryptophan 1 gm three times daily vs. placebo	3 days (mean POD 5)	Age: >60 years Surgery type: Miscellaneous, with ICU stay	40% vs. 37% (<i>P</i> =0.60); duration: 2.9 days vs. 2.4 days (<i>P</i> =0.17)
Study: Li Y.N. et al. 2017 RoB: High <i>N</i> : 30	Nimodipine 7.5 mg/kg/hour IV vs. saline	Pre-operatively only (POD 7)	Age: Adults Surgery type: Orthopedic, spine	7% vs. 17% (<i>P=</i> 0.017) (from graph)
Study: Papadopoulos et al. 2014 RoB: Moderate <i>N</i> : 106	Ondansetron 8 mg IV daily vs. placebo	5 days (POD 5)	Age: >40 years Surgery type: Orthopedic, hip fracture	POD 2: 36% vs. 53% (P=0.07); POD 3: 16% vs. 42% (P=0.003); POD 4: 2% vs. 27% (P<0.001); POD 5: 0% vs. 27% (P<0.001)
Study: Bielza et al. 2020 RoB: Low <i>N</i> : 253	Iron sucrose 200 mg IV days 1,3,5) vs. normal saline	5 days (POD 5)	Age: >70 years Surgery type: Orthopedic, hip fracture	12.8% vs. 13.5% (<i>P</i> =0.871)
Study: Moslemi et al. 2020 RoB: Moderate <i>N</i> : 96	Thiamine 200 mg IV daily vs. saline	3 days (POD 3)	Age: Adults Surgery type: Gastrointestinal, ICU	6.2% vs. 14.6% (<i>P</i> =0.15)
Study: Nakamura et al. 2021 RoB: Moderate <i>N</i> : 64	Thiamine 200 mg IV vs. placebo	30 days (post- transplantation)	Age: Adults Surgery type: Post-operative, cancer	28% vs. 21% (<i>P</i> =0.73)
Study: Deng et al. 2020 RoB: Moderate N: 248	Methylene blue 2 mg/kg IV vs. normal saline	5 days (POD 5)	Age: Elderly Surgery type: Noncardiac, non- neurosurgical	7.4% vs. 24.2% (P<0.001)

Study Risk of Bias Sample size	Drug and dose	Duration (follow-up time)	Population	Delirium incidence ^a
Study: Spies et al. 2021 RoB: Low N: 261	Physostigmine 0.02 mg/kg IV bolus, then 0.01 mg/kg infusion vs. placebo	1 year (POD 7, 90, and 365)	Age: Adults Surgery type: Intra-operative, liver	20% vs. 15% (<i>P</i> =0.334)

^a Results as reported by study authors.

CI=confidence interval; DRS=Delirium Rating Scale; ICU=intensive care unit; IV=intravenous; NSD=no significant difference; OR=odds ratio; POD=post-operative day; RoB=risk of bias; RR=risk ratio.

Sources. Bielza et al. 2020; Deng et al. 2020; Kim et al. 1996; Y.N. Li et al. 2017; Mohammadi et al. 2016; Moslemi et al. 2020; Nakamura et al. 2021; Papadopoulos et al. 2014; Robinson et al. 2014; Rubino et al. 2010; Saager et al. 2015; Spies et al. 2021; Xin et al. 2017.

Additional Pharmacological Interventions for Treatment of Delirium

Cholinesterase Inhibitors

In a single study of the cholinesterase inhibitor rivastigmine, the trial was halted after enrolling 104 of a planned 440 patients because of higher mortality compared with placebo, when each were used in addition to usual care with haloperidol in an ICU setting (22% vs. 8%, P=0.07) (van Eijk et al. 2010). However, mortality at 90-day follow-up did not show a statistically significant increase with rivastigmine (33% vs. 22%, P=0.14). In the patients who were enrolled prior to study cessation, delirium duration seemed longer with the cholinesterase inhibitor (median 5 days vs. 3 days, P=0.06), and severity was greater when measured by the ratio of Delirium Severity Index and days with delirium (2.3 vs. 2.0, P=0.004). Rivastigmine was also associated with longer ICU stays (median 15 days vs. 8 days, P<0.0001) and a trend towards longer hospital stays (median 29 days vs. 25 days, P=0.06). Rescue medication use did not differ between groups.

In general inpatients, a very small study (*N*=15; Overshott et al. 2010) with high risk of bias compared rivastigmine with placebo and reported a statistically significant difference in delirium response (100% vs. 43% became CAM-negative, *P*=0.03). Mortality was also lower in the treatment arm (0 deaths vs. 4 deaths, *P*=0.03). In this trial, there was no significant difference with rivastigmine in delirium duration, and only one adverse event occurred. Three patients in the placebo group needed rescue medication, while none were reported in the treatment group.

Benzodiazepine Antagonist

Twenty-two ICU patients were included in a placebo-controlled trial of the benzodiazepine antagonist flumazenil (Schomer et al. 2020). Eligible patients had hypoactive delirium associated with benzodiazepine treatment in the ICU and also responded with decreased sedation to a test dose of flumazenil before random assignment. The study suggested a higher rate of delirium resolution with flumazenil compared with placebo, but the difference was not statistically significant (90% vs. 70%, P=0.2). The effect of flumazenil on delirium- and coma-free days was also not significant (median 12.7 vs. 9.2 out of 14 days, P=0.079). ICU length of stay and adverse events were similar with and without treatment.

Appendix H. Evidence Tables for Additional Studies Reviewed

Additional Nonpharmacological Interventions for Prevention of Delirium

Red Blood Cell Transfusion

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		and attrition rates	Bias
name		interventions, duration,	criteria			
		and follow-up				
Gregersen et	Design: RCT	Randomized N: 179	Inclusion: Age ≥65 years,	Mean (SD) age: 87.6 (6.5)	Main outcomes: Liberal blood	Moderate
al. 2015);	Setting:	Analyzed N: 179	admitted from nursing homes	Female %: 75	transfusion prevents	
Blandfort et	Postop, hip	Intervention 1 (N=90):	for hip fracture surgery, and	Race %: NR	development of delirium on day	
al. (2017)	Country:	Liberal red blood cell	postop hemoglobin levels	Delirium %: Unclear	10, compared with restrictive	
(post hoc	Denmark	transfusion strategy	between 9.7 (6 mmol/L) and	Modified Barthel Index:	blood transfusion (OR 0.41, 95 %	
analysis)	Funding:	(hemoglobin <11.3 g/dL; 7	11.3 g/dL (7 mmol/L) during	100 to 90: 12%, 89 to 50:	CI 0.17 to 0.96).	
	University	mmol/L)	the first 6 postop days	68%, 49 to 0: 20%	Attrition: 9% vs. 9%	
		Intervention 2 (N=89):	Exclusion: Active cancer,	Dementia %: 56		
		Restrictive red blood cell	pathological fracture, fluid	Postop %: 100		
		transfusion strategy	overload, or irregular	Cancer %: NR (active cancer		
		(hemoglobin <9.7 g/dL; 6	erythrocyte antibodies	excluded)		
		mmol/L)				
		Duration: Hemoglobin				
		measured for 30 days after				
		surgery with transfusions				
		performed as necessary				
		Follow-up (days): 90				
Gruber-	Design: RCT	Randomized N: 139	Inclusion: Age ≥50 years	Mean (SD) age: 81.46 (9.09)	Main outcomes: There were no	Moderate
Baldini et al.	Setting:	Analyzed N: 138	undergoing hip fracture	Female %: 73	significant differences in the	
(2013)	Postop, hip	Intervention 1 (N=67):	surgery with a hemoglobin of	Race %:	prevalence of delirium at any	
	Country: U.S.	Liberal; 1 unit of packed	<10 g/dL within 3 days after	-Caucasian: 90.6	time point during the study with	
	Funding:	red blood cells and	surgery	-Black/African American: 8.7	the largest difference on day 1	
	Mixed	additional blood given to	Exclusion: Unable to walk	-Asian: NR	post randomization (31% vs. 40%,	
		hemoglobin >10 g/dL	without human assistance	-Other: NR	p>0.29).	
		Intervention 2 (N=72):	prior to hip fracture, declined	Delirium %: 24.2	Attrition: 1% vs. 0%	
		Restrictive; blood given to	blood transfusions, multiple	Mean ASA: 2.9		
		hemoglobin >8 g/dL	trauma, pathological hip	Dementia %: 31.9		
			fracture, clinically recognized	Postop %: 100 hip fracture		

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		and attrition rates	Bias
name		interventions, duration,	criteria			
		and follow-up				
		Duration: Postop	acute myocardial infarction	surgery		
		Follow-up (days): Delirium	within 30 days prior to	Cancer %: 0 (16% had chart		
		assessed multiple times	randomization, previously	history of cancer)		
		within 5 days of	participated in the trial,			
		randomization or discharge	symptoms associated with			
			anemia, or actively bleeding			

ASA=American Society of Anesthesiologists; CI=confidence interval; N=number; NR=not reported; OR=odds ratio; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

Fluid Therapy

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
name		interventions, duration,				
		and follow-up				
Bruera et	Design: RCT	Randomized N: 129	Inclusion: Age ≥18 years with	Median age: 67 (range: 41-92)	Main outcomes: MDAS and	Low
al. (2013)	Setting:	Analyzed N: 102	advanced cancer, admitted to	Female %: 47	RASS scores significantly	
	Palliative care	Intervention 1 (N=63):	hospice, a reduced oral intake of	Race %:	worsened from baseline in	
	Country: U.S.	1,000 mL of normal	fluids with evidence of mild or	-Caucasian: 60	both groups at days 4 and 7	
	Funding:	saline; daily	moderate dehydration, intensity of	-Black/African American: 26	(p<0.001). There was a trend	
	Government	Intervention 2 (N=66):	≥1 on 0-10 scale for fatigue and 2	-Asian: NR	for less deterioration in the	
		Placebo 100 mL of normal	of 3 target symptoms	-Other: 1	hydration group as compared	
		saline; daily	(hallucinations, sedation, and	Hispanic: 13	with the placebo group (RASS	
		Duration: Over 4 hours	myoclonus), life expectancy of ≥1	Median (IQR) MDAS: 6 (3-9)	p=0.065, MDAS p=0.085). By	
		Follow-up (days): Until	week, and MDAS score <13	Median (IQR) NuDESC, day: 1 (0-	day 4, the placebo group	
		patient was	Exclusion: Severe dehydration,	3)	showed significantly more	
		unresponsive, developed	decreased levels of consciousness,	Median (IQR) FACIT-F: 72 (59-	deterioration from baseline	
		progressive coma, or died	no urine output for 12 hours,	84)	in night-time NuDESC scores	
			history of evidence of renal failure	Median (IQR) ESAS, depression:	as compared with the	
			with creatinine >1.5 X upper	2 (0-5)	hydration group (p=0.028).	
			normal limit, history of evidence of	Dementia %: NR	Attrition: 22% vs. 20%	
			congestive heart failure, and	Postop %: NR		
			history of bleeding disorder or	Cancer %: 100		
			active bleeding			

ESAS=Edmonton Symptom Assessment Scale; FACIT-F=Functional Assessment of Chronic Illness Therapy–Fatigue; IQR=interquartile range; MDAS=Memorial Delirium Assessment Scale; N=number; NR=not reported; NuDESC=Nursing Delirium Screening Scale; OR=odds ratio; postop=post-operative; RASS=Richmond Agitation Sedation Scale; RCT=randomized controlled trial.

Mechanical Ventilation in Intensive Care Unit Setting

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
name		interventions, duration, and				
		follow-up				
Girard et	Design: RCT	Randomized N: 336	Inclusion: Age ≥18 years who required	Median age: 60 vs. 64	Main outcomes: The duration of	Moderate
al. (2008)	Setting: ICU	Analyzed N: 335	MV for ≥12 hours; receiving full	Female %: 47.8	coma was significantly shorter	
	Country: U.S.	Intervention (N=168):	support or support was being weaned	Race %: NR	in the intervention group than	
	Funding:	Spontaneous waking trials	Exclusion: Admission after	Delirium %: NR	in the control group, whereas	
	Mixed	along with spontaneous	cardiopulmonary arrest, continuous	Median APACHE II: 26	the duration of delirium was	
		breathing trial protocols	MV ≥2 weeks, moribund state,	Dementia %: NR, severe	similar between the 2 groups.	
		Control (N=168): Usual care	withdrawal of life support, profound	dementia excluded	Of the assessable patients,	
		with spontaneous breathing	neurological deficits (e.g., large stroke	Postop %: NR	delirium occurred in 124 (74%)	
		trial protocols followed	or severe dementia), or current	Cancer %: 1.5	in the intervention group and	
		Duration: During MV	enrolment in another trial		119 (71%) in the control group	
		Follow-up (days): Discharge			(p=0·66).	
		or 365			Attrition: 1% vs. 4%	
Luo et al.	Design: RCT	Randomized N: 40	Inclusion: Age ≥18 years receiving	Mean (SD) age: 54.55	Main outcomes: There was no	Moderate
(2015)	Setting: ICU	Analyzed N: 40	invasive MV for acute respiratory	(16.3)	significant difference in	
	Country:	Intervention (N=20):	distress syndrome	Female %: 60	incidence of delirium on the	
	China	Synchronized intermittent	Exclusion: Severe arrhythmia or acute	Race %: NR	basis of ventilation techniques	
	Funding:	mandatory ventilation with	myocardial ischemia, pneumothorax	Delirium %: NR	(0% vs. 20%, p=0.106).	
	Government	pressure support	or mediastinal emphysema,	APACHE II %: 18.0	Attrition: NR; 14 patients died	
		Control (N=20): Assist/Control	intracranial hypertension,	Dementia %: NR	during the follow-up (6 in the	
		ventilation	neuromuscular diseases that could	Postop %: NR	intervention group vs. 8 in	
		Duration: During MV	impair spontaneous breathing, severe	Cancer %: Excluded end-	control group)	
		Follow-up (days): 28 or	COPD, severe multiple organs	stage malignant		
		discharge	dysfunction, end-stage malignant	carcinoma		
			carcinoma with an estimated 6-month			
			mortality risk exceeding 50%, sickle			
			cell disease, immunosuppression			
			conditions, attending confounding			
			trials within 30 days before			

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
name		interventions, duration, and				
		follow-up				
			enrollment, or unwilling or refusing			
			the use of full life support			
Mehta et	Design: RCT	Randomized N: 430	Inclusion: Critically ill adults admitted	Mean (SD) age: 58	Main outcomes: The incidence	Moderate
al. (2012)	Setting: ICU	Analyzed N: 423	to ICU who were expected to require	Female %: 44	of delirium was not different	
	Country:	Intervention 1 (N=218): Daily	MV for at least 48 hours	Race %: NR	between interrupted sedation	
	Canada	interrupted continuous	Exclusion: Admitted to ICU after	Delirium %: NR	and continuous sedation (53.3%	
	Funding:	infusion of midazolam or	cardiac arrest or TBI, receiving	Median APACHE II: 28.4	vs. 54.1%, p=0.83).	
	Government	lorazepam and morphine or	neuromuscular blocking agents,	Dementia %: NR	Attrition: 2% vs. 1%	
		fentanyl	enrolled in another trial or previously	Postop %: 12.3		
		Intervention 2 (N=212):	enrolled in the current study, or a lack	Cancer %: NR		
		Continuous infusion of	of commitment			
		midazolam or lorazepam and				
		morphine or fentanyl without				
		interruption				
		Duration: During MV				
		Follow-up (days): Delirium				
		assessed daily				
Nassar	Design: RCT	Randomized N: 60	Inclusion: Age ≥18 years who required	Median age: 47 vs. 51	Main outcomes: There were no	Moderate
Junior and	Setting: ICU	Analyzed N: 60	MV within the last 24 hours and were	Female %: 50	differences in ICU mortality	
Park (2014)	Country: Brazil	Intervention (N=30): Daily	expected to need MV for >24 hours	Race %: NR	(40% vs. 23.3%, p=0.165),	
	Funding: None	interruption of sedation	Exclusion: Those needing deep levels	Delirium %: NR	hospital mortality (43.3% vs.	
		protocol, along with	of sedation, previously cognitively	Median APACHE II: 22 vs.	30%, p=0.284), and incidence of	
		spontaneous breathing trial	impaired (e.g., advanced dementia),	18	delirium (30% vs. 40%,	
		protocols	or readmitted to the ICU after	Dementia %: NR, severe	p=0.472).	
		Control (N=30): Usual care	participating in the trial	dementia excluded	Overall attrition: 0%	
		with spontaneous breathing		Postop %: NR		
		trial protocols followed		Cancer %: 1.5		
		Duration: During MV				
		Follow-up (days): Discharge,				
		28				

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
name		interventions, duration, and				
		follow-up				
Olsen et al.	Design: RCT	Randomized N: 710	Inclusion: Age ≥18 years, had	Median age: 72 vs. 70	Main outcomes: The patients in	Moderate
(2020)	Setting: ICU	Analyzed N: 700	undergone endotracheal intubation	Female %: 39	the no sedation group had a	
	Country:	Intervention 1 (N=354): No	within 24 hours before screening, and	Race %: NR	median of 27 days free from	
	Denmark,	sedation	were expected to receive MV for >24	Delirium %: NR	coma or delirium, and those in	
	Norway, and	Intervention 2 (N=356): Light	hours	Median APACHE II: 26 vs.	the sedation group had a	
	Sweden	sedation with daily	Exclusion: Severe head trauma,	25	median of 26 days free from	
	Funding:	interruption	therapeutic hypothermia, status	Dementia %: 0 (excluded)	coma or delirium.	
	Government	Duration: Until discharge	epilepticus, participated in a previous	Postop %: 31.5	Attrition: 1% vs. 1%	
		from ICU	trial, transferred from another ICU	Cancer %: NR		
		Follow-up (days): 90	with a LOS >48 hours, comatose on			
			admission, brain-dead, a ratio of the			
			partial pressure of arterial oxygen to			
			the fraction of inspired oxygen of <9,			
			or sedation anticipated to be			
			necessary for oxygenation or for the			
			patient to remain in a prone position			
Strøm et al.	Design: RCT	Randomized N: 140	Inclusion: Age ≥18 years critically ill	Mean age: 66	Main outcomes: Agitated	Moderate
(2010)	Setting: ICU	Analyzed N: 113	patients expected to need MV for > 24	Female %: 33	delirium was more common in	
	Country:	Intervention 1 (N=70): No	hours	Race %: NR	the patients who had no	
	Denmark	sedation	Exclusion: Increased intracranial	Delirium %: NR	sedation compared with	
	Funding:	Intervention 2 (N=70):	pressure, sedation needed (e.g., for	Median APACHE II: 26	interrupted sedation (20% vs.	
	Mixed	Interrupted sedation of	status epilepticus, or hypothermia	Dementia %: NR	7%, p=0.040).	
		propofol IV 20 mg/mL; after	after cardiac arrest), meeting criteria	Postop %: NR	Attrition: 21% vs. 17%	
		48 hours propofol	for weaning from ventilation (FiO ₂	Cancer %: NR		
		discontinued and midazolam	≤40% and positive end-expiratory			
		IV 1 mg/mL begun	pressure of 5 cm H_2O), or no cerebral			
		Duration: During MV	contact			
		Follow-up (days): Discharge				

APACHE II=Acute Physiology and Chronic Health Evaluation II; COPD=chronic obstructive pulmonary disease; ICU=intensive care unit; IV=intravenous; LOS=length of stay; MV=medical ventilation; N=number; NR=not reported; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation; TBI=traumatic brain injury.

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
Brown et al. (2019)	Design: RCT Setting: Intraop, cardiothoracic Country: U.S. Funding: Mixed	Randomized N: 215 Analyzed N: 199 Intervention (N=112): Autoregulation group; targeting MAP during CPB to be greater than the patient's the lower limit of autoregulation Control (N=103): Usual care; the patient's MAP during CPB was maintained using usual MAP targets, typically greater than 60 mmHg, using the same protocol. Duration: During surgery Follow-up (days): 4	Inclusion: Age ≥55 years undergoing primary or preop CABG with or without valvular surgery or ascending aorta surgery that required CPB, and high-risk of neurological complications Exclusion: Patients with delirium at baseline or emergency surgery	Mean (SD) age: 70.3 (7.5) Female %: 24.6 Race %: -Caucasian: 81.4 -Black/African American: 13.1 -Asian: NR -Other: 5.5 Delirium %: 0 (excluded) Functioning: NR Median (IQR) MMSE: 27 (26- 29) vs. 28 (26-29) Postop %: 100 Cancer: NR Reoperation %: 8	Main outcomes: Excluding 5 patients with coma, delirium occurred in 48/91 (53%) in the usual care group vs. 39/103 (38%) in the intervention group (p=0.04). The odds of delirium were reduced by 45% in patients randomized to the autoregulation group (OR 0.55, 95% CI 0.31 to 0.97, p=0.04). Attrition: 6% vs. 9%	Low
Fu et al. (2020)	Design: RCT Setting: Postop, cardiac Country: China Funding: Industry	Randomized N: 63 Analyzed N: 55 Intervention (N=27): Mild hyperthermia: after DHCA patients were gradually rewarmed to a nasopharyngeal temperature of 34°C and maintained at this temperature for 24 hours after surgery Control (N=28): Usual care: after DHCA patients were gradually rewarmed to a nasopharyngeal temperature of 36°C and maintained at this	Inclusion: Ages 18-75 years, acute Stanford type A aortic dissection involving the aortic arch, confirmed by computed tomography angiography and echocardiography, and requiring surgical treatment Exclusion: Immediate death after surgery, history of nervous system disease or mental illness, long-term use of hormones or immunosuppressive agents, confirmed infection, and history of malignant tumors,	Mean (SD) age: 52 (11) Female %: 21.8 Race %: NR Delirium %: NR Mean (SD) APACHE II: 15.5 (4.11) Dementia %: NR Postop %: 100 Cancer %: NR	Main outcomes: Cerebral tissue oxygen saturation, incidence of delirium or permanent neurological dysfunction, duration of hospital stay, and 28-day mortality showed no statistical difference. Attrition: 13% vs. 13%	High

Mechanical Interventions in Surgical Setting

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition rates	Bias
name		interventions, duration, and	criteria			
		follow-up				
		temperature for 24 hours	other immune diseases, or			
		after surgery	organ transplants			
		Duration: During surgery				
		Follow-up (days): Discharge,				
		28				
Gao et al.	Design: RCT	Randomized N: 64	Inclusion: Age ≥65 years,	Mean (SD) age: 72 (5)	Main outcomes: Incidence of	Moderate
(2018)	Setting:	Analyzed N: 64	undergoing spine surgery,	Female %: 48	delirium was lower with TEAS	
	Intraop, spine	Intervention (N=32): TEAS at	assessed for lacunar infarction	Race %: NR	than sham treatment (6.3% vs	
	Country: China	acupoints Hegu and Neiguan	by MRI	Delirium %: 0 (excluded)	25.0%, p=0.039).	
	Funding:	bilaterally; disperse-dense	Exclusion: MMSE < 24,	ASA physical status ≥3 %: 0	Attrition: NR	
	Government	waves, frequency 2/100 Hz,	dementia, preop delirium,	Dementia %: 0 (excluded)		
		and maximum tolerated	history of neurological illness,	Postop %: 100		
		current	current use of	Cancer: NR		
		Control (N=32): Sham TEAS;	antidepressants, history of			
		electrodes placed at acupoints	endocrine or metabolic			
		Hegu and Neiguan bilaterally	disorder, recent use of			
		and no current	glucocorticoids or other			
		Duration: Preop (30 minutes	hormones, infections, chronic			
		before anesthesia) through	inflammatory conditions, or			
		end of surgery	anti-inflammatory drugs			
		Follow-up (days): POD 3				
Jia et al.	Design: RCT	Randomized N: 240	Inclusion: Ages 70-88 years	Mean age: 75.18	Main outcomes: The	Moderate
(2014)	Setting: Preop	Analyzed N: 233	undergoing open curative	Female %: 37.5	incidence of POD was	
	and postop,	Intervention (N=120): Fast	resection for colorectal	Race %: NR	significantly lower in patients	
	cancer	track surgery, with preop and	carcinoma	Delirium %: NR	with the fast-track therapy	
	Country: China	postop management	Exclusion: History of	Function: NR	(4/117, 3.4 %) than with the	
	Funding:	Control (N=120): Usual care	dementia, alcohol intake ≥250	Dementia %: 0 (excluded)	traditional therapy (15/116,	
	Government	Intervention duration: Preop	g/day, long-term use of	Postop %: 100	12.9 %; p=0.008).	
		and postop through day 3	sleeping pills or anxiolytics,	Cancer %: 100	Attrition: 3% vs. 3%	
		Control duration: During	received anesthesia within the			
		hospitalization	past 30 days, given intraop			

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition rates	Bias
name		interventions, duration, and	criteria			
		follow-up				
		Follow-up (days): Until	blood transfusion, or admitted			
		discharge	to ICU			
Lei et al.	Design: RCT	Randomized N: 250	Inclusion: Age ≥60 years,	Mean (SD) age: 73.5 (6.4)	Main outcomes: POD	Moderate
(2017)	Setting:	Analyzed N: 249	combined valve and coronary	Female %: 29	occurred in 30/123 (24.4%) vs.	
	Postop, cardiac	Intervention (N=124): Cerebral	re-vascularization, repeat	Race %: NR	31/126 (24.6%) patients in the	
	surgery	oximetry monitoring with	cardiac surgery, multiple valve	Delirium %: NR	intervention and control	
	Country:	rScO2 desaturation to baseline	replacement or repair, or	Regional cerebral oxygenation	groups, respectively (OR 0.98,	
	Canada	values	surgery of ascending aorta	(rScO2) %: 10	95% CI 0.55 to 1.76, p=0.97).	
	Funding:	Control (N=126): Usual care	and aortic arch with or	Dementia: NR	POD was present in 20/28	
	Industry	Intervention duration: Postop	without circulatory arrest	Cancer: NR	(71%) patients with baseline	
		12-hour intervals for 7 days	Exclusion: Delirium or	Medications:	regional cerebral oxygen	
		Control duration: Pre-	undergoing either emergency	Beta-blockers %: 54.5 vs. 54.7	saturation ≤50%, compared	
		operatively (baseline) and	or surgery without bypass	Calcium channel blockers %:	with 41/221 (18%) patients	
		post-operatively every 12		26.8 vs. 26.9	with baseline regional	
		hours or as needed until		ACE inhibitors %: 33.3 vs. 40.5	cerebral oxygen saturation	
		discharge		Statins %: 63.4 vs. 68.2	>50% (p=0.0001).	
		Follow-up (days): 7		Aspirin %: 65.8 vs. 66.6	Attrition: 1% vs. 0%	
				Antidepressants %: 5.7 vs. 8.7		
				Benzodiazepines %: 7.3 vs.		
				11.1		
				Lorazepam premedication %:		
				48.8 vs. 52.3		
Nadler et al.	Design: RCT	Randomized N: 135	Inclusion: Age ≥50 years, at	Mean (SD) age: 65.7 (8.9)	Main outcomes: Delirium was	Moderate
(2017)	Setting:	Analyzed N: 114	risk of obstructive sleep	Female %: 60.7	equally common in both	
	Postop, ortho	Intervention (N=68): CPAP	apnea, and scheduled for	Race %: NR	groups: 21% (12/58) in the	
	Country: U.S.	used any time patient slept	elective knee or hip	Delirium %: NR	CPAP group and 16% (9/56) in	
	Funding:	before surgery and on postop	arthroplasty	Depression %: 43.8	the routine care group (OR	
	Industry	days 0, 1, and 2	Exclusion: Severe tracheal or	Dementia or significant	1.36,95% CI 0.52 to 3.54,	
		Control (N=67): Usual Care	lung disease or previous	cognitive impairment %: 2	p=0.53). Delirious subjects	
		Duration: During	obstructive sleep apnea	Postop %: 100	were slightly older (mean [SD]	
		hospitalization		Cancer %: NR	age 68.9 [10.7] vs. 64.9 [8.2],	
				Alcohol abuse %: 5.3	p=0.07), but had nearly	

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition rates	Bias
name		interventions, duration, and	criteria			
		follow-up				
		Follow-up (days): Until			identical preop STOP-Bang	
		discharge			scores (4.19 [1.1] vs. 4.27	
					[1.3], p=0.79).	
					Attrition: 15% vs. 16%	
Wang et al.	Design: RCT	Randomized N: 174	Inclusion: Age ≥60 years	Mean (SD) age: 67.44 (7.28)	Main outcomes: There was	Moderate
(2015)	Setting:	Analyzed N: 162	undergoing elective	Female %: 61	less POD in the group that	
	Intraop, GI	Intervention (N=87): Variable	gastrointestinal tumor	Race %: NR	received variable ventilation	
	surgery	lung protective MV during	resection via laparotomy	Delirium %: 0	than conventional ventilation	
	Country: China	surgery	Exclusion: MMSE<24 or	ASA II, III %: 100	(16.5% vs. 28.9%, p=0.036).	
	Funding:	Control (N=87): Conventional	history of dementia	Dementia %: 0 (excluded)	Attrition: 6% vs. 2%	
	Industry	lung protective MV		Postop %: GI surgery 100		
		Duration: Intraop		Cancer: NR		
		Follow-up (days): 7				
Wang J. et	Design: RCT	Randomized N: 71	Inclusion: Age ≥65 years, BMI	Mean (SD) age: 69.1 (2.6)	Main outcomes: The	Moderate
al. (2020)	Setting:	Analyzed N: 64	<28, ASA status ≤III, and	Female %: 64	incidences of cerebral	
	Intraop, mixed	Intervention (N=35): Lung	MMSE ≥23	Race %: NR	desaturation and POD were	
	Country: China	protective ventilation	Exclusion: History of anemia,	Delirium: NR	significantly lower in the lung	
	Funding:	Control (N=36): Usual care;	hypoalbuminemia, CNS	ASA II %: 59	protective ventilation group	
	Industry	MV	disorders, hypoxemia, chronic	Dementia %: NR	(p<0.05).	
		Duration: Intraop	lung disease, asthma, or	Mean (SD) MMSE: 26.6 (1.7)	Attrition: 9% vs. 11%	
		Follow-up (days): 1,2,3	treatment with	Postop %: 100		
			antidepressants or sedatives;	Cancer %: NR		
			baseline rSO ₂ <60% before			
			anesthesia induction; change			
			in surgical plan; refused blood			
			donations; >4 hours of			
			operation time; >800 ml of			
			intraop blood loss			
Xu et al.	Design: RCT	Randomized N: 156	Inclusion: Ages 65-80 years	Mean (SD) age: 68.6 (7.4)	Main outcomes: Patients in	Moderate
(2020)	Setting:	Analyzed N: 150	undergoing elective hip	Female %: 60	Intervention 3 showed a	
	Intraop, ortho	Intervention 1 (N=52): MAP	replacement with ASA status II	Race %: NR	lower incidence of POD on the	
		maintained from 10% to 20%	or III and New York Heart	Delirium %: NR	1 st day than those in	

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition rates	Bias
name		interventions, duration, and	criteria			
		follow-up				
	Country: China	below baseline level	Association Functional	ASA III: 25%	Intervention 1 and	
	Funding: None	Intervention 2 (N=52): MAP	Classification class II or III	Dementia %: NR, but implied	Intervention 2 (22% and 16%	
		maintained from baseline to	Exclusion: Diseases of brain	excluded	vs. 4%, p=0.031). There is no	
		10% below baseline level	tumor disease, history of	Postop %: 100	difference of incidence of POD	
		Intervention 3 (N=52): MAP	cerebrovascular accident,	Cancer %: NR	on the 2 nd and 3 rd days post-	
		maintained from baseline to	history of mental diseases and		operatively.	
		10% above the baseline level	taking psychotropic drugs		Attrition at follow-up: 4% vs.	
		Duration: Intraop	within 6 months before		4% vs. 4%	
		Follow-up (days): 1, 2, 3	admission, visual auditory,			
			language communication			
			disorder, or liver and kidney			
			dysfunction			

APACHE II=Acute Physiology and Chronic Health Evaluation II; ASA=American Society of Anesthesiologists; BMI=body mass index; CABG=coronary artery bypass graf; CI=confidence interval; CNS=central nervous system; CPAP=continuous positive airway pressure; CPB=cardiopulmonary bypass; DHCA=deep hypothermic circulatory arrest; GI=gastrointestinal; ICU=intensive care unit; intraop=intra-operative; IQR=interquartile range; MAP=mean arterial pressure; MMSE=Mini-Mental State Examination; MRI=magnetic resonance imaging; MV=medical ventilation; N=number; NR=not reported; OR=odds ratio; POD=post-operative delirium; postop=post-operative; preop=pre-operative; RCT=randomized controlled trial; SD=standard deviation; TEAS=Transcutaneous electrical acupoint stimulation.

Additional Pharmacological Interventions for Prevention of Delirium

Electroencephalography-Guided Anesthesia vs. Usual Anesthesia

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition	Bias
name		interventions, duration, and	criteria		rates	
		follow-up				
Chan et al.	Design: RCT	Randomized N: 921	Inclusion: Age ≥60 years	Mean (SD) age: 67.85 (8.25)	Main outcomes: There were	Low
(2013); Chan	Setting:	Analyzed N: Week 1 N=783; 3	scheduled for elective major	Female %: 39	fewer patients with delirium	
and Gin	Intraop,	months N=835	colorectal surgery with	Race %: NR	in the BIS group compared	
(2014); CODA	colorectal	Intervention (N=462): BIS-guided	general anesthesia expected	Delirium %: 0	with the usual anesthesia	
	Country: Hong	anesthesia (a BIS value between	to last for at least 2 hours	ASA I, II %: 83.7	care group (15.6% vs.	
	Kong	40 and 60)	with an anticipated hospital	Dementia %: 0	24.1%, p=0.01).	
	Funding:	Control (N=459): Usual	stay of at least 4 days	Postop %: 100	Attrition at 1 week: 17% vs.	
	Government	anesthesia care	Exclusion: Patients with	Gastrointestinal surgery	13%	
			suspected dementia or			

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition	Bias
name		interventions, duration, and	criteria		rates	
		follow-up				
		Duration: Intraop	memory impairment or	Cancer %: 76 gastrointestinal		
		Follow-up (days): 7, 90,	MMSE score of <24	cancer		
		discharge				
Cotae et al.	Design: RCT	Randomized N: 95	Inclusion: Age ≥18 years and	Mean age: 44.5	Main outcomes: Fewer	Moderate
(2021)	Setting:	Analyzed N: 74	noncardiac trauma surgery	Female %: 43.2	patients experienced POD in	
	Intraop,	Intervention (N=48): Standard	expected to last at least 2	Race %: NR	the intervention group	
	trauma surgery	anesthesia monitoring plus	hours	Delirium %: NR	compared with the control	
	Country:	assessment of anesthesia depth	Exclusion: Neurotrauma,	ASA II-IV %: 100	group, but the results were	
	Romania	and nociception (Surgical Pleth	impaired preop cognitive	Dementia %: NR	not statistically significant	
	Funding: No	Index)	function, pre-existing	Postop %: 100	(p<0.08).	
	external	Control (N=47): Standard	psychopathological	Abdominal surgery: NR	Attrition: 21% vs. 23%	
	funding	anesthesia monitoring	symptoms, neurological	Orthopedic surgery: NR		
		Duration: Intraop	deficits, or expected surgery			
		Follow-up (days): 1, 2, 3	time less than 2 hours			
Kunst et al.	Design: RCT	Randomized N: 90 (2 patients	Inclusion: Age ≥65 years	Mean (SD) age: 71.8 (4.67)	Main outcomes: There was	Moderate
(2020)	Setting:	withdrawn before surgery)	undergoing elective CABG	Female %: 18	a reduction in the incidence	
	Intraop,	Analyzed N: 82	surgery on CPB	Race %:	of delirium in the	
	cardiac	Intervention (N=45): BIS-guided	Exclusion: Dementia	-Caucasian: 87	intervention group	
	Country: U.K.	anesthesia plus regional cerebral		-Black/African American: 0	compared with the control	
	Funding:	tissue oxygenation optimization		-Asian: 13	group (2.4% vs. 20%,	
	University	Control (N=43): Usual anesthesia		-Other: 0	p=0.01).	
		care		Delirium %: NR	Attrition: 7% vs. 7%	
		Duration: Intraop		MMSE< 24 %: 0		
		Follow-up (days): 3 to 5		Dementia %: 0		
				Postop %: 100 cardiac		
				surgery		
				Cancer %: 0		
Radtke et al.	Design: RCT	Randomized N: 1,277	Inclusion: Age ≥60 years	Mean (SD) age: 69.9 (6.4)	Main outcomes: POD was	Moderate
(2013)	Setting:	Analyzed N: 1,155	undergoing elective surgery	Female %: 46	detected in 95 patients	
	Intraop, mixed	Intervention (N=638): BIS-guided	expected to last ≥60 minutes	Race %: NR	(16.7%) in the intervention	
	Country:	anesthesia	Exclusion: <24 on MMSE	Delirium %: NR	group compared with 124	
	Germany	Control (N=639): Usual care		ASA I-II %: 52		

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition	Bias
name		interventions, duration, and	criteria		rates	
		follow-up				
	Funding:	Duration: During surgery		Dementia %: 0 (excluded)	patients (21.4%) in the	
	Mixed	Follow-up (days): Until		Mean (SD) MMSE: 28.8 (1.5)	control group (p=0.036).	
		discharge, 90		Postop %: 100	Attrition: 10% vs. 9%	
				Cancer %: NR		
Sieber et al.	Design: RCT	Randomized N: 114	Inclusion: Age ≥65 years	Mean (SD) age: 81.5 (7.16)	Main outcomes: POD was	Low
(2010)	Setting:	Analyzed N: 114	undergoing hip fracture	Female %: 73	significantly lower in the	
	Intraop, hip	Intervention 1 (N=57): Light	repair with spinal anesthesia	Race %: NR	light sedation group	
	Country: U.S.	Sedation (BIS approximately 50)	and propofol	Delirium %: 0	compared with the deep	
	Funding:	Intervention 2 (N=57): Deep	Exclusion: Preop delirium	Median ASA: 3	sedation (19% vs. 40%,	
	Unclear	Sedation (BIS ≥80)		Mean MMSE: 24.7	p=0.02).	
		Duration: Intraop		Living independently %: 65	Overall attrition: 0%	
		Follow-up (days): Discharge		Dementia %: 35		
				Postop %: 100		
				Cancer %: NR		
Sieber et al.	Design: RCT	Randomized N: 200	Inclusion: Age ≥65 years	Mean (SD) age: 81.8 (7.7)	Main outcomes: There was	Low
(2018, 2019);	Setting:	Analyzed N: 200	undergoing hip fracture	Female %: 73	no difference in the	
STRIDE	Intraop, hip	Intervention 1 (N=100): Light	repair with spinal anesthesia	Race %: White: 97	incidence of delirium	
	Country: U.S.	Sedation (OAA/S 3-5)	and propofol	Delirium %: 0	between lighter compared	
	Funding:	Intervention 2 (N=100): Deep	Exclusion: Preop delirium and	Subsyndromal Delirium %:	with deeper sedation (34%	
	Government	Sedation (OAA/S 0-2)	severe dementia	6.5	vs. 39%, p=0.46).	
		Duration: Intraop		ASA≥3 %: 69.5	Attrition: 4% vs. 3%	
		Follow-up (days): POD 5		Mean MMSE: 24.3		
				Assisted living/nursing		
				home %: 7		
				Clinical Dementia Rating		
				Score=0 %: 41.4		
				Postop %: 100		
				Cancer %: NR		
Tang C. J. et	Design: RCT	Randomized N: 223	Inclusion: Age ≥65 years	Mean (SD) age: 71.9 (5.4)	Main outcomes: The	Moderate
al. (2020);	Setting:	Analyzed N: 102	undergoing major elective,	Female %: 52	incidence of delirium was	
ADAPT-2	Intraop, mixed	Intervention (N=109): Processed	noncardiac surgery, with an	Race %:	not found to be different	
	Country: U.S.	EEG-guided anesthetic	anticipated hospital stay of		between the intervention	

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition	Bias
name		interventions, duration, and	criteria		rates	
		follow-up				
	Funding: None	management	≥2 days	-Caucasian: 89	(17%) and the standard care	
		Control (N=114): Standard	Exclusion: Preop delirium,	-Black/African American: NR	groups (20%) (RR 0.85, 95%	
		anesthesia care	inability to perform	-Asian: NR	CI 0.47 to 1.5).	
		Duration: Intraop	neurocognitive testing,	-Other: NR	Attrition: 6% vs. 11%	
		Follow-up (days): 3	history of intraop recall, or	Delirium %: 0 (excluded)		
			undergoing surgery of the	ASA III or IV %: 53.4		
			brain	Dementia %: NR		
				Preop cognitive		
				impairment %: 10.3		
				Postop %: 100		
				Cancer %: NR		
Wildes et al.	Design: RCT	Randomized N: 1,232	Inclusion: Age ≥60 years,	Median age: 69	Main outcomes: POD	Low
(2016, 2019)	Setting:	Analyzed N: 1,213	undergoing major surgery	Female %: 45.7	occurred in 26.0% of the	
	Intraop, mixed	Intervention (N=614): EEG/BIS-	with general anesthesia	Race %:	EEG-guided anesthetic	
	Country: U.S.	guided anesthesia (≥40)	Exclusion: Delirious, history	White: 90	group and 23.0% of the	
	Funding:	Control (N=618): Usual care	of intraop awareness, or	Black: 8.7	usual care group; a	
	Government	Duration: During surgery	scheduled for a second	Other: 1	difference that was not	
		Follow-up (days): POD 1-5, 30	surgery within 5 days of	Delirium %: 0 (excluded)	statistically significant.	
			initial surgery	History of Delirium %: 12.8	Attrition: 2% vs. 1%	
				ASA >III %: 15		
				History of depression %: 13.6		
				Dementia %: NR		
				Postop %: 100		
				Cancer %: NR		
Zhou et al.	Design: RCT	Randomized N: 89	Inclusion: Ages 65-75 years	Mean (SD) age: 68.59 (2.90)	Main outcomes: The	Moderate
(2018)	Setting:	Analyzed N: 81	undergoing surgery for colon	Female %: 69	incidence of delirium was	
	Intraop,	Intervention (N=44): BIS-guided	cancer with surgery expected	Race %: NR	lower in the group who	
	colorectal	anesthesia (40 to 60)	to last at least 2 hours	Delirium %: 0	received BIS-guided	
	cancer	Control (N=45): Usual anesthesia	Exclusion: MMSE≤27 or	ASA I-III %: 100	anesthesia compared with	
	Country: China	care	Alzheimer's	Parkinson's, Alzheimer's	usual anesthesia care (17%	
	Funding:	Duration: Intraop		Dementia %: 0	vs. 27.5%, p<0.001).	
	University	Follow-up (days): Through POD 5		Mean MMSE: 29.08		

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition	Bias
name		interventions, duration, and	criteria		rates	
		follow-up				
				Postop %: 100 colon surgery	Attrition at 5 days	
				Cancer %: 100 colon cancer	assessments: 7% vs. 11%	

ASA=American Society of Anesthesiologists; BIS=bispectral index; CABG=coronary artery bypass graf; CI=confidence interval; CPB=cardiopulmonary bypass; EEG=electroencephalogram; intraop=intraoperative; MMSE=Mini-Mental State Examination; N=number; NR=not reported; OAA/S=modified observer's assessment of alertness/sedation score; POD=post-operative delirium; postop=postoperative; preop=pre-operative; RCT=randomized controlled trial; RR=relative risk; SD=standard deviation

Additional Anesthetic Comparisons

Xenon Gas vs. Sevoflurane Gas

Author	Study	Study protocol including	Study population including main	Sample	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria	demographics	outcomes and attrition	Bias
name		interventions, duration, and			rates	
		follow-up				
Al Tmimi et	Design: RCT	Randomized N: 190	Inclusion: Age ≥65 years scheduled for	Median age: 76	Main outcomes: Overall	Low
al. (2020)	Setting: Intraop,	Analyzed N: 190	cardiac surgery on CPB	Female %: 48	incidence of POD was 41%	
	cardiac surgery	Intervention 1 (N=96): Xenon	Exclusion: Severe COPD, disabling	Race %: NR	(78/190), with no	
	Country: Belgium	40%-60% in oxygen	neuropsychiatric illness, signs or	Delirium %: 0%	statistically significant	
	Funding: Non-	Intervention 2 (N=94):	symptoms of increases cranial pressure,	(excluded)	difference between the	
	profit	Sevoflurane 1.0%-1.4% in	history of stroke or TBI with residual	ASA status IV %: 93.6	xenon and sevoflurane	
		oxygen	neurological signs, risk factors for or	Dementia %: 0	groups (42.7% [41/96] vs.	
		Duration: Intraop	history of malignant hyperthermia, or	(excluded)	39.4% [37/94], p=0.583, OR	
		Follow-up (days): 90, 180, 365	delirium at baseline	Postop %: 100	1.18, 95% CI 0.65 to 2.16).	
				Cancer %: NR	Overall attrition: 0%	
Coburn et	Design: RCT	Randomized N: 256	Inclusion: Age ≥75 years with planned	Mean (SD) age: 84.11	Main outcomes: The	Moderate
al. (2018);	Setting: Intraop,	Analyzed N: 256	surgery within 48 hours of hip fracture	(4.85)	incidence of delirium with	
HIPELD	hip	Intervention 1 (N=124):	Exclusion: Delirium, severe dementia,	Female %: 75	xenon 9.7% (95% Cl 4.5 to	
	Country: 6	Xenon gas 5%	Alzheimer's, moderate to severe	Race %: NR	14.6) vs. sevoflurane 13.6%	
	European	Intervention 2 (N=132):	depression, recent brain trauma,	Delirium %: 0	(95% CI 7.8 to 18.5) was	
	countries	Sevoflurane 1.0%-1.4% in	history of stroke, or MMSE<24	ASA I, II %: 62.9	not significantly different	
	Funding: Industry	oxygen		MMSE: 27.1	(p=0.33). Incidence of	
		Duration: Intraop		Severe Dementia %:	serious adverse events and	
		Follow-up (days): Up to day 4		0	fatal adverse events was	
				Postop %: 100	8.0% vs. 15.9% (p=0.05)	
				Cancer %: 0		

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
					and 0% vs. 3.8% (p=0.06), respectively. Attrition: 11% vs. 9%	
Stoppe et al. (2013)	Design: RCT Setting: Intraop, cardiac Country: Germany Funding: Government	Randomized N: 30 Analyzed N: 30 Intervention 1 (N=15): Xenon gas Intervention 2 (N=15): Sevoflurane gas Duration: Intraop Follow-up (days): Until discharge	Inclusion: Age >50 years undergoing elective CABG without severe comorbidity Exclusion: Cardiac, respiratory, liver, or renal failure; acute coronary syndrome within 24 hours before surgery; haemodynamic instability; emergency operations; lack of informed consent; severe neurological dysfunction; depression; GDS >5; MMSE <24; and patients with predisposition to	Mean age: 67 Female %: 20 Race %: NR Delirium %: NR ASA II-IV %: 100 Dementia %: NR Postop %: 100 cardiac surgery Cancer %: 0	Main outcomes: There was no difference between use of xenon and sevoflurane in incidence of POD (20% vs. 27%, p=0.666). Overall attrition: 0%	Moderate

ASA=American Society of Anesthesiologists; CABG=coronary artery bypass graf; Cl=confidence interval; COPD=chronic obstructive pulmonary disease; CPB=cardiopulmonary bypass; GDS=Geriatric Depression Score; intraop=intra-operative; MMSE=Mini-Mental State Examination; N=number; NR=not reported; OR=odds ratio; POD=post-operative delirium; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation; TBI=traumatic brain injury.

Propofol vs. Dexmedetomidine

In Surgical Settings

Author (year);	Study	Study protocol including	Study population including main	Sample	Results including main	Risk of
trial name	characteristics	numbers of participants,	inclusion and exclusion criteria	demographics	outcomes and attrition	Bias
		interventions, duration, and			rates	
		follow-up				
Chang et al.	Design: RCT	Randomized N: 60	Inclusion: Ages 20-99 years	Mean (SD) age:	Main outcomes: There were	Moderate
(2018)	Setting: Postop,	Analyzed N: 60	undergoing major abdominal surgery	70.52 (11.08)	no instances of delirium	
	major abdominal	Intervention 1 (N=31):	Exclusion: Refractory bradycardia	Female %: 42	within 24 hours after	
	Country: Taiwan	Dexmedetomidine IV 0.1-0.7	<60 bpm, high degree	Race %: NR	abdominal surgery.	
	Funding: Unclear	μg/kg/hour	atrioventricular	Delirium %: NR	Overall attrition: 0%	
		Intervention 2 (N=29):	block (second or third degree),	APACHE II score >		
		Propofol IV 0.3-1.6	refractory shock despite	30%: 0		
		mg/kg/hour	resuscitation (MAP <60 mm Hg), new	Dementia %: NR		

Author (year);	Study	Study protocol including	Study population including main	Sample	Results including main	Risk of
trial name	characteristics	numbers of participants,	inclusion and exclusion criteria	demographics	outcomes and attrition	Bias
		interventions, duration, and			rates	
		follow-up	anast of ML New York Lloort	Destan %: 100		
		Duration: Postop	onset of MI, New York Heart	Postop %: 100		
		Follow-up (days): 0-24 hours	Association Class IV heart failure,	abdominal surgery		
		postop	acute physiology and chronic health	Cancer %: NR		
			evaluation II score >30, severe liver			
			cirrhosis (ChildePugh class B or C),			
			organ transplantation within 1 year,			
			enrolled in other clinical trial of			
			dexmedetomidine or propofol within			
			1 month, signed consent of do not			
			resuscitate, other conditions			
			determined by surgeon or primary			
			intensivist, and non-native speaker			
Djaiani et al.	Design: RCT	Randomized N: 185	Inclusion: Age ≥60 years undergoing	Mean (SD) age:	Main outcomes: POD was	Moderate
(2016)	Setting: Postop,	Analyzed N: 183	complex cardiac surgery or ≥70 years	72.55 (6.3)	present in 16 of 91 (17.5%)	
	cardiac	Intervention 1 (analyzed	undergoing coronary	Female %: 25	and 29 of 92 (31.5%)	
	Country: Canada	N=91): Dexmedetomidine	revascularization or single-valve	Race %: NR	patients in the	
	Funding: Mixed	continuous IV infusion of 0.4	repair/replacement with the use of	Delirium %: 0	dexmedetomidine and	
		µg/kg bolus followed by 0.2-	СРВ	Function: NR	propofol groups,	
		0.7 μg/kg/hour;	Exclusion: Delirium or severe	Severe Dementia %:	respectively (p=0.028).	
		if MV needed beyond 24	dementia	0	Duration of POD was 2 days	
		hours, patients switched to		Postop %: 100	vs. 3 days (p=0.04).	
		propofol		cardiac surgery	Overall attrition: 1%	
		Intervention 2 (analyzed		Cancer %: 0		
		N=92): Propofol continuous				
		IV infusion 25-50				
		μg/kg/minute				
		Intervention 1 duration:				
		Postop during MV, maximum				
		24 hours				
		Intervention 2 duration:				
		Intraop				

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
		Follow-up (days): Through day 5				
Liu X. et al. (2016)	Design: RCT Setting: Postop, cardiac Country: China Funding: Unclear	Randomized N: 68 Analyzed N: 61 Intervention 1 (N=34): Dexmedetomidine IV 0.2-1.5 µg/kg/hour Intervention 2 (N=34): Propofol IV 5-50 µg/kg/minute Duration: Postop Follow-up (days): Unclear (delirium listed as an adverse event)	Inclusion: Age ≥18 years undergoing elective cardiac valve surgery admitted to ICU Exclusion: Patients who received 2 or more sedatives after randomization and had a sedation time <4 hours or ≥24 hours	Median age: 54 Female %: 59 Race %: NR Delirium %: NR Median APACHE II: 15 or 16 Dementia %: NR Postop %: 100 cardiac surgery Cancer %: 0	Main outcomes: The incidence of delirium was not different in those who received dexmedetomidine vs. propofol (0% vs. 6%, p=0.493). Attrition: 12% vs. 6%	Moderate
Maldonado et al. (2009)	Design: RCT Setting: Postop, cardiac Country: U.S. Funding: Unclear	Randomized N: 118 Analyzed N: 90 Intervention 1 (N=40): Dexmedetomidine IV 0.4 µg/kg bolus followed by 0.2- 0.7 µg/kg/hour Intervention 2 (N=38): Propofol IV 25-50 µg/kg/minute Intervention 3 (N=40): Midazolam IV 0.5-2.0 mg/hour Duration: Postop Follow-up (days): Through POD 3	Inclusion: Ages 18-90 years undergoing elective cardiac valve operation Exclusion: Preexisting dementia	Mean (SD) age: 57 (17) Female %: 36 Race %: NR Delirium %: NR Mean ASA: 3.4 Mean MMSE: 29.4 Dementia %: 0 Postop %: 100 cardiac surgery Cancer %: 0	Main outcomes: Postop sedation with dexmedetomidine was associated with significantly lower rates of POD than propofol or midazolam (3% vs. 50% vs. 50%). Attrition: 10% vs. 18% vs. 20%	Moderate
Mei et al. (2018)	Design: RCT Setting: Intraop, hip	Randomized N: 336 Analyzed N: 296 Intervention 1 (N=167):	Inclusion: Age ≥65 years undergoing total hip arthroplasty with nerve block	Mean (SD) age: 75 (7) Female %: 54	Main outcomes: Patients sedated with dexmedetomidine had a	Low

Author (year);	Study	Study protocol including	Study population including main	Sample	Results including main	Risk of
trial name	characteristics	numbers of participants,	inclusion and exclusion criteria	demographics	outcomes and attrition	Bias
		interventions, duration, and			rates	
		follow-up				
	Country: China	Dexmedetomidine IV 0.8-1.0	Exclusion: Cognitive impairment	Race %: NR	lower incidence of POD than	
	Funding:	µg/kg bolus followed by 0.1-	and/or preop delirium	Delirium %: 0	patients sedated with	
	Government	0.5 μg/kg/hour until end of		Mean ASA: 3	propofol (7% vs. 16%,	
		surgery		Mean MMSE: 26	p=0.030).	
		Intervention 2 (N=169):		Dementia %: 0	Attrition: 9% vs. 11%	
		Propofol IV 0.8-1.0 μg/mL		Postop %: 100 hip		
		Duration: Intraop		arthroplasty		
		Follow-up (days): Through		Cancer %: 0		
		POD 3				
Mei B. et al.	Design: RCT	Randomized N: 415*	Inclusion: Age ≥65 years undergoing	Mean (SD) age: 72.5	Main outcomes: Patients	Moderate
(2020)	Setting: Intraop,	Analyzed N: 366	total hip arthroplasty with nerve	(10)	sedated with	
	hip	*The study noted 207 and	block	Female %: 60	dexmedetomidine had a	
	Country: China	208 patients were assigned to	Exclusion: Cognitive impairment	Race %: NR	lower incidence of POD than	
	Funding:	the groups, but it is not clear	and/or preop delirium	Delirium %: 0	patients sedated with	
	Government	which group had which		Mean ASA: 2	propofol (14% vs. 23%,	
		number of patients.		Mean MMSE: 26.9	p=0.032).	
		Intervention 1 (N=unclear):		Dementia %: 0	Attrition: 5% vs. 8%	
		Dexmedetomidine IV 0.8-1.0		Postop %: 100 knee		
		μ g/kg bolus followed by 0.1-		arthroplasty		
		0.5 μg/kg/hour until end of		Cancer %: 0		
		surgery				
		Intervention 2 (N=unclear):				
		Propofol IV 0.8 -1.0 μg/mL				
		Duration: Intraop				
		Follow-up (days): Through POD 7				
Sheikh et al.	Design: RCT	Randomized N: 60	Inclusion: Ages 15-60 years	Mean (SD) age:	Main outcomes: The risk of	High
(2018)	Setting: Intraop,	Analyzed N: 60	undergoing elective open-heart	34.58 (10.74)	delirium was significantly	i ligit
(2010)	cardiac	Intervention 1 (N=30):	·	54.58 (10.74) Female %: NR	less in the	
		Dexmedetomidine IV 1.0	surgery Exclusion: Patients with	Race %: NR	dexmedetomidine group	
	Country: India Funding: None	μg/kg bolus followed by 0.2-	neurological/psychological disorders	Delirium %: NR	compared with the propofol	
	Funding. None					
		0.6 μg/kg/hour		Function: NR		

Author (year);	Study	Study protocol including	Study population including main	Sample	Results including main	Risk of
trial name	characteristics	numbers of participants,	inclusion and exclusion criteria	demographics	outcomes and attrition	Bias
		interventions, duration, and			rates	
		follow-up				
		Intervention 2 (N=30):		Dementia %: NR	group (3.3% vs. 23.3%,	
		Propofol IV 0.25-1.0		Postop %: 100	p=0.02).	
		μg/kg/hour		cardiac surgery	Attrition: NR	
		Duration: Intraop		Cancer %: NR		
		Follow-up (days): Discharge				
Susheela et al.	Design: RCT	Randomized N: 12	Inclusion: Age ≥60 undergoing CABG	Mean (SD) age: NR	Main outcomes: The	Moderate
(2017) ;	Setting: Postop,	Analyzed N: 12	and/or valve surgery	Female %: NR	incidence of delirium was	
O'Neal et al.	cardiac	Intervention 1 (N=3):	Exclusion: Preexisting cognitive	Race %: NR	2/3 in the	
(2015)	Country: U.S.	Dexmedetomidine IV 0.1-1.0	impairment or medications for	Delirium %: NR	dexmedetomidine and the	
	Funding:	μg/kg/hour	cognitive decline	Function: NR	propofol groups, 1/3 in the	
	Government	Intervention 2 (N=3):		Cognitive	dexmedetomidine plus	
		Propofol IV 25-100		Impairment %: 0	acetaminophen group, and	
		μg/kg/minute		Postop %: 100	0/3 in the group receiving	
		Intervention 3 (N=3):		Cancer %: 0	propofol plus	
		Dexmedetomidine IV 0.1-1.0			acetaminophen.	
		μg/kg/hour plus IV			Overall attrition: 0%	
		acetaminophen 1 g/6 hours				
		Intervention 4 (N=3):				
		Propofol IV 25-100				
		μg/kg/minute plus IV				
		acetaminophen 1 g/6 hours				
		Duration: Postop				
		Follow-up (days): Discharge				

APACHE II=Acute Physiology and Chronic Health Evaluation II; ASA=American Society of Anesthesiologists; CABG=coronary artery bypass graf; CPB=cardiopulmonary bypass; intraop=intra-operative; IV=intravenous; MAP=mean arterial pressure; MI=myocardial infarction; MMSE=Mini-Mental State Examination; MV=medical ventilation; N=number; NR=not reported; POD=post-operative delirium; postop=post-operative; preop=pre-operative; RCT=randomized controlled trial; SD=standard deviation.

In Intensive Care Unit Setting

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
Jakob et al. (2012); PRODEX	Design: RCT Setting: ICU Country: Europe and Russia Funding: Industry	Randomized N: 500 Analyzed N: 498 Intervention 1 (N=251): Dexmedetomidine IV 0.2-1.4 µg/kg/hour Intervention 2 (N=249): Propofol IV 0.3-4.0 mg/kg/hour Duration: MV Follow-up (days): Delirium assessed 48 hours after discontinuing codation	Inclusion: Age \geq 18 years requiring MV with light to moderate sedation for at least 24 hours Exclusion: Acute severe neurological disorder, MAP <55 mmHg, heart rate <50 bpm, atrioventricular- conduction grade II or III (unless pacemaker installed), and use of α_2 agonists or antagonists within 24 hours prior to randomization	Median age: 65 Female %: 35 Race %: NR Delirium %: NR Median SAPS II: 46.3 Dementia %: NR Postop %: 56.2 Cancer %: NR	Main outcomes: There was no difference in the incidence of delirium between the dexmedetomidine group and the propofol group at 48 hours post sedation (9.6% vs. 13.7%, p=0.231). Attrition: 28% vs. 24%	Low
Li et al. (2019)	Design: RCT Setting: ICU Country: China Funding: Mixed	discontinuing sedation Randomized N: 126 Analyzed N: 126 Intervention 1 (N=64): Dexmedetomidine IV 0.8 µg/kg/hour Intervention 2 (N=62): Midazolam IV 0.06 mg/kg/hour or propofol IV 0.5-2 mg/kg/hour Duration: During ICU stay Follow-up (days): Delirium assessed twice daily until discharged from ICU	randomization Inclusion: Age ≥18 years admitted to general ICU for more than 96 hours under continuous sedation and analgesia for 48 hours or longer Exclusion: GCS <13 at baseline in ED	Mean (SD) age: 43.98 (14.05) Female %: 44 Race %: NR Delirium %: NR Mean APACHE II: 20.5 Dementia %: NR Postop %: 0 within 24 hours of study Cancer %: 0	Main outcomes: The rate of delirium was significantly lower in the dexmedetomidine group than in the control group (28% vs. 55%, p=0.0023). Attrition: NR	Moderate
Ruokonen et al. (2009)	Design: RCT Setting: ICU Country: Finland Funding: Industry	Randomized N: 85 Analyzed N: 85 Intervention (N=41): Dexmedetomidine 0.8 µg/kg/hour for 1 hour, then adjusted stepwise at 0.25, 0.5, 0.8, 1.1, and 1.4 µg/kg/hour Control (N=44): Standard care:	Inclusion: Age ≥18 years, MV, need for sedation for ≥24 hours after randomization, and an expected ICU stay ≥48 hours Exclusion: Acute severe neurological disorder, MAP <55 mmHg despite volume and vasopressors, heart rate <50 bpm, atrioventricular-	Median age: 64 vs. 68 Female %: 17.6 Race %: NR Delirium %: NR Function: NR Dementia %: NR Postop %: NR Cancer %: NR	Main outcomes: Delirium was more common in the dexmedetomidine group than in the standard care group (43.9% vs. 25.0%, p=0.035) when analyzed as the combined endpoint of CAM-ICU and adverse events	Moderate

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
name		interventions, duration, and			rates	
		follow-up				
		1) propofol 2.4 mg/kg/hour for	conduction block II to III (unless		of delirium and confusion.	
		1 hour, then adjusted stepwise	pacemaker installed), hepatic SOFA		However, more CAM-ICU	
		at 0.8, 1.6, 2.4, 3.2, and 4.0	score >2, bilirubin >101 lmol/L,		assessments were	
		mg/kg/hour	muscle relaxation, loss of hearing or		performed in the	
		OR 2) midazolam IV bolus 1-2	vision, any other condition		dexmedetomidine group	
		mg starting at 3 boluses/hour	interfering with RASS assessment,		than in the standard care	
		for 1 hour, thereafter 1-4	or use of α_2 agonists or antagonists		group (106 vs. 84), and the	
		boluses/hour; if not sufficient as	at the time of randomization		proportion of positive CAM-	
		continuous infusion of 0.2			ICU results was comparable	
		mg/kg/hour for 1 hour followed			(17.0% vs. 17.9%, p=NS).	
		by adjustment at 0.04, 0.08,			During the follow-up to ICU	
		0.12, 0.16, and 0.20 mg/kg/hour			discharge, no significant	
		Duration: During ICU stay			difference was observed in	
		Follow-up (days): 45			the occurrence rate of	
					positive RASS scores (26%	
					vs. 32%).	
					Attrition: 24% vs. 16%	
Winings et al.	Design: RCT	Randomized N: 57	Inclusion: Age ≥18 years, MV,	Mean (SD) age: 50.6	Main outcomes: There was	Moderate
(2021)	Setting: ICU	Analyzed N: 57	placed on the institutional sedation	(19.2)	no difference between the	
	Country: U.S.	Intervention 1 (N=28):	protocol, expected to require	Female %: 28.9	groups in ICU mortality, ICU	
	Funding: None	Dexmedetomidine mean dose of	sedation lasting 24 hours after	Race %: NR	and hospital LOS, or	
		0.48 mcg/kg/hour	randomization, and admitted to the	Delirium %: NR	incidence of delirium.	
		Intervention 2 (N=29): Propofol	TSICU and followed by the TSICU	Mean (SD) APACHE II:	Attrition: NR	
		mean dose of 24.6	Service	17.5 (7.4)		
		mcg/kg/minute	Exclusion: ≥72 hours since sedation	Dementia %: NR		
		Duration: During ICU stay	protocol initiation, treatment per	Postop %: 29.8		
		Follow-up (days): 4	the institutional TBI protocol,	Cancer %: NR		
			concomitant continuous infusion of			
			a neuromuscular			
			blocking agent, heart rate <50 bpm,			
			MAP <55 mmHg despite fluid			
			resuscitation and vasopressors,			

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
		follow-up				
			and/or use of other α_2 agonists			
			within 24 hours of randomization			

APACHE II=Acute Physiology and Chronic Health Evaluation II; CAM-ICU=Confusion Assessment Method for the ICU; ED=emergency department; GCS=Glasgow Coma Scale; ICU=intensive care unit; LOS=length of stay; MAP=mean arterial pressure; MV=medical ventilation; N=number; NS=not significant; NR=not reported; postop=post-operative; RASS=Richmond Agitation Sedation Scale; RCT=randomized controlled trial; SAPS II=Simplified Acute Physiology Score II; SD=standard deviation; SOFA=Sequential Organ Failure Assessment; TBI=traumatic brain injury; TSICU=trauma/surgical ICU.

Propofol vs. Sevoflurane Gas

Author (year); trial	Study characteristics	Study protocol including numbers of participants,	Study population including main inclusion and exclusion	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
name		interventions, duration, and	criteria			
		follow-up				
Ishii et al.	Design: RCT	Randomized N: 59	Inclusion: Age ≥70 years with	Mean (SD) age: 76.9 (4.5)	Main outcomes: The	Moderate
(2016)	Setting: Intraop,	Analyzed N: 59	ASA status I or II, scheduled to	Female %: 32.2	incidence of POD in the	
	mixed	Intervention 1 (N=29):	undergo elective gastrectomy,	Race %: NR	propofol anesthesia (6.9%)	
	Country: Japan	Propofol IV 1.5-3 μg/mL	colectomy, or rectectomy	Delirium %: NR	was significantly less than	
	Funding: NR	Intervention 2 (N=30):	under general anesthesia	ASA I or II %: 100	that observed in the	
		Sevoflurane 1-1.5 minimum	combined with epidural	Dementia %: 0 (excluded)	sevoflurane anesthesia	
		alveolar concentration	anesthesia	Postop %: 100	(26.7%) (p=0.038).	
		Duration: During surgery	Exclusion: History of dementia,	Cancer %: NR	Attrition: NR	
		Follow-up (days): Until	depression, and liver cirrhosis;			
		discharge	history of using			
			benzodiazepine, major			
			tranquilizers, or steroids; an			
			ineffective postop analgesia via			
			epidural anesthesia			
Lurati Buse	Design: RCT	Randomized N: 385	Inclusion: Proven coronary	Mean (SD) age: 72.5 (8)	Main outcomes: There was	Low
et al.	Setting: Intraop,	Analyzed N: 385	artery disease and scheduled	Female %: 24	no difference between	
(2012)	cardiothoracic	Intervention 1 (N=184):	for major surgery or at risk for	Race %: NR	sevoflurane and propofol on	
	Country:	Sevoflurane dose not	coronary artery disease and	Delirium %: NR	POD (11.4% vs. 14.4%,	
	Switzerland	restricted by study protocol	scheduled for major vascular	ASA III, IV %: 86.2	p=0.379).	
	Funding: Unclear	Intervention 2 (N=201):	surgery	Dementia %: NR	Overall attrition: 0%	

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition rates	Bias
name		interventions, duration, and	criteria			
		follow-up				
		Propofol dose not restricted	Exclusion: Current medication	Postop %: 100 major surgery		
		by study protocol	with sulfonylurea derivatives	Cancer %: NR		
		Duration: Intraop	or theophylline unless stopped			
		Follow-up (days): POD 1, ,2,	≥2 days before surgery, current			
		7	congestive heart failure,			
			current unstable angina			
			pectoris, preop hemodynamic			
			instability, hepatic disease,			
			renal insufficiency, emergent			
			surgery, severe COPD, prior			
			enrollment in the study,			
			concurrent enrollment in			
			another RCT, or absence of			
			written informed consent			
Mei X. et	Design: RCT	Randomized N: 240	Inclusion: Age ≥60 years	Mean (SD) age: 71.2 (6.75)	Main outcomes: POD was	Moderate
al. (2020)	Setting: Intraop,	Analyzed N: 209	scheduled for surgery under	Female %: 71	33.0% (propofol) vs. 23.3%	
	mixed	Intervention 1 (N=118):	general anesthesia, ASA class I	Race %: NR	(sevoflurane), (p=0.119). Days	
	Country: China	Sevoflurane anesthesia	to III, and normal cognitive	Delirium %: 0 (excluded)	of POD per person were	
	Funding:	Intervention 2 (N=122):	function (MMSE >24)	ASA II %: 80.4	higher with propofol	
	Government	Propofol anesthesia	Exclusion: Pre-existing delirium	Dementia %: 0 (excluded)	(0.5±0.8) vs. sevoflurane	
		Duration: Intraop	or prior diagnoses of	Postop %: 100	(0.3±0.5) (p=0.049).	
		Follow-up (days): 1, 2, 3	neurological diseases (e.g.,	Cancer %: NR	Attrition at follow-up: 13% vs.	
			stroke and Parkinson's disease)		13%	
Nishikawa	Design: RCT	Randomized N: 50	Inclusion: >65 years, ASA	Mean (SD) age: 71 (7.5)	Main outcomes: There was	Moderate
et al.	Setting: Intraop,	Analyzed N: 50	status I or II, or scheduled for	Female %: 42.1	no significant difference	
(2004)	mixed	Intervention 1 (N=25):	elective laparoscope-assisted	Race %: NR	between the incidences of	
	Country: Japan	Propofol induction of 4	surgical procedures which	Delirium %: NR	POD in the 2 groups during	
	Funding: NR	μg/mL	would last >3 hours under	ASA I %: 26	the first 3 days after surgery.	
		Intervention 2 (N=25):	combined general and epidural	ASA II %: 74	The scores for DRS on day 2	
		Sevoflurane gas	anesthesia	Dementia %: NR, excluded	and 3 after surgery, however,	
		Duration: During surgery	Exclusion: Anticoagulation,	cognitive impairment	were significantly higher in	
		Follow-up (days): 1, 2, 3	symptomatic coronary artery		the propofol group than in	

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition rates	Bias
name		interventions, duration, and	criteria			
		follow-up				
			disease, cardiac valvular	Postop %: 100	the sevoflurane group	
			regurgitation or stenosis, CNS	Cancer %: NR	(p<0.01).	
			or neuromuscular disorders,		Attrition: NR	
			major or minor tranquilizer			
			medication, or psychotic			
			symptoms or cognitive			
			impairment			

ASA=American Society of Anesthesiologists; CNS=central nervous system; COPD=chronic obstructive pulmonary disease; DRS=Delirium Rating Scale; intraop=intra-operative; MMSE=Mini-Mental State Examination; N=number; NR=not reported; POD=post-operative delirium; postop=post-operative; preop=pre-operative; RCT=randomized controlled trial; SD=standard deviation.

Propofol vs. Desflurane

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and		outcomes and attrition rates	Bias
name		interventions, duration, and	exclusion criteria			
		follow-up				
Tanaka et al.	Design: RCT	Randomized N: 100	Inclusion: Age ≥65 years	Mean age: 70.2	Main outcomes: There was	Moderate
(2017)	Setting: Intraop,	Analyzed N: 90	undergoing total knee	Female %: 56	no difference in incident	
	knee	Intervention 1 (N=45	replacement	Race %: NR	delirium in patients whose	
	Country: U.S.	analyzed): Desflurane	Exclusion: Neurocognitive	Delirium %: 0	anesthesia was maintained	
	Funding: Industry	maintenance anesthesia	disorders and MMSE score	MMSE≤ 23%: 0	with desflurane compared	
		Intervention 2 (N=45	≤23	ASA III %: 46.7	with propofol (0% vs. 2.2%,	
		analyzed): Propofol		Dementia %: NR	p=0.315).	
		maintenance anesthesia		(neurocognitive disorders	Overall attrition: 21%	
		Duration: Intraop		excluded)		
		Follow-up (days): 1, 2		Postop %: 100 knee		
				replacement surgery		
				Cancer %: 0		

ASA=American Society of Anesthesiologists; intraop=intra-operative; MMSE=Mini-Mental State Examination; N=number; NR=not reported; postop=post-operative; RCT=randomized controlled trial.

Propofol vs. Midazolam

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		and attrition rates	Bias
name		interventions, duration, and	criteria			
		follow-up				
Chen (2020)	Design: RCT	Randomized N: 120	Inclusion: Ages 18-60 years	Mean age: 41 to 60	Main outcomes: The differences in	High
	Setting: ICU	Analyzed N: 120	with expected sedation time	years; 51%	the incidence of delirium, adverse	
	Country: China	Intervention 1 (N=60):	of ≤72 hours and required	Female %: 30	reactions, ICU LOS, and mortality	
	Funding: None	Midazolam IV 0.05-0.2	continuous sedation with MV	Race %: NR	in 28 days between the groups	
		mg/kg/hour	Exclusion: Cerebral surgery;	Delirium %: NR	were not statistically significant	
		Intervention 2 (N=60):	history of CNS and mental	Function: NR	(p>0.05). However, time to	
		Propofol IV 0.5-4	illness (including Alzheimer's	Dementia %: 0	spontaneous eye opening was	
		mg/kg/hour	disease); long-term use of	(excluded)	longer in the midazolam group	
		Duration: During MV	antidepressants or sedatives;	Postop %: NR	(p<0.05). The onset effect time of	
		Follow-up (days): 28	serious liver and kidney	Cancer %: NR	sedatives was slightly longer in the	
			dysfunction, internal		midazolam group, compared with	
			environment disorder, or		the propofol group (p<0.05). The	
			hyper-lipidaemia; in a coma;		difference in the time to reach the	
			obvious abnormal blood		optimal level of sedation between	
			glucose and great fluctuations;		these 2 groups was not statistically	
			sepsis, unstable circulation,		significant (p>0.05).	
			severe complicated		Attrition: NR	
			hypoproteinaemia, anemia,			
			and thrombocytopenia			
Li et al.	Design: RCT	Randomized N: 126	Inclusion: Age ≥18 years	Mean (SD) age: 43.98	Main outcomes: The rate of	Moderate
(2019)	Setting: ICU	Analyzed N: 126	admitted to general ICU for	(14.05)	delirium was significantly lower in	
	Country: China	Intervention 1 (N=64):	more than 96 hours under	Female %: 44	the dexmedetomidine group than	
	Funding: Mixed	Dexmedetomidine IV 0.8	continuous sedation and	Race %: NR	in the control group (28% vs. 55%,	
		μg/kg/hour	analgesia for 48 hours or	Delirium %: NR	p=0.0023).	
		Intervention 2 (N=62):	longer	Mean APACHE II: 20.5	Attrition: NR	
		Midazolam IV 0.06	Exclusion: GCS <13 at baseline	Dementia %: NR		
		mg/kg/hour or propofol IV	in ED	Postop %: 0 within 24		
		0.5-2 mg/kg/hour		hours of study		
		Duration: During ICU stay		Cancer %: 0		
		Follow-up (days): Delirium				

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main outcomes	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		and attrition rates	Bias
name		interventions, duration, and	criteria			
		follow-up				
		assessed twice daily until				
		discharged from ICU				
Maldonado	Design: RCT	Randomized N: 118	Inclusion: Ages 18-90 years	Mean (SD) age: 57 (17)	Main outcomes: Postop sedation	Moderate
et al. (2009)	Setting: Postop,	Analyzed N: 90	undergoing elective cardiac	Female %: 36	with dexmedetomidine was	
	cardiac	Intervention 1 (N=40):	valve operation	Race %: NR	associated with significantly lower	
	Country: U.S.	Dexmedetomidine IV 0.4	Exclusion: Preexisting	Delirium %: NR	rates of POD than propofol or	
	Funding: Unclear	µg/kg bolus followed by 0.2-	dementia	Mean ASA: 3.4	midazolam (3% vs. 50% vs. 50%).	
		0.7 μg/kg/hour		Mean MMSE: 29.4	Attrition: 10% vs. 18% vs. 20%	
		Intervention 2 (N=38):		Dementia %: 0		
		Propofol IV 25-50		Postop %: 100 cardiac		
		μg/kg/minute		surgery		
		Intervention 3 (N=40):		Cancer %: 0		
		Midazolam IV 0.5-2.0				
		mg/hour				
		Duration: Postop				
		Follow-up (days): Through				
		POD 3				

APACHE II=Acute Physiology and Chronic Health Evaluation II; ASA=American Society of Anesthesiologists; CNS=central nervous system; ED=emergency department; GCS=Glasgow Coma Scale; ICU=intensive care unit; IV=intravenous; LOS=length of stay; MMSE=Mini-Mental State Examination; MV=medical ventilation; N=number; NR=not reported; POD=post-operative delirium; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

Propofol vs. No Sedation

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
Strøm et al.	Design: RCT	Randomized N: 140	Inclusion: Age ≥18 years critically ill	Mean (SD) age: 66	Main outcomes: Agitated	Moderate
(2010)	Setting: ICU	Analyzed N: 113	patients expected to need MV for	Female %: 33	delirium was more common	
	Country: Denmark	Intervention 1 (N=70): No	more than 24 hours	Race %: NR	in the patients who had no	
	Funding: Mixed	sedation	Exclusion: Increased intracranial	Delirium %: NR	sedation compared with	
		Intervention 2 (N=70):	pressure, sedation needed (e.g., for	Median APACHE II: 26	interrupted sedation (20%	
		Interrupted sedation of	status epilepticus, hypothermia	Dementia %: NR	vs. 7%, p=0.040).	
		propofol IV 20mg/mL; after	after cardiac arrest), meeting		Attrition: 21% vs. 17%	

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
name		interventions, duration,			rates	
		and follow-up				
		48 hours propofol	criteria for weaning from ventilation	Postop %: NR		
		discontinued and	(FiO₂ ≤40% and positive end-	Cancer %: NR		
		midazolam IV 1 mg/mL	expiratory pressure of 5 cm H_2O), or			
		begun	no cerebral contact			
		Duration: During MV				
		Follow-up (days): Discharge				

APACHE II=Acute Physiology and Chronic Health Evaluation II; ICU=intensive care unit; IV=intravenous; MV=medical ventilation; N=number; NR=not reported; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

Ketamine (Low/High) vs. Normal Saline

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition	Bias
name		interventions, duration, and	criteria		rates	
		follow-up				
Avidan et	Design: RCT	Randomized N: 672	Inclusion: Age ≥60 years	Mean (SD) age: 70 (7.1)	Main outcomes: No	Low
al. (2017);	Setting: Intraop,	Analyzed N: 654	undergoing major open cardiac	Female %: 38	difference was found in POD	
PODCAST	mixed	Intervention 1 (N=227):	or non-cardiac surgeries under	Race %: NR	incidence between those in	
trial	Country: U.S.	Ketamine, low-dose (0.5	general anesthesia	Delirium %: 0 (excluded)	the combined ketamine	
	Funding: Mixed	mg/kg)	Exclusion: Patients with delirium	Median (IQR) Charlson	groups and those who	
		Intervention 2 (N=223):	prior to surgery or with a weight	Comorbidity Index: 5 (3-6)	received placebo (19.45% vs.	
		Ketamine, high-dose (1.0	outside of the range of 50-200	History of depression %: 11	19.82%, respectively;	
		mg/kg)	kg	Dementia %: NR	absolute difference 0.36%,	
		Intervention 3 (N=222):		Postop %: 100	95% CI -6.07% to 7.38%,	
		Placebo; normal saline		Cancer %: NR	p=0.92).	
		Duration: During surgery			Attrition: 2% vs. 2% vs. 3%	
		Follow-up (days): POD 3				
Hollinger et	Design: RCT	Randomized N: 192	Inclusion: Age ≥65 years	Mean (SD) age: 73.7 (6.1)	Main outcomes: None of the	Moderate
al. (2021)	Setting: Intraop,	Analyzed N: 182	scheduled for visceral,	Female %: 43.4	3 study arms – haloperidol,	
	mixed	Intervention 1 (N=48):	orthopedic, vascular,	Race %: NR	ketamine, or both drugs	
	Country:	Haloperidol 5 µg/kg	gynecological, cardiac, or	Delirium %: 0 (excluded)	combined – was significantly	
	Switzerland	Intervention 2 (N=49):	thoracic surgery	Function: NR	superior to placebo for	
	Funding: Non-	Ketamine 1 mg/kg	Exclusion: Delirium at admission	Dementia %: 0 (excluded)	prevention of postop brain	
	profit	Intervention 3 (N=49):	or prior to surgery, MMSE <24,			

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition	Bias
name		interventions, duration, and	criteria		rates	
		follow-up				
		Haloperidol 5 µg/kg plus	DOS ≥3, dementia, high risk for	Postop %: 100	dysfunction and delirium	
		ketamine 1 mg/kg	postop treatment in the ICU, QT	Cancer %: NR	(p=0.39).	
		Intervention 4 (N=47): Placebo	interval prolongation, or drugs		Attrition: 6% vs. 4% vs. 4%	
		Duration: Once before	influencing QT interval, intake of		vs. 6%	
		induction of anesthesia	dopaminergic drugs, delay of			
		Follow-up (days): 3	surgery for >72 hours after set			
			indication for surgery, or weight			
			>100 kg			
Hudetz et	Design: RCT	Randomized N: 58	Inclusion: Age ≥55 years, U.S.	Mean (SD) age: 64 (8)	Main outcomes: The	Moderate
al. (2009)	Setting: Intraop,	Analyzed N: 58	veteran having elective CABG or	Female %: 0	incidence of POD was lower	
	cardiac	Intervention 1 (N=29):	valve replacement/repair with	Race %:	in patients receiving	
	Country: U.S.	Ketamine IV 0.5 mg/kg bolus	СРВ	-Caucasian: 90	ketamine compared with	
	Funding:	Intervention 2 (N=29): Placebo;	Exclusion: Patients with	-Black/African American: NR	placebo (3% vs. 31%,	
	Government	normal saline	previous defined cognitive	-Asian: NR	p=0.01).	
		Duration: Intraop	difficulty	-Other: NR	Overall attrition: 0%	
		Follow-up (days): Up to day 5		Delirium %: NR (0%		
		or discharge		assumed)		
				Function: NR		
				History of cognitive		
				impairment %: 0		
				Postop %: 100 cardiac		
				surgery		
				Cancer %: 0		

CABG=coronary artery bypass graf; CI=confidence interval; CPB=cardiopulmonary bypass; DOS=Delirium Observation Scale; ICU=intensive care unit; intraop=intra-operative; IQR=interquartile range; IV=intravenous; MMSE=Mini-Mental State Examination; N=number; NR=not reported; POD=post-operative delirium; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

Forms of Reginal Anesthesia vs. Placebo/General Anesthesia/Opioid Therapy

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
Jin L. et al.	Design: RCT	Randomized N: 180	Inclusion: Ages 65-75 years	Mean (SD) age: 71.1 (5.4)	Main outcomes: The	Moderate
(2020)		Analyzed N: 167	undergoing elective	Female %: 54	incidence of POD was	

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		main outcomes and	Bias
name		interventions, duration, and			attrition rates	
		follow-up				
	Setting: Intraop,	Intervention 1 (N=90):	esophagectomy for stage III or IV	Race %: NR	significantly lower in	
	esophageal	Ultrasound-guided continuous	esophageal cancer	Delirium %: NR	the PVB group than in	
	cancer	thoracic PVB	Exclusion: Brain injury or	Function: NR	the PCA group.	
	Country: China	Intervention 2 (N=90): PCA as	neurosurgery, cardiovascular or	Dementia %: NR (most likely	Attrition: 7% vs. 8%	
	Funding: Mixed	usual care	cerebrovascular disease, COPD,	excluded, but unclear)		
		Intervention 1 duration:	neurological disorders, hepatic	Postop %: 100		
		Before induction of anesthesia	and/or kidney dysfunction, or BMI	Cancer %: 100		
		Intervention 2 duration:	>35			
		Postop				
		Follow-up (days): 4				
Li et al.	Design: RCT	Randomized N: 1,802	Inclusion: Ages 60-90 years and	Mean age: 69.5	Main outcomes:	Moderate
(2021)	Setting: Intraop,	Analyzed N: 1,720	scheduled for noncardiac thoracic	Female %: 65.3	Delirium was less	
	thoracic or	Intervention (N=901): General	or abdominal surgery expected to	Race %: NR	common in the	
	abdominal	anesthesia plus epidural	last ≥2 hours	Delirium %: 0	general anesthesia	
	Country: China	Control (N=901): General	Exclusion: Severe neurological	ASA I-III %: 100	plus epidural group	
	Funding:	anesthesia	conditions, acute MI or stroke	Dementia %: 0 (excluded)	than in the general	
	University	Duration: During surgery	within 3 months, any	Postop %: 100	anesthesia only group	
		Follow-up (days): 7	contraindication for epidural	Cancer %: 92	(1.8% vs. 5.0%,	
			anesthesia, severe heart		p<0.001).	
			dysfunction, severe liver		Attrition: 5% vs. 4%	
			dysfunction (Child–Pugh grade C),			
			or renal failure			
Mann et al.	Design: RCT	Randomized N: 70	Inclusion: Age >70 years	Mean (SD) age: 76.45 (5.17)	Main outcomes:	Moderate
(2000)	Setting: Intraop,	Analyzed N: 70	undergoing major abdominal	Female %: 46	There was no	
	abdominal	Intervention 1 (N=35):	surgery for cancer with ASA status I	Race %: NR	difference in POD	
	Country: France	Sufentanil 1 μg/ml plus	or II and normal preop mental	Delirium %: 0	between the	
	Funding: Unclear	bupivacaine 0.25% mixture	status, absence of contraindications	ASA I, II %: 100	treatment groups	
		epidural anesthesia	to epidural anesthesia, and absence	Dementia %: 0	(26% vs. 24%, p>0.05).	
		continuous infusion intra-	of extreme malnutrition or cerebral	Postop %: 100 abdominal	Attrition: 11% vs. 6%	
		operatively followed by	vascular insufficiency	surgery		
		sufentanil 0.5 μg/ml plus	Exclusion: NR	Cancer %: 100		
		bupivacaine mixture by PCA				

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		main outcomes and	Bias
name		interventions, duration, and			attrition rates	
		follow-up				
		epidural pump during postop				
		Intervention 2 (N=35):				
		Sufentanil IV 0.5 μg/kg bolus				
		followed by 0.2-0.4 µg/kg				
		intra-operatively as necessary				
		followed by PCA with				
		morphine 1.5 mg per dose				
		during postop				
		Duration: Intraop, postop				
		Follow-up (days): Until				
		discharge				
Mouzopoulos	Design: RCT	Randomized N: 219	Inclusion: Age ≥70 years	Mean (SD) age: 72.71 (3.95)	Main outcomes: The	Moderate
et al. (2009)	Setting: Preop	Analyzed N: 207	undergoing surgery for hip fracture	Female %: 74	incidence of delirium	
	and postop, hip	Intervention 1 (N=108): FICB	with intermediate or high risk for	Race %: NR	was lower in the FICB	
	Country: Greece	Intervention 2 (N=111):	POD	Delirium %: 0	group (10.78%,	
	Funding: Unclear	Placebo	Exclusion: Patients with delirium at	Mean APACHE II: 15.3	11/102) than the	
		Duration: Preop, postop	presentation or profound dementia	Mean MMSE: 21.2	placebo group (23.8%,	
		Follow-up (days): Discharge		Profound Dementia %: 0	25/105) (RR 0.45, 95%	
				Postop %: 100 hip	CI 0.23 to 0.87).	
				arthroplasty	Attrition: 6% vs. 5%	
				Cancer %: 0		
Papaioannou	Design: RCT	Randomized N: 50	Inclusion: Age ≥60 years, scheduled	Mean age:	Main outcomes: 9	High
et al. (2005)	Setting: Intraop,	Analyzed N: 47	for elective surgery that could be	-60-69: 62%	patients developed	
	mixed	Intervention (N=25): Regional	performed under regional or	-≥70: 38%	delirium, but the type	
	Country: Greece	anesthesia	general anesthesia	Female %: 36	of anesthesia did not	
	Funding:	Control (N=25): General	Exclusion: ≤23 on MMSE, dementia,	Race %: NR	affect its incidence.	
	Government	anesthesia	and CNS disorders	Delirium at baseline: NR	The only important	
		Duration: During surgery		ASA I-II %: 91	factor for the	
		Follow-up (days): Until		Dementia %: 0 (excluded)	development of	
		discharge		Postop %: 100	delirium was	
				Cancer %: NR	preexisting	
					cardiovascular disease	

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
				Cardiovascular disease %: 53 Orthopedic surgery %: 34	irrespective of anesthesia type (p<0.025). Attrition at follow-up: 24% vs. 4%	
Strike et al. (2019)	Design: RCT Setting: Intraop, cardiac Country: Canada, Latvia Funding: Unclear	Randomized N: 50 Analyzed N: 44 Intervention 1 (N=25): PVB Intervention 2 (N=25): PCA Intervention 1 duration: Preop, Intraop, postop Intervention 2 duration: Postop Follow-up (days): POD 7 or discharge	Inclusion: Patients undergoing transcatheter aortic valve replacement surgery Exclusion: Patients with delirium or severe dementia	Mean (SD) age: 82 (5.9) Female %: 57 Race %: NR Delirium %: 0 Function: NR Severe Dementia %: 0 Postop %: 100 Cancer %: 0	Main outcomes: There was no difference in the incidence of delirium between the groups (PVB 23% vs. PCA 32%, p=0.73). Attrition: 12% vs. 12%	Moderate
Unneby et al. (2020)	Design: RCT Setting: Intraop, mixed Country: Sweden Funding: Non- profit	Randomized N: 277 Analyzed N: 236 Intervention (N=116): Femoral nerve block Control (N=120): Conventional pain management Intervention duration: Preop Control duration: During hospitalization Follow-up (days): 5	Inclusion: Age ≥70 years with radiographically verified hip fracture who were admitted consecutively to an orthopedic ward Exclusion: Infection or previous vascular surgery in the inguinal area	Mean (SD) age: 84.1 (6.7) Female %: 66.1 Race %: NR Delirium %: NR Mean (SD) Barthel Index: 15.7 (4.6) ASA III-IV %: 61.7 Dementia %: 46.2 Postop %: 100 Cancer %: NR	Main outcomes: The intervention group had 20% lower incidence of POD compared with the control group. However, there was no significant difference between the groups regarding the number of patients suffered preop and postop delirium or the duration of delirium. Overall attrition: 16%	High

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		main outcomes and	Bias
name		interventions, duration, and			attrition rates	
		follow-up				
Uysal et al.	Design: RCT	Randomized N: 110	Inclusion: Age ≥65 years admitted	Mean (SD) age: 81.72 (7.48)	Main outcomes: The	Moderate
(2020)	Setting: Preop,	Analyzed N: 96	to the ED with trochanteric femur	Female %: 53	incidence of delirium	
	orthopedic	Intervention 1 (N=55):	fracture	Race %: NR	was similar between	
	Country: Turkey	Femoral nerve block with	Exclusion: Patients with preexisting	Delirium %: 0	those who received	
	Funding: None	bupivacaine 0.5 mL/kg 0.25%	delirium and fracture due to cancer	ASA II-IV %: 100	the femoral nerve	
		every 8 hours		Dementia %: NR	block and those who	
		Intervention 2 (N=55):		Postop %: 0	received paracetamol	
		Paracetamol IV 15 mg/kg		Cancer %: 0	(20% vs. 10.9%,	
		Duration: Preop			p=0.227).	
		Follow-up (days): NR			Attrition: 16% vs. 18%	
Williams-	Design: RCT	Randomized N: 262	Inclusion: Age >40 years	Median age: 69	Main outcomes:	Moderate
Russo et al.	Setting: Intraop,	Analyzed N: 262	undergoing elective unilateral total	Female %: 70	There was no	
(1995)	knee	Intervention (N=134): Epidural	knee replacement surgery	Race %: NR	difference between	
	Country: U.S.	anesthesia	Exclusion: History of surgery	Delirium %: NR	epidural anesthesia	
	Funding: Mixed	Control (N=128): General	performed with either a regional or	Comorbidity score=0 %: 46.2	and general	
		anesthesia	general anesthetic in the 3 months	Dementia %: NR	anesthesia in the	
		Duration: Intraop	or contraindication to either	Postop %: 100 knee surgery	incidence of delirium	
		Follow-up (days): Until	epidural or general anesthesia	Cancer %: 0	(12% vs. 9.4%,	
		discharge			p=0.50).	
					Attrition: 2% vs. 2%	
					Attrition at 6-month	
					postop	
					neuropsychological	
					testing: 12%	
					(including 2 deaths)	

APACHE II=Acute Physiology and Chronic Health Evaluation II; ASA=American Society of Anesthesiologists; BMI=body mass index; CI=confidence interval; CNS=central nervous system; COPD=chronic obstructive pulmonary disease; ED=emergency department; FICB=fascia iliaca compartment block; intraop=intra-operative; IV=intravenous; MI=myocardial infarction; MMSE=Mini-Mental State Examination; N=number; NR=not reported; PCA=patient-controlled analgesia; POD=post-operative delirium; postop=post-operative; preop=pre-operative; PVB=paravertebral block; RCT=randomized controlled trial; RR=relative risk; SD=standard deviation.

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		main outcomes and	Bias
name		interventions, duration, and			attrition rates	
		follow-up				
Khera et al.	Design: RCT	Randomized N: 80	Inclusion: Age ≥18 years requiring	Mean age: 65.8	Main outcomes:	Moderate
(2021)	Setting: Postop,	Analyzed N: 80	median sternotomy	Female %: 23.8	There was no	
	cardiac	Intervention 1 (N=40): PIFB with	Exclusion: Hemodynamic	Race %:	difference in the	
	Country: U.S.	0.25% bupivacaine	instability (left ventricular ejection	-White: 81.3	incidence of POD	
	Funding: NR	Intervention 2 (N=40): PIFB with	fraction <30%, on ventricular	-Asian: 2.5	between groups	
		placebo	assist device); surgical factors,	-Unknown: 17.5	(p=0.45).	
		Duration: During surgery	such as emergency procedures;	Delirium %: NR	Overall attrition: 0%	
		Follow-up (days): 2	minimally invasive procedure;	Function: NR		
			aortic surgery; use of chronic pain	Dementia %: NR		
			medications or neuromodulatory	Postop %: 100		
			medications; receiving other	Isolated CABG %: 60		
			regional anesthetic modality	CABG + additional surgery %:		
				20		
				Valve surgery %: 28.5		
				Solid tumor, metastic %: 2.5		

Pecto-intercostal Fascial Plane Block With Bupivacaine vs. Placebo

CABG=coronary artery bypass graf; N=number; NR=not reported; PIFB=pecto-intercostal fascial plane block; POD=post-operative delirium; postop=post-operative; RCT=randomized controlled trial.

Deep vs. Standard Neuromuscular Blockade

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		main outcomes and	Bias
name		interventions, duration, and			attrition rates	
		follow-up				
Oh C.S. et al.	Design: RCT	Randomized N: 82	Inclusion: Age >50 years having	Mean age: 73.5	Main outcomes:	Low
(2021)	Setting: Intraop,	Analyzed N: 82	total hip replacement with	Female %: 34.1	There was no	
	orthopedic	Intervention (N=41): Deep	general anesthesia	Race %: NR	difference in the	
	Country: South	neuromuscular blockade	Exclusion: Preexisting cognitive	Delirium %: 0 (excluded)	incidence of POD	
	Korea	(rocuronium)	dysfunction, other concurrent	ASA I-III %: 100	between groups (17%	
	Funding: Industry	Control (N=41): Standard	surgery, underlying liver	Dementia %: 0 (excluded)	vs. 34%, p=0.129).	
		neuromuscular blockade	dysfunction, kidney dysfunction,	Postop %: 100	Overall attrition: 0%	
		Duration: During surgery	or neuromuscular disease, and	Hip replacement surgery %:		
		Follow-up (days): 7	use of any medication that could			

	potentially interfere with	100	
	neuromuscular transmission	Cancer %: NR	

ASA=American Society of Anesthesiologists; intraop=intra-operative; N=number; NR=not reported; POD=post-operative delirium; postop=post-operative; RCT=randomized controlled trial.

Anaortic Off-Pump Coronary Bypass With Total Arterial Revascularization vs. Carbon Dioxide Field Flooding or Use of Vein Grafts

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		main outcomes and	Bias
name		interventions, duration, and			attrition rates	
		follow-up				
Szwed et al.	Design: RCT	Randomized N: 192	Inclusion: Patients scheduled for	Mean (SD) age: 65.8 (8.4)	Main outcomes: The	Low
(2021)	Setting: Intraop,	Analyzed N: 191	elective isolated OPCAB	Female %: 26.7	incidence of POD was	
	cardiac	Intervention 1 (N=64): Anaortic	Exclusion: History of neurological	Race %: NR	35.9% in the	
	Country: Poland	OPCAB with total arterial	or psychiatric illness, use of	Delirium %: NR	conventional OPCAB	
	Funding:	revascularization	tranquilizers or antipsychotics,	New York Heart Association	arm, 32.8% in the	
	Government	Intervention 2 (N=64): OPCAB	previous cardiac surgery, left	class I-II %: 25.6	OPCAB with carbon	
		with carbon dioxide surgical	ventricular ejection fraction	New York Heart Association	dioxide arm, and	
		field flooding	<31%, and carotid artery stenosis	class III %: 2.6	12.5% in the anaortic	
		Intervention 3 (N=64):	>70% in an obligatory preop	Dementia %: NR (most likely	OPCAB arm (p=0.006).	
		Conventional OPCAB with vein	ultrasound; scoring below age-	excluded)	Post hoc tests	
		grafts	and education-adjusted MMSE	Postop %: 100	revealed that the	
		Duration: During surgery	cutoffs; HADS >7	Cancer %: NR	incidence of POD In	
		Follow-up (days): 7			the anaortic OPCAB	
					arm differed from	
					that in the OPCAB arm	
					(OR 0.26, 95% CI 0.09	
					to 0.68, p=0.002).	
					Attrition: 2% vs. 5%	
					vs. 5%	

Cl=confidence interval; HADS=Hospital Anxiety and Depression Scale; intraop=intra-operative; MMSE=Mini-Mental State Examination; N=number; NR=not reported; OPCAB=off-pump coronary artery bypass; OR=odds ratio; POD=post-operative delirium; postop=post-operative; preop=pre-operative; RCT=randomized controlled trial; SD=standard deviation.

Unilateral Spinal Anesthesia vs. Combined Lumbar-Sacral Plexus Block Plus General Anesthesia

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		main outcomes and	Bias
name		interventions, duration, and			attrition rates	
		follow-up				

Tang et al.	Design: RCT	Randomized N: 124	Inclusion: Age >65 years, ASA I-IV,	Mean (SD) age: 77.3 (6.72)	Main outcomes:	Moderate
(2021)	Setting: Intraop,	Analyzed N: 110	undergoing elective unilateral hip	Female %: 67	There were no	
	orthopedic	Intervention 1 (N=62):	fracture surgeries	Race %: NR	significant differences	
	Country: China	Unilateral spinal anesthesia	Exclusion: Dementia or severe	Delirium %: 0 (excluded)	in incidence of POD,	
	Funding:	Intervention 2 (N=62):	cognitive dysfunction, being	Charlson Comorbidity Index	postop nausea and	
	Government	Combined lumbar-sacral plexus	delirious or history of delirium,	score of ≤2 %: 90	vomiting, and other	
		block plus general anesthesia	anesthesia and surgery within 6	Dementia %: 0 (excluded)	complications.	
		Duration: During surgery	months, other surgeries at the	Postop %: 100	Attrition at follow-up:	
		Follow-up (days): 7	same time, cerebrovascular	Cancer %: NR	11% vs. 11%	
			accidents within 3 months, and			
			prosthesis fracture repair surgery			

ASA=American Society of Anesthesiologists; intraop=intra-operative; N=number; NR=not reported; POD=post-operative delirium; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

High vs. Low Mean Arterial Pressure/Pressure Perfusion

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		main outcomes and	Bias
name		interventions, duration, and			attrition rates	
		follow-up				
Hu et al.	Design: RCT	Randomized N: 322	Inclusion: Age ≥65 years, non-	Mean (SD) age: 72.5	Main outcomes:	Moderate
(2021)	Setting: Intraop,	Analyzed N: 298	cardiothoracic surgery with general	Female %: 58.4	Fewer patients in the	
	mixed	Intervention 1 (N=161): High	anesthesia of ≥2 hours	Race %: NR	high MAP group than	
	Country: China	MAP (90-100 mmHg)	Exclusion: Preop history of diabetes,	Delirium %: NR	the low MAP group	
	Funding: Unclear	Intervention 2 (N=161): Low	hypertension, severe sinus bradycardia	ASA I-II %: 100	experienced POD	
		MAP (60-70 mmHg)	(<50 bpm), or a second-degree or greater	MMSE score ≥15 %: 100	(11.9% vs. 24.5%,	
		Duration: Intraop	atrioventricular block without a	Postop %: 100	p=0.02).	
		Follow-up (days): 7	pacemaker; use of a cholinesterase	Cancer %: NR	Attrition: 4% vs. 11%	
			inhibitor or levodopa; severe hepatic			
			dysfunction (Child-Pugh class C); severe			
			renal dysfunction (dialysis before			
			surgery); brain injury or previous			
			neurosurgery; severe cognitive			
			impairment (MMSE score <15); use of			
			haloperidol or other neuroleptics during			
			or after anesthesia; previous participation			
			in this study; or patients who were			
			unlikely to survive for >24 hours.			

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		main outcomes and	Bias
name		interventions, duration, and			attrition rates	
		follow-up				
Siepe et al.	Design: RCT	Randomized N: 105	Inclusion: Undergoing elective or urgent	Mean (SD) age: 66.87	Main outcomes:	Moderate
(2011)	Setting: Intraop,	Analyzed N: 92	CABG surgery	(9.0)	Significantly fewer	
	cardiac	Intervention 1 (N=44	Exclusion: Patients with psychiatric	Female %: 20	patients in the high-	
	Country:	analyzed): High-pressure	disorders	Race %: NR	pressure group	
	Germany	perfusion (80-90 mmHg)		Delirium %: NR	developed POD than	
	Funding: Unclear	Intervention 2 (N=48		Function: NR	in the low-pressure	
		analyzed): Low-pressure		Dementia %: NR	group (0% vs. 13%,	
		perfusion (60-70 mmHg)		Postop %: 100 cardiac	p=0.017).	
		Duration: Intraop		surgery	Overall attrition: 12%	
		Follow-up (days): POD 2		Cancer %: NR		

ASA=American Society of Anesthesiologists; CABG=coronary artery bypass graf; intraop=intra-operative; MAP=mean arterial pressure; MMSE=Mini-Mental State Examination; N=number; POD=post-operative delirium; postop=post-operative; preop=pre-operative; RCT=randomized controlled trial; SD=standard deviation.

GABAergic Anticonvulsant Medications

Gabapentin vs. Placebo

Author	Study characteristics	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year);		numbers of participants,	main inclusion and		outcomes and attrition	Bias
trial name		interventions, duration, and	exclusion criteria		rates	
		follow-up				
Clarke et	Design: RCT	Randomized N: 179	Inclusion: Ages 18-75 years	Mean (SD) age: 63 (6.84)	Main outcomes: No	Moderate
al. (2014);	Setting: Postop,	Analyzed N: 150 (Day 4), 157 (6	with an ASA physical status	Female %: 50	difference was found	
Dighe et	orthopedic	weeks), 155 (3 months)	score of I, II, or III	Race %: NR	between gabapentin and	
al. (2014)	Country: Canada	Intervention 1 (N=95):	undergoing total knee	Delirium %: NR	placebo regarding the	
	Funding:	Gabapentin 600 mg orally 2	arthroplasty	Mean TUG seconds: 12.3	incidence or duration of POD	
	University/Government	hours pre-operatively x 1 dose	Exclusion: Diabetes with	Mean 6MWT meters: 357	among elective total knee	
		(in addition to celecoxib 400	impaired renal function or	Mean WOMAC physical	arthroplasty patients.	
		mg), then 200 mg three times	unable or unwilling to use	function (0-68): 33.6	Attrition at POD 4: 16% vs.	
		daily for 4 days	PCA devise	Dementia %: NR	17%	
		Intervention 2 (N=84): Placebo 2		Postop %: 96		
		hours pre-operatively (in		Cancer %: NR		
		addition to celecoxib 400 mg),				
		then three times daily for 4 days				

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
		Duration: Preop, postop Follow-up (days): 1, 4, 42, 90				
Leung et al. (2006)	Design: RCT Setting: Postop, orthopedic Country: U.S. Funding: University/Government	Randomized N: 21 Analyzed N: 21 (Days 0, 1), 20 (Day 2), 17 (Day 3) Intervention 1 (N=9): Gabapentin 900 mg orally 1-2 hours pre-operatively then daily for 3 days Intervention 2 (N=12): Placebo orally 1-2 hours pre-operatively, then daily for 3 days Duration: Preop and 3 days postop Follow-up (days): 3	Inclusion: Age ≥45 years, undergoing surgery involving the spine, requiring general anesthesia, and expected to remain in the hospital for 72 hours Exclusion: Couldn't complete the delirium testing	Mean (SD) age: 59.6 (10.88) Female %: 48 Race %: -Caucasian: 90 -Black/African American: NR -Asian: NR -Other: 10 Delirium %: NR ASA I-II %: 52 Dementia %: NR Postop %: 100 Cancer %: NR	Main outcomes: POD occurred in 5/12 patients (42%) who received placebo vs. 0/9 patients who received gabapentin (p=0.045). The reduction in delirium appears to be secondary to the opioid- sparing effect of gabapentin. Attrition: NR	Moderate
Leung et al. (2017)	Design: RCT Setting: Postop, orthopedic Country: U.S. Funding: Government	Randomized N: 750 Analyzed N: 697 Intervention 1 (N=376): Gabapentin 900 mg orally 1-2 hours pre-operatively then daily for 3 days Intervention 2 (N=374): Placebo orally 1-2 hours pre-operatively, then daily for 3 days Duration: Preop and 3 days Postop Follow-up (days): 3	Inclusion: Age >65 years undergoing surgery involving the spine or arthroplasty of hips or knees with an anticipated hospital LOS of at least 3 days Exclusion: Use of preop gabapentin, pregabalin, or other anti-epileptics, spinal surgery that involved more than 1 surgical procedure to be performed within the same hospitalization period, emergency surgery,	Mean (SD) age: 73 (6) Female %: 50 Race %: -Caucasian: 92 -Black/African American: NR -Asian: NR -Other: 8 Delirium %: NR ASA I-II %: 52 Dementia %: NR Postop %: 99 Cancer %: NR	Main outcomes: The overall incidence of POD in any of the first 3 days was 22.4% (24.0% in the gabapentin and 20.8% in the placebo groups; the difference was 3.20%, 95% CI 3.22 to 9.72, p=0.30). The incidence of delirium did not differ between the 2 groups when stratified by surgery type, anesthesia type, or preop risk status. Attrition: 6% vs. 8%	Moderate

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
			preop renal dialysis, or			
			opioid tolerance			

ASA=American Society of Anesthesiologists; CI=confidence interval; LOS=length of stay; 6MWT=six-minute walk test; N=number; NR=not reported; PCA=patient-controlled analgesia; POD=postoperative delirium; postop=post-operative; preop=pre-operative; RCT=randomized controlled trial; SD=standard deviation; TUG=timed up and go; WOMAC=Western Ontario and McMaster Universities Osteoarthritis Index.

Pregabalin vs. Placebo

Author	Study characteristics	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year);		numbers of participants,	main inclusion and		outcomes and attrition	Bias
trial name		interventions, duration, and	exclusion criteria		rates	
		follow-up				
Farlinger	Design: RCT	Randomized N: 184	Inclusion: Ages 18-75 years,	Mean (SD) age: 60 (9.15)	Main outcomes: No effect of	Moderate
et al.	Setting: Postop,	Analyzed N: 163 (4 days), 162 (6	ASA physical status score of	Female %: 43	pregabalin was found on	
(2018);	orthopedic	weeks, 130 (3 months)	I, II, or III undergoing total	Race %: NR	POD following elective total	
Clarke et	Country: Canada	Intervention 1 (N=84 analyzed):	knee arthroplasty	Delirium %: NR	hip arthroplasty.	
al. (2015)	Funding:	Pregabalin 150 mg orally 2 hours	Exclusion: DM with	Mean (SD) WOMAC	Overall attrition: 11%	
	University/Government	pre-operatively x 1 dose (in	impaired renal function or	physical function (0 to		
		addition to celecoxib 400 mg),	unable or unwilling to use	68): 33.85 (10.98)		
		then 75 mg twice daily	patient-controlled	Dementia %: NR		
		Intervention 2 (N=79 analyzed):	analgesia devise	Postop %: 100		
		Placebo 2 hours pre-operatively		Cancer %: NR		
		(in addition to celecoxib 400				
		mg), then twice daily for 4 days				
		Duration: In hospital and 7 days				
		after discharge				
		Follow-up (days): 1, 7, 42, 90				

ASA=American Society of Anesthesiologists; DM=diabetes mellitus; N=number; NR=not reported; POD=post-operative delirium; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation; WOMAC=Western Ontario and McMaster Universities Osteoarthritis Index.

Sample demographics Risk of Author Study Study protocol including Study population including main **Results including main** characteristics numbers of participants, inclusion and exclusion criteria outcomes and attrition Bias (vear); trial name interventions, duration, and rates follow-up Design: RCT Gamberini Randomized N: 120 Inclusion: Age ≥65 years, elective Mean (SD) age: 74.3 (5.6) Main outcomes: Trial does Moderate et al. Setting: Analyzed N: 113 cardiac surgery with CPB Female %: 32 not support short-term oral (2009) Intervention 1 (N=59): Race %: NR Postop, Exclusion: Urgent or emergency rivastigmine to prevent POD cardiac Rivastigmine 1.5 mg 3 times surgery, previous cardiac surgery, Delirium %: NR in elderly patients Country: daily cardiac surgery combined with SAPS II: NR overall undergoing elective cardiac Switzerland Intervention 2 (N=61): Placebo noncardiac procedures, sensory Dementia %: NR surgery (RR 1.08, 95% CI Funding: 3 times daily impairment interfering with Postop %: 100 0.62 to 1.90). Industry and Duration: From the evening neuropsychological testing, preop Cancer %: NR Attrition at follow-up: 24% University before surgery to the evening MMSE <15, preexisting vs. 25% of POD 6 neurological deficits, or previous Follow-up (days): NR or ongoing treatment with cholinesterase inhibitor Moderate Sampson Design: RCT Randomized N: 50 Inclusion: All patients undergoing Mean (SD) age: 67.7 (9.6) Main outcomes: Donepezil et al. Setting: Analyzed N: 33 elective total hip replacement Female %: 48.5 did not significantly reduce the incidence of delirium (2007) Postop, hip Intervention 1 (N=19 analyzed): Exclusion: MMSE <26, patients Race %: NR Country: U.K. Delirium %: NR compared with placebo Donepezil 5mg with sensory impairment who Funding: Intervention 2 (N=14 analyzed): could not undertake Baseline scale of function: (unadjusted RR 0.29, 95% CI Placebo neuropsychological testing 0.06 to 1.30). Industry NR Dementia %: NR (MMSE <26 Attrition at follow-up: 34% Duration: Immediately following surgery and daily for excluded) 3 more days Postop %: 100 Follow-up (days): POD 5 for Cancer %: NR delirium Design: RCT Randomized N: 62 Inclusion: Older patients Mean (SD) age: 79.3 (6.1) Main outcomes: POD Moderate Youn et al. (2017) Setting: Analyzed N: 62 undergoing hip fracture surgery, Female %: 58 occurred in 5 patients in the Race %: NR Postop, hip Intervention 1 (N=31): with cognitive impairment rivastigmine group vs. 14 Country: South Rivastigmine patch, 4.6 mg (MMSE score 10-26 and GDS Delirium %: 0 (excluded) patients in the control group Korea Control (N=31): No rivastigmine score 3-5) Baseline scale of function: (p=0.013). The mean Exclusion: Delirium or depression Funding: None NR severity of delirium in the 2 patch at baseline groups as determined by Dementia %: NR DRS was 2.2 and 6.2,

Cholinesterase Inhibitors

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition	Bias
name		interventions, duration, and			rates	
		follow-up				
		Duration: From 2 or 3 days		Postop %: 100	respectively (p=0.033).	
		before surgery to 7 days after		Cancer %: NR	Adjusted OR for POD was	
		Follow-up (days): POD 7			0.259 (95% CI 0.074 to	
					0.905, p=0.034).	
					Attrition: NR	

Cl=confidence interval; CPB=cardiopulmonary bypass; DRS=Delirium Rating Scale; GDS=Global Deterioration Scale; MMSE=Mini-Mental State Examination; N=number; NR=not reported; OR=odds ratio; POD=post-operative delirium; postop=post-operative; preop=pre-operative; RCT=randomized controlled trial; RR=relative risk; SAPS II=Simplified Acute Physiology Score II; SD=standard deviation.

Opioid Medications

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		main outcomes and	Bias
name		interventions, duration, and			attrition rates	
		follow-up				
Beaussier	Design: RCT	Randomized N: 59	Inclusion: Age >70 years	Mean (SD) age: 77.5 (5.00)	Main outcomes:	Low
et al.	Setting: Preop,	Analyzed N:52	undergoing major colorectal	Female %: 48	Episodes of POD	
(2006)	colorectal	Intervention (N=29): Intrathecal	surgery for colon cancer	Race %: NR	occurred similarly in	
	Country:	morphine 300 μg	Exclusion: ASA physical status III	Delirium %: 0	the morphine and	
	Switzerland	Control (N=30): Subcutaneous	and IV, BMI >30 kg/m ² ,	ASA I and II %: 100	control groups (35%	
	Funding: Mixed	saline	inflammatory bowel disease,	Preop mental dysfunction %:	vs. 38%, p>0.05).	
		Duration: Preop	contraindications to intrathecal	0	Attrition: 10% vs. 13%	
		Follow-up (days): NR	morphine administration, preop	Postop %: 100 colorectal		
			mental dysfunction, chronic pain,	surgery		
			and inability to use the PCA device	Cancer %: 100		
Liu et al.	Design: RCT	Randomized N: 105	Inclusion: Ages 18-85 years,	Mean (SD) age: 64.2 (10.7)	Main outcomes:	Moderate
(2017)	Setting: Postop,	Analyzed N: 105	admitted to the surgical ICU,	Female %: 47.6	Remifentanil has a	
	mixed	Intervention 1 (N=35): Fentanyl	required MV for an anticipated	Race %: NR	significant effect on	
	Country: China	1 μg/kg/hour and midazolam	time >24 hours, and required	Delirium %: 0 (excluded)	reducing the	
	Funding:	loading dose of 0.05 mg/kg	midazolam sedation	Mean (SD) APACHE II: 20.2	occurrence of delirium	
	Government	followed by 0.02-0.1	Exclusion: Intracranial lesions,	(5.4)	(p=0.007). The logistic	
		mg/kg/hour	neurosurgical intervention, coma,	Dementia %: NR, mental	regression analysis of	
		Intervention 2 (N=35):	or history of delirium	disabilities excluded	delirium	
		Remifentanil 1 µg/kg/hour and			demonstrated that	

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		main outcomes and	Bias
name		interventions, duration, and			attrition rates	
		follow-up				
		midazolam loading dose of 0.05		Postop %: 100	remifentanil (OR	
		mg/kg followed by 0.02-0.1		Cancer %: NR	0.230, 95% Cl 0.074 to	
		mg/kg/hour			0.711, p=0.011) is	
		Control (N=35): Normal saline			independent	
		and midazolam loading dose of			protective factors for	
		0.05 mg/kg followed by 0.02-0.1			delirium, and high	
		mg/kg/hour			APACHE II score (OR	
		Duration: During ventilation			1.103, 95% Cl 1.007 to	
		Follow-up (days): Until			1.208, p=0.036) is the	
		discharge, 28			independent risk	
					factor for delirium.	
					Overall attrition: 0%	
Mann et al.	Design: RCT	Randomized N: 70	Inclusion: Age >70 years	Mean (SD) age: 76.45 (5.17)	Main outcomes: There	Moderate
(2000)	Setting: Intraop,	Analyzed N: 70	undergoing major abdominal	Female %: 46	was no difference in	
	abdominal	Intervention 1 (N=35):	surgery for cancer with ASA status	Race %: NR	POD between	
	Country: France	Sufentanil 1 µg/ml plus	l or II and normal preop mental	Delirium %: 0	treatment groups	
	Funding: Unclear	bupivacaine 0.25% mixture	status; absence of	ASA I, II %: 100	(26% vs. 24%, p>0.05).	
		epidural anesthesia continuous	contraindications to epidural	Dementia %: 0	Attrition: 11% vs. 6%	
		infusion intra-operatively	anesthesia and absence of	Postop %: 100 abdominal		
		followed by sufentanil 0.5 µg/ml	extreme malnutrition or cerebral	surgery		
		plus bupivacaine mixture by PCA	vascular insufficiency	Cancer %: 100		
		epidural pump during postop	Exclusion: NR			
		Intervention 2 (N=35):				
		Sufentanil IV 0.5 μg/kg bolus				
		followed by 0.2-0.4 μg/kg intra-				
		operatively as necessary				
		followed by PCA with morphine				
		1.5 mg per dose during postop				
		Duration: Intraop, postop				
		Follow-up (days): Until discharge				

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		main outcomes and	Bias
name		interventions, duration, and			attrition rates	
		follow-up				
Park et al.	Design: RCT	Randomized N: 142	Inclusion: Ages 18-90 years	Mean (SD) age: 52.8 (15)	Main outcomes:	Moderate
(2014)	Setting: Postop,	Analyzed N: 142	undergoing cardiac surgery on CPB	Female %: 44	Delirium incidence	
	cardiac	Intervention 1 (N=67):	Exclusion: Re-do and emergency	Race %: NR	was significantly less	
	Country: South	Dexmedetomidine loading dose,	surgery, severe pulmonary, or	Delirium %: NR	in dexmedetomidine	
	Korea	0.5 μg/kg; maintenance dose,	systemic disease, left ventricular	ASA III-IV %: 17	group (6/67 patients,	
	Funding: None	0.2-0.8 μg/kg/hour; daily	ejection fraction <40%, pre-	Dementia %: 0 (excluded)	8.96%) vs.	
		Intervention 2 (N=75):	existing renal dysfunction, surgery	Postop %: 100	remifentanil group	
		Remifentanil range, 1,000-2,500	requiring deep hypothermic	Cancer %: NR	(17/75 patients,	
		μg/hour; daily	circulatory arrest involving	Mean (SD) length of	22.67%) (p<0.05).	
		Duration: 3 days	thoracic aorta, and documented	operation, minutes: 344.7	Attrition: NR	
		Follow-up (days): 3	preop dementia or recent stroke	(107)		
Shehabi et	Design: RCT	Randomized N: 306	Inclusion: Age ≥60 years	Median age: 71.3	Main outcomes:	Low
al. (2009)	Setting: Postop,	Analyzed N: 299	undergoing pump cardiac surgery	Female %: 25	Delirium incidence	
	cardiac	Intervention 1 (N=154):	(e.g., CABG, valve surgery)	Race %: NR	was comparable	
	Country:	Dexmedetomidine IV 0.1-0.7	Exclusion: Documented preop	Delirium %: NR	between	
	Australia	μg/kg/hour	dementia	Function: NR	dexmedetomidine and	
	Funding: Mixed	Intervention 2 (N=152):		Dementia %: 0	morphine (8.6% vs.	
		Morphine IV 10-70 μg/kg/hour		Postop %: 100	15.0%, p=0.088).	
		Duration: Postop		Cancer %: 0	Attrition: 1% vs. 3%	
		Follow-up (days): Discharge				
Tang C. et	Design: RCT	Randomized N: 60	Inclusion: Ages 18-80 years with	Mean (SD) age: 61.5 (7.7)	Main outcomes: The	Moderate
al. (2020)	Setting: Postop,	Analyzed N: 53	ASA status I-III and undergoing	Female %: 47.2	simultaneous	
	esophageal	Intervention 1 (N=30):	thoracoscopic-laparoscopic	Race %: NR	administration of	
	cancer	Dexmedetomidine 2.5 μg/mL	esophagectomy	Delirium %: NR	dexmedetomidine and	
	Country: China	plus sufentanil 1 µg/mL PCA	Exclusion: Obstructive or	ASA I %: 32.1	sufentanil significantly	
	Funding:	Intervention 2 (N=30):	restrictive lung disease with	ASA II %: 62.3	reduced plasma	
	Government	Sufentanil 1 µg/mL PCA	FEV1/FVC% < 70% and 50% predict	ASA III %: 5.7	interleukin-6 and	
		Duration: During post	FEV1 < 80% predict, asthma and	Dementia %: 0 (excluded)	tumor necrosis factor-	
		anesthesia care unit stay	sleep apnea syndrome, liver or	Postop %: 100	$\boldsymbol{\alpha}$ concentrations and	
		Follow-up (days): 1, 2	urinary bladder disorders, regular	Cancer %: 100	increased interleukin-	
			use of pain perception-modifying		10 level (p<0.0001,	
			drugs and opioids or sedative		p=0.0003, and	

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria medications in the week prior to	Sample demographics	Results including main outcomes and attrition rates p=0.0345,	Risk of Bias
			surgery, known history of second- or third-degree heart block and ischemic heart diseases, difficulties with the use of PCA, known cognitive dysfunction/dementia, and BMI >35 kg/m ²		respectively), accompanied by better POD categories and health statuses of patients (p=0.024 and p<0.05, respectively). There was no hypotension, bradycardia, respiratory depression, or over sedation in the dexmedetomidine group. Attrition: 10% vs. 13%	
Wang et al. (2019)	Design: RCT Setting: Postop, noncardiac Country: China Funding: Government, university	Randomized N: 142 Analyzed N: 140 Intervention 1 (N=71): PCA pump with 0.5 µg/ ml sufentanil + 1 mg/ml flurbiprofen axetil (150 µg sufentanil + 300 mg flurbiprofen axetil in 300 ml of 0.9% saline); continuous infusion dose of 4 ml/hour plus bolus dose of 3 ml if needed Intervention 2 (N=71): PCA pump with 0.5 µg/ml sufentanil (150 µg sufentanil in 300 ml of 0.9% saline); continuous infusion dose of 4 ml/hour plus bolus dose of 3 ml if needed	Inclusion: Age >65 years, ASA I to III, undergoing major noncardiac surgeries (thoracic, general, genitourinary, gynecologic, and orthopedic) Exclusion: Regular use of opioids or NSAIDs, severe visual and hearing disorders, history of myasthenia gravis, coma or profound dementia, brain injury or history of neurosurgery, serious hepatic or renal dysfunction, and preop MMSE below thresholds varying by education level	Mean (SD) age: 69.4 (4.4) Female %: Unclear (n and % for control group inconsistent) Race %: NR Delirium %: NR ASA I, II %: 95 Dementia %: NR Postop %: 100 Cancer %: NR	Main outcomes: Incidence of POD was not significantly different between groups (12.9% with flurbiprofen vs. 18.6% without). Attrition at follow-up: 1% vs. 1%	Moderate

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		main outcomes and	Bias
name		interventions, duration, and			attrition rates	
		follow-up				
		Duration: PCA pump used for				
		≤72 hours after surgery, until				
		solution ran out, and was not				
		refilled				
		Follow-up (days): POD 7				
Zhao et al.	Design: RCT	Randomized N: 432	Inclusion: Age >65 years scheduled	Mean (SD) age: 69.5 (4.2)	Main outcomes:	Moderate
(2020)	Setting: Intraop,	Analyzed N: 416	to undergo non-cardiac major	Female %: 44	Incidence rates of POD	
	noncardiac	Intervention 1 (N=111):	surgery with ASA I-III	Race %: NR	and early postop	
	Country: China	Dexmedetomidine 1 μ /kg then	Exclusion: Regular use of opioids,	Delirium %: NR	cognitive dysfunction	
	Funding:	dexmedetomidine 100 µg plus	sedatives, antidepressants, or	ASA II %: 97	7 days after surgery	
	Government	sufentanil 150 μg in PCA pump	anxiolytic drugs prior to the	Median (IQR) MMSE score: 27	were lower in the	
		Intervention 2 (N=107):	surgery; preop history of	(24-30)	dexmedetomidine 200	
		Dexmedetomidine 1 μ /kg then	myasthenia gravis; brain injury or a	Postop %: 100	mg and 400 mg groups	
		dexmedetomidine 200 µg plus	history of neurosurgery; serious	-Thoracic: 15.9	than in the	
		sufentanil 150 μg in PCA pump	hepatic dysfunction (Child-Pugh	-Abdominal: 83.9	dexmedetomidine 0	
		Intervention 3 (N=108):	class C); serious renal dysfunction	-Orthopedic: 0.2	mg and 100 mg groups	
		Dexmedetomidine 1 μ /kg then	(undergoing dialysis before	Cancer %: NR	(p<0.05). Compared	
		dexmedetomidine 400 µg plus	surgery); a preop left ventricular		with	
		sufentanil 150 μg in PCA pump	ejection fraction <50%; sick sinus		dexmedetomidine 200	
		Intervention 4 (N=106):	syndrome, severe sinus		mg, dexmedetomidine	
		Sufentanil 150 µg in PCA pump	bradycardia (<50/minute), or a		400 mg reduced early	
		Interventions 1, 2, 3 duration:	≥second-degree atrioventricular		postop cognitive	
		10 minutes before anesthesia	block without a pacemaker; and a		dysfunction in patients	
		induction, then post-operatively	preop MMSE scores <17 in		who underwent open	
		Intervention 4 duration: Postop	uneducated patients, <20 for		surgery (p<0.05).	
		Follow-up (days): 1, 2, 3, 7	patients with education of ≤6		There were no	
			years, and <24 for patients with		intergroup differences	
			education of >6 years		in the postop sedation	
					level, pain intensity,	
					and side effects.	
					Attrition: 3% vs. 1% vs.	
					6% vs. 4%	

APACHE II=Acute Physiology and Chronic Health Evaluation II; ASA=American Society of Anesthesiologists; BMI=body mass index; CABG=coronary artery bypass graf; CI=confidence interval; CPB=cardiopulmonary bypass; ICU=intensive care unit; intraop=intra-operative; IQR=interquartile range; IV=intravenous; MMSE=Mini-Mental State Examination; MV=medical ventilation; N=number; NR=not reported; NSAIDs=nonsteroidal anti-inflammatory drugs; OR=odds ratio; PCA=patient-controlled analgesia; POD=post-operative delirium; postop=post-operative; preop=pre-operative; RCT=randomized controlled trial; SD=standard deviation.

Steroid Medications

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
Clemmesen et al. (2018)	Design: RCT Setting: Preop, orthopedic Country: Denmark Funding: None	follow-up Randomized N: 120 Analyzed N: 117 Intervention 1 (N=60): Methylprednisolone IV 125 mg Intervention 2 (N=60): Placebo Duration: Single preop dose on admission Follow-up (days): 90	Inclusion: Age ≥65 years and admitted for acute hip fracture Exclusion: Severe dementia, peptic ulcer disease, cancer, glaucoma, insulin-dependent diabetes, positive for HIV, HBV, or HCV, immunoinflammatory disease, or currently receiving systemic glucocorticoids or immunosuppressive therapy	Mean (SD) age: 80 (9) Female %: 64 Race %: NR Delirium %: NR ASA physical status ≥3 (severe systemic disease) %: 37 Dementia %: NR (severe dementia excluded) Postop %: 100 Cancer %: 0 (excluded)	Main outcomes: POD (single-day CAM-S ≥5) between the placebo and drug groups was: OR 2.39, 95% CI 1.00 to 5.72, p=0.048. Attrition: 2% vs. 3%	Low
Dieleman et al. (2012); Sauer et al. (2014); DECS	Design: RCT Setting: Postop, cardiac Country: The Netherlands Funding: Government and nonprofit	Randomized N: 4,494 Analyzed N: 4,482 Intervention 1 (N=2,239): Dexamethasone IV 1 mg/kg; maximum 100 mg Intervention 2 (N=2,255): Placebo; normal saline IV Duration: Single dose at induction of anesthesia Follow-up (days): 30	Inclusion: Age ≥18 years undergoing cardiac surgery requiring CPB Exclusion: Emergency or off- pump procedure or life expectancy <6 months	Mean (SD) age: 66.1 (10.9) Female %: 27 Race %: NR Delirium %: NR Baseline scale of function: NR Dementia %: NR Postop %: 100 Cancer %: NR	Main outcomes: Incidence of POD (need for neuroleptics) was RR 0.79 (95% CI 0.66 to 0.94). Attrition: 4/2,239 vs. 8/2,255	Low
Kluger et al. (2021); STRIDE	Design: RCT Setting: Preop, orthopedic Country: New Zealand Funding: Government	Randomized N: 79 Analyzed N: 78 Intervention 1 (N=40): Dexamethasone IV 20 mg Intervention 2 (N=39): Placebo Duration: 1 dose at induction of anesthesia and 1 dose before	Inclusion: Age >65 years undergoing surgery for hip fracture Exclusion: Uncontrolled diabetes, cognitive impairment, or delirium	Mean (SD) age: 81 (8.05) Female %: 23 Race %: NR Delirium %: 0 (excluded) ASA I-III %: 91 Dementia %: 0 (excluded) Postop %: 100 hip fracture	Main outcomes: Delirium incidence did not differ between the groups: 6/40 (15%) in the dexamethasone group vs. 9/39 (23%) in the placebo	Low

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition	Bias
name		interventions, duration, and	criteria		rates	
		follow-up				
		bypass		surgery	group (RR 0.65, 95% Cl	
		Follow-up (days): POD 3		Cancer %: NR	0.22 to 1.65, p=0.360).	
					Attrition: 0% vs. 3%	
Mardani	Design: RCT	Randomized N: 110	Inclusion: Age ≤80 years	Mean (SD) age: 62.13 (12.03)	Main outcomes:	High
and	Setting: Postop,	Analyzed N: 93	undergoing cardiac surgery	Female %: 14	No statistically	
Bigdelian	cardiac	Intervention 1 (N=55):	Exclusion: Prolonged	Race %: NR	significant difference was	
(2012)	Country: Iran	Dexamethasone IV 8 mg	intubation, CPB of >3 hours,	Delirium %: 0 (excluded)	found between	
	Funding: None	Intervention 2 (N=55): Placebo	ejection fraction <20%,	Baseline scale of function: NR	dexamethasone and	
		Duration: Given before induction	hemodynamic instability,	Dementia %: NR	placebo in the number of	
		of anesthesia and every 8 hours	history of delirium, and	Postop %: 100	patients with delirium	
		for 3 days	emergency operation	Cancer %: NR	on POD 3 (2.3% vs. 2%,	
		Follow-up (days): NR (POD 3 for			p=1.0).	
		delirium)			Attrition: 22% vs. 9%	
Royse et al.	Design: RCT	Randomized N: 555	Inclusion: Age >18 years and	Mean (SD) age: 73.9 (9.9)	Main outcomes: Incidence	Moderate
(2017);	Setting: Postop,	Analyzed N: 498	EuroScOrE ≥ 6	Female %: 48.5	of delirium was 8% in the	
SIRS sub-	cardiac	Intervention 1 (N=277):	Exclusion: Known cognitive	Race %: NR	methylprednisolone	
study	Country:	Methylprednisolone, 2 x 250 mg	impairment, taking or	Delirium %: NR	group vs. 10% in the	
(companio	Australia,	doses during surgery	expected to receive systemic	Baseline scale of function: NR	control group (p=0.357).	
n to	Canada, U.S.	Intervention 2 (N=278): Placebo	steroids in the immediate	Dementia %: NR	Attrition: 10% vs. 11%	
Whitlock	Funding:	Duration: 1 dose at induction of	postop period, expected to	Postop %: 100		
(2015	Government	anesthesia and 1 dose before	receive aprotinin, or history of	Cancer %: NR		
which was		bypass	bacterial or fungal infection in			
excluded		Follow-up (days): POD 3 for	the preceding 30 days			
from the		delirium				
review)						
Sauer et al.	Design: RCT	Randomized N: 768	Inclusion: Age ≥18 years	Mean (SD) age: 66 (12)	Main outcomes: Incidence	Moderate
(2014);	Setting: Postop,	Analyzed N: 737	undergoing cardiac surgery	Female %: 35	of delirium was similar	
Dieleman	cardiac	Intervention 1 (N=367 analyzed):	requiring CPB	Race %: NR	between groups (adjusted	
et al.	Country: The	Dexamethasone IV 1 mg/kg;	Exclusion: Emergency or off-	Delirium %: NR	OR 0.85, 95% CI 0.55 to	
(2012);	Netherlands	maximum 100 mg	pump procedure or life	Baseline scale of function: NR	1.31).	
DECS sub-	Funding:	Intervention 2 (N=370 analyzed):	expectancy <6 months	Dementia %: NR	Attrition: 13% vs. 12%	
study		Placebo; normal saline IV				

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition	Bias
name		interventions, duration, and	criteria		rates	
		follow-up				
	Government	Duration: Single dose at induction		Postop %: 100		
	and nonprofit	of anesthesia		Cancer %: NR		
		Follow-up (days): POD 4				

ASA=American Society of Anesthesiologists; CAM-S=Confusion Assessment Method-Severity; Cl=confidence interval; CPB=cardiopulmonary bypass; EuroScOrE=European System for cardiac risk Evaluation; IV=intravenous; N=number; NR=not reported; OR=odds ratio; POD=post-operative delirium; postop=post-operative; preop=pre-operative; RCT=randomized controlled trial; RR=relative risk; SD=standard deviation.

Additional Medications

Clonidine

Author (year); trial	Study characteristics	Study protocol including numbers of participants,	Study population including main inclusion and exclusion	Sample demographics	Results including main outcomes and attrition	Risk of Bias
name		interventions, duration, and	criteria		rates	
		follow-up				
Rubino et	Design: RCT	Randomized N: 30	Inclusion: Conscious and	Mean (SD) age: 62.6 (7.71)	Main outcomes: There was	Moderate
al. (2010)	Setting: Postop,	Analyzed N: 30	hemodynamically stable	Female %: 40	no difference in incident	
	cardiothoracic	Intervention 1 (N=15):	requiring repair of an acute	Race %: NR	delirium between treatment	
	Country: Italy	Clonidine 0.5 µg/kg bolus	type-A aortic dissection	Delirium %: NR	with clonidine vs. placebo	
	Funding: Unclear	followed by 1-2 µg/kg/hour	Exclusion: NR	Function: NR	for POD (40% vs. 33.3%,	
		Intervention 2 (N=15): Placebo;		Dementia %: NR	p>0.05).	
		normal saline		Postop %: 100	Attrition: NR	
		Duration: Postop		Cancer %: 0		
		Follow-up (days): Discharge				
Shokri and	Design: RCT	Randomized N: 294	Inclusion: Ages 60-70 years	Mean (SD) age: 64.1 (4.1)	Main outcomes:	Low
Ali (2020)	Setting: Intra-	Analyzed N: 286	with ASA status II and III,	Female %: 51.4	Dexmedetomidine was	
	and post-	Intervention 1 (N=147):	scheduled for elective isolated	Race %: NR	associated with lower risk	
	operative,	Dexmedetomidine; initial	CABG, and absence of any	Delirium %: NR, severe	and duration of delirium,	
	cardiac	continuous infusion of 0.7-1.2	associated comorbidities or	delirium excluded	shorter MV duration and ICU	
	Country: Egypt	µg/kg/hour, then adjusted on	history of MI	ASA II %: 62.6	stay, lower mortality rate,	
	Funding: None	the basis of sedation and	Exclusion: History of severe	ASA III %: 37.4	and lower morphine	
		analgesia adequacy to a	dementia, delirium, or	Dementia %: NR, severe	consumption than the	
		maximum dose of 1-1.4	undergoing emergency	dementia excluded	clonidine group.	
		μg/kg/hour	procedures, or treated with	Postop %: 100	Dexmedetomidine	
		Intervention 2 (N=147):		Cancer %: NR		

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition	Bias
name		interventions, duration, and	criteria		rates	
		follow-up				
		Clonidine IV 0.5 µg/kg slowly	haloperidol impaired renal or		significantly decreased heart	
		over 10-15 minutes, followed	hepatic functions		rates after ICU admission.	
		by a continuous IV infusion of			Attrition at follow-up: 2% vs.	
		1-2 μg/kg/hour			3%	
		Intervention 1 duration: During				
		surgery, then weaned off slowly				
		after surgery				
		Intervention 2 duration: During				
		surgery				
		Follow-up (days): 8				
Sultan	Design: RCT	Randomized N: 222	Inclusion: Age >65 years,	Mean (SD) age: 71.01 (36.8)	Main outcomes: The	High
(2010)	Setting: Preop,	Analyzed N: 203	scheduled for hip arthroplasty	Female %: 51	melatonin group showed a	
	hip	Intervention 1 (N=53 analyzed):	under spinal anesthesia, and	Race %: NR	statistically significant	
	Country: Egypt	Melatonin 5 mg, 2 oral doses	ASA I to III	Delirium %: 0 (excluded)	decrease in the percentage	
	Funding: None	Intervention 2 (N=50 analyzed):	Exclusion: Sensory impairment	ASA I-III: inclusion criterion	of POD (9.43% vs. 32.65% in	
		Midazolam 7.5 mg, 2 oral doses	(blindness, deafness);	Dementia %: 0 (excluded)	controls).	
		Intervention 3 (N=51 analyzed):	dementia; severe infections;	Postop %: 100	Overall attrition: 9%	
		Clonidine 100 µg, 2 oral doses	severe anemia	Cancer %: NR		
		Intervention 4 (N=49 analyzed):	(hematocrit<30%); intracranial			
		No sedation	events (stroke, bleeding,			
		Duration: 1 dose the night	infection); fluid or electrolyte			
		before surgery and another 90	disturbances; acute cardiac			
		minutes before surgery	events; acute pulmonary			
		Follow-up (days): POD 3	events; and medications			
			including anticonvulsants,			
			antihistamines, and			
			benzodiazepines			

ASA=American Society of Anesthesiologists; CABG=coronary artery bypass graf; ICU=intensive care unit; IV=intravenous; MI=myocardial infarction; MV=medical ventilation; N=number; NR=not reported; POD=post-operative delirium; postop=post-operative; preop=pre-operative; RCT=randomized controlled trial; SD=standard deviation.

Other Medications

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
Bielza et al. (2020)	Design: RCT Setting: Intraop, hip Country: Spain Funding: Non- profit	Randomized N: 253 Analyzed N: 253 Intervention (N=126): Iron IV 200 mg in 100 mL saline Control (N=127): Normal saline Duration: On days 1, 3, and 5 of hospital stay Follow-up (days): Discharge	Inclusion: Age ≥70 years undergoing hip fracture surgery admitted to the orthogeriatric care share service Exclusion: Asthma or severe atopic disease, hemochromatosis, inability to walk prior to the fracture, dependency for all basic daily living activities, severe dementia, or known terminal illness (life expectancy of <6 months)	Median age: 87 Female %: 72.7 Race %: NR Delirium %: 6.3 Median (IQR) Charlson Comorbidity Index: 2 (1-3) Dementia %: 26.9 Postop %: 100 Cancer %: NR	Main outcomes: IV iron did not show significant effects in any of the secondary end points: mortality, functional recovery at 3 months, postop transfusion requirements, hemoglobin levels at 3 months, and proportion of nosocomial infections or incidence of POD. Attrition: 21% vs. 22%	Low
Deng et al. (2020)	Design: RCT Setting: Intraop, noncardiac Country: China Funding: Government	Randomized N: 248 Analyzed N: 248 Intervention 1 (N=124): Methylene blue IV continuous infusion of 2 mg/kg diluted with normal saline into total 50 mL Control (N=124): Normal saline Duration: Immediately after anesthetic induction Follow-up (days): Discharge 90	Inclusion: Ages 60-80 years undergoing noncardiac and non-neurosurgical major surgery Exclusion: Preexisting dementia, major depression, or other serious mental or neurological disorders; history of major head trauma; emergency surgery; serious medical diseases; planned postop intubation	Median age: 67 vs. 68.5 Female %: 40.3 Race %: NR Delirium %: NR ASA I %: 13.7 ASA II %: 83.9 ASA III %: 2.4 Dementia %: 0 (excluded) Postop %: 100 Cancer %: 72.2	Main outcomes: The incidence of POD in methylene blue group was significantly less than that in control group (7.3% vs. 24.2%, OR 0.24, 95% CI 0.11 to 0.53, p<0.001). The incidence of early POCD at postop 7 th day in methylene blue group was also less than that in control group (16.1% vs. 40.2%, OR 0.30, 95% CI 0.16 to 0.57, p<0.001). The adverse events were comparable in both groups. Attrition at follow-up: 2% vs. 4%	Moderate

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition rates	Bias
name		interventions, duration,	criteria			
		and follow-up				
Kim et al.	Design: RCT	Randomized N: 127	Inclusion: cardiac surgery	Mean (SD) age: 65.9 (10.7)	Main outcomes: The incidence	Moderate
(1996)	Setting:	Analyzed N: 111	patients	Female %: 28	of delirium did not differ	
	Postop, cardiac	Intervention 1 (N=53	Exclusion: Taking an H-2	Race %: NR	according to whether patients	
	Country: U.S.	analyzed): Cimetidine IV 900	antagonist pre-operatively,	Delirium %: NR	received cimetidine or	
	Funding:	mg/day adjusted according	taking a drug that adversely	Baseline scale of function: NR	ranitidine (adjusted OR 0.72,	
	Industry and	to creatinine clearance	interacts with cimetidine	Dementia %: NR	95% CI 0.29 to 1.80).	
	nonprofit	Intervention 2 (N=58	(warfarin, lidocaine,	Postop %: 100	Overall attrition: 13%	
		analyzed): Ranitidine IV 150	phenytoin, and theophylline)	Cancer %: NR		
		mg/day adjusted according				
		to creatinine clearance				
		Duration: Postop until ICU				
		discharge				
		Follow-up (days): NR				
Li Y.N. et al.	Design: RCT	Randomized N: 60	Inclusion: Spine surgery	Mean (SD) age: 69.5 (4)	Main outcomes: Compared	High
(2017)	Setting:	Analyzed N: 30	patients	Female %: 54	with the control group, S100 β	
	Intraop, spine	Intervention (N=NR):	Exclusion: TBI, neurological	Race %: NR	and glial fibrillary acidic	
	Country: China	Nimodipine, calcium	diseases, or no severe hearing	Delirium %: 0	protein decreased, and	
	Funding:	channel blocker 7.5mg/kg/	and visual impairment	MMSE %: 0	incidence of POD reduced at	
	Government	hour injected continually 30		Dementia %: 0	T3-T4 (from 1 hour after skin	
		minutes before anesthesia		Postop %:100	incision to the time the	
		induction		Cancer %: NR	surgery was completed) in the	
		Control (N=NR): Saline		Hepatic or renal	nimodipine group; the	
		7.5mg/kg/hour injected		impairment %: 0	difference was statistically	
		continually 30 minutes		Alcohol abuse %: 0	significant (p<0.05).	
		before anesthesia induction		Drug use %: 0	Attrition: NR; 7 patients were	
		Duration: Preop		Medications taken at baseline:	lost because of non-	
		Follow-up (days): 1 to 7		NR	cooperation and 4 patients by	
					not receiving operation.	
Mohammadi	Design: RCT	Randomized N: 45	Inclusion: Ages 16-65 years	Mean (SD) age: 59.7 (15.6)	Main outcomes:	Moderate
et al. (2016)	Setting:	Analyzed N: 40	admitted to the ICU after	Female %: 35	Cyproheptadine co-treatment	
	Postop,	Intervention 1 (N=23):	noncardiac surgery	Race %: NR	compared with placebo	
		Cyproheptadine 4 mg 3	Exclusion: History of seizure,	Delirium %: NR	significantly decreased the	

Author (year); trial	Study characteristics	Study protocol including numbers of participants,	Study population including main inclusion	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
name	characteristics	interventions, duration,	criteria		outcomes and attrition rates	Dias
nume		and follow-up	ententa			
	noncardiac	times per day	Alzheimer's disease, asthma,	Mean (SD) APACHE II: 15.1	incidence of delirium	
	Country: Iran	Intervention 2 (N=22):	cardiac arrhythmia, urinary	(6.2)	(adjusted OR 0.14, 95% CI 0.09	
	Funding:	Placebo	retention, or active GI	Dementia %: NR	to 0.86).	
	University	Duration: 7 days	bleeding or obstruction	Postop %: 100	Attrition: 13% vs. 9%	
		Follow-up (days): 7		Cancer %: NR		
Moslemi et al.	Design: RCT	Randomized N: 102	Inclusion: Age ≥18 years	Mean (SD) age: 54 (12.1)	Main outcomes: The incidence	Moderate
(2020)	Setting:	Analyzed N: 96	admitted to the ICU after GI	Female %: 58.8	rate of delirium was	
	Intraop, GI	Intervention 1 (N=51):	surgery	Race %: NR	significantly lower in the	
	surgery	Thiamine IV 200 mg	Exclusion: History of any	Delirium %: NR	thiamine group vs. placebo	
	Country: Iran	Intervention 2 (N=51):	neuropsychiatric disorder,	Function: NR	group on the 1 st day (8.3% vs.	
	Funding: None	Placebo; saline IV	severe renal or liver	Dementia %: NR	25%, OR 0.27, 95% CI 0.08 to	
		Duration: 3 days in ICU	impairment, diabetic	Postop %: 100	0.92, p=0.026) and on the 2 nd	
		Follow-up (days): 3	ketoacidosis, or delirious	Cancer %: NR	day (4.2% vs. 20.8%, OR 0.16,	
			patients at time of ICU		95% CI 0.03 to 0.81, p=0.014).	
			admission		Attrition: 6% vs. 6%	
Nakamura et	Design: RCT	Randomized N: 64	Inclusion: Age >18 years,	Mean (SD) age: 54.7 (13.6)	Main outcomes: Delirium	Moderate
al. (2021)	Setting:	Analyzed N: 61	allogenic hematopoietic stem	Female %: 39	incidence (25% vs. 21%, Chi-	
	Postop, cancer	Intervention 1 (N=30):	cell transplantation	Race %:	square [df=1] 0.12, p=0.73),	
	Country: U.S.	Thiamine IV 200 mg; three	Exclusion: Delirium	-White: 85	time to onset, duration, and	
	Funding: Non-	times daily		-Black 15	severity were not different	
	profit	Intervention 2 (N=34):		Delirium %: 0 (excluded)	between the study arms.	
		Placebo (saline); three times		ECOG-PS 0-1 %: 98	Attrition at follow-up: 13% vs.	
		daily		Dementia %: NR	3%	
		Duration: For 7 days		Postop %:100		
		Follow-up (days): 30 days or		Cancer %: 100		
		discharge				
Papadopoulos	Design: RCT	Randomized N: 106	Inclusion: Age >40 years and	Mean (SD) age: 71	Main outcomes: Delirium %	Moderate
et al. (2014)	Setting:	Analyzed N: 106	femoral or hip fracture surgery	Female %: 56	was 36% (18/51) vs. 53%	
	Postop,	Intervention 1 (N=51):	Exclusion: Prior	Race %: NR	(29/55) (p=0.07) on POD 2	
	orthopedic	Ondansetron 8 mg IV; daily	neuropsychiatric testing,	Delirium %: NR	(days 3 to 5: p=0.003,	
	Country:	Intervention 2 (N=55):	dementia (Alzheime''s),	ASA III %: 25	p<0.001, and p<0.001,	
		Placebo; daily		Dementia %: 0 (excluded)		

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
	Greece Funding: NR	Duration: Starting postop for 5 days Follow-up (days): 30	multiple injuries, or second surgery within 30 days	Postop %: NR Cancer %: NR	respectively; day 5=0 in both groups). Attrition: NR	
Robinson et al. (2014)	Design: RCT Setting: Postop, mixed Country: U.S. Funding: Mixed	Randomized N: 301 Analyzed N: 301 Intervention 1 (N=152): L- Tryptophan 1 gm; three times daily Intervention 2 (N=149): Placebo; three times daily Duration: 9 doses Follow-up (days): ICU discharge	Inclusion: Age >60 years undergoing elective surgery with planned postop ICU admission (general, vascular, urological, or thoracic surgery) Exclusion: Drugs that increase serotonin	Mean (SD) age: 69 Female %: 2 Race %: NR Delirium %: NR Mean TUG: 12 seconds Dementia %: NR Postop %: 100 Cancer %: NR	Main outcomes: Delirium occurred in 40% and 37% of patients with tryptophan and placebo, respectively (p=0.60). Duration of delirium was 2.9 to 1.8 days for tryptophan and 2.4 to 1.6 days for placebo (p=0.17). Overall attrition: 0%	Low
Saager et al. (2015)	Design: RCT Setting: Postop, cardiac Country: U.S. Funding: Government	Randomized N: 203 Analyzed N: 198 Intervention (N=95): Hyperinsulinemic- normoglycemic clamp; a constant infusion of insulin (5 mU/kg/minute) was given with a concomitant variable infusion of 20% dextrose titrated to target blood glucose concentrations 80-110 mg/dl Control (N=108): Usual care Duration: During surgery Follow-up (days): Until discharge or POD 5	Inclusion: Age ≥18 years undergoing cardiac surgery with CPB Exclusion: NR	Mean (SD) age: 65.5 (13.5) Female %: 27.3 Race %: NR Delirium %: NR ASA IV-V %: 81 Dementia %: NR Postop %: 100 Cancer %: NR Diabetes %: 31.8	Main outcomes: Patients randomized to tight glucose control were more likely to be diagnosed as being delirious than those assigned to routine glucose control (26/93 vs. 15/105, RR 1.89, 95% CI 1.06 to 3.37, p=0.03). Attrition: 2% vs. 3%	Moderate

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition rates	Bias
name		interventions, duration,	criteria			
		and follow-up				
Spies et al.	Design: RCT	Randomized N: 281	Inclusion: Age >18 years	Mean (SD) age: 61	Main outcomes: The incidence	Low
(2021)	Setting:	Analyzed N: 261	undergoing liver resection	Female %: 58	of POD did not differ	
	Intraop, liver	Intervention 1 (N=139):	surgery	Race %: NR	significantly between the	
	Country:	Physostigmine 0.02 mg/kg	Exclusion: Parkinson's disease	Delirium %: 0	physostigmine and placebo	
	Germany	IV bolus, then 0.01 mg/kg		ASA II-III %: 92	groups (20% vs. 15, p=0.334).	
	Funding:	infusion		Median (IQR) MMSE: 29 (29-	Lower mortality rates were	
	Industry	Intervention 2 (N=142):		30)	found in the physostigmine	
		Placebo		Postop %: 100	group compared with placebo	
		Duration: 24 hours after		Cancer %: 83	at 3 months (2% [95% CI 0 to	
		start of anesthesia			4] vs. 11% [95% Cl 6 to 16],	
		Follow-up (days): 7			p=0.002) and at 6 months (7%	
					[95% CI 3 to 12] vs. 16% [95%	
					Cl 10 to 23], p=0.012) after	
					surgery.	
					Attrition: 2% vs. 8%	
Xin et al.	Design: RCT	Randomized N: 120	Inclusion: Age >65 years who	Mean (SD) age: 76.1 (5.7)	Main outcomes: Hypertonic	Moderate
(2017)	Setting:	Analyzed N: 120	underwent hip arthroplasty	Female %: 48.3	saline had a lower risk of POD	
	Postop,	Intervention (N=60): 7.5%	for femoral neck fracture	Race %: NR	vs. normal saline (OR 0.13,	
	orthopedic	hypertonic saline; right	surgery	Delirium %: 0 (excluded)	95% CI 0.04 to 0.41, p=0.001).	
	Country: China	before anesthesia	Exclusion: Those with	ASA score of 2 %: 60.8	Attrition: NR	
	Funding:	Control (N=60): Normal	dementia or MMSE <24, preop	Dementia %: 0 (excluded)		
	Government	saline; right before	delirium, history of	Mean (SD) MMSE: 25.6 (1.3)		
		anesthesia	neurological or mental illness,	Postop %: 100		
		Intervention mean (SD)	current use of tranquilizers or	Cancer %: NR		
		duration of anesthesia: 98.5	antidepressants, history of an	Mean (SD) duration of		
		(12.3) minutes	endocrine or metabolic	anesthesia, minutes: 100.3		
		Control mean (SD) duration	disorder, recent use of	(12.8)		
		of anesthesia: 102.2 (13.3)	glucocorticoids or other			
		minutes	hormones, suffering from			
		Follow-up (days): 3	infections or chronic			
			inflammatory conditions, or			

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
			intake of anti-inflammatory			
			drugs			

APACHE II=Acute Physiology and Chronic Health Evaluation II; ASA=American Society of Anesthesiologists; CI=confidence interval; CPB=cardiopulmonary bypass; df=degree of freedom; ECOG-PS= Eastern Cooperative Oncology Group Performance Status; GI=gastrointestinal; ICU=intensive care unit; intraop=intra-operative; IQR=interquartile range; IV=intravenous; MMSE=Mini-Mental State Examination; N=number; NR=not reported; OR=odds ratio; POCD=post-operative cognitive dysfunction; POD=post-operative delirium; postop=post-operative; preop=pre-operative; RCT=randomized controlled trial; RR=relative risk; SD=standard deviation; TBI=traumatic brain injury; TUG=timed up and go.

Additional Pharmacological Interventions for Treatment of Delirium

Cholinesterase Inhibitors

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition rates	Bias
name		interventions, duration,	criteria			
		and follow-up				
Overshott et	Design: RCT	Randomized N: 15	Inclusion: Age >65 years with	Mean (SD) age: 82.5 (9.9)	Main outcomes: All of the	Moderate
al. (2010)	Setting:	Analyzed N: Unclear	delirium by CAM	Female %: 47	rivastigmine group, but only 3 of	
	Inpatient	Intervention 1 (N=8):	Exclusion: Patients who "were	Race %: NR	the placebo group, were	
	Country: U.K.	Rivastigmine 1.5 mg once	too ill" taking a cholinesterase	Delirium %: 100	negative for delirium on the	
	Funding:	a day increasing to 1.5 mg	inhibitor, or had blood test	Baseline scale of function: NR	CAM when they left the study.	
	Government,	twice a day; higher dose	abnormalities (urea,	Dementia %: 47	There was no significant	
	university	after 7 days	creatinine, transaminases,	Postop %: 0 (medical wards)	difference in the duration of	
		Intervention 2 (N=7):	bilirubin); myocardial	Cancer %: NR	delirium between the 2 groups	
		Placebo tablets identical	infarction, unstable cardiac		(rivastigmine group 6.3 days vs.	
		to drug, increasing to 2	arrhythmia, or severe		placebo group 9.9 days, 95% CI -	
		tablets; higher dose after	respiratory disease		15.6 to 8.4, p=0.5).	
		7 days			Attrition: 13% vs. 14%	
		Duration: Until delirium				
		resolved or for maximum				
		28 days				
		Follow-up (days): 28				
van Eijk et	Design: RCT	Randomized N: 109	Inclusion: Age ≥18 years; ICU	Mean (SD) age: 69.0 (11.8)	Main outcomes: Median	Moderate
al. (2010)	Setting: ICU	Analyzed N: 104	patients with delirium	Female %: 36	duration of delirium was longer	
	Country: The	Intervention 1 (N=55):	according to CAM-ICU or	Race %: NR	in the rivastigmine group than in	
	Netherlands	Rivastigmine oral solution,	clinical diagnosis by a	Delirium %: 100	the placebo group, but the	

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition rates	Bias
name		interventions, duration,	criteria			
		and follow-up				
	Funding:	increasing dose starting at	psychiatrist, geriatrician, or	Baseline scale of function,	difference between the groups	
	Industry and	0.75 mL (1.5 mg) twice	neurologist; expected to	Mean (SD) APACHE II: 20.0	was not significant (5.0 days	
	nonprofit	daily and increasing in	remain in the ICU for ≥48	(8.4)	[IQR 2.7–14.2] vs. 3.0 days [IQR	
		increments to 3 mL (6 mg)	hours	Dementia %: NR	1.0–9.3], p=0.06). Delirium was	
		twice daily as tolerated, as	Exclusion: Unable to receive	Postop %: 69	significantly higher severity in	
		an adjunct to usual care	enteric drugs, receiving renal	Cancer %: NR	the rivastigmine group than in	
		with haloperidol	replacement therapy, liver		the placebo group. Mortality in	
		Intervention 2 (N=54):	failure with hepatic		the rivastigmine group (n=12,	
		Placebo oral solution,	encephalopathy, second- or		22%) was higher than in the	
		increasing dose starting at	third-degree atrioventricular		placebo group (n=4, 8%)	
		0.75 mL twice daily and	block or bradycardia with		(p=0.07).	
		increasing in increments	hemodynamic consequences,		Attrition at follow-up: 35% vs.	
		to 3 mL twice daily as	or without a functioning		28%	
		tolerated, as an adjunct to	pacemaker			
		usual care with				
		haloperidol				
		Duration: Dose increased				
		between days 4 and 9,				
		stable from day 10				
		onwards				
		Follow-up (days): 90				

APACHE II=Acute Physiology and Chronic Health Evaluation II; CAM=Confusion Assessment Method; CAM-ICU=Confusion Assessment Method for the ICU; CI=confidence interval; ICU=intensive care unit; IQR=interquartile range; N=number; NR=not reported; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

Benzodiazepine Antagonist

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition rates	Bias
name		interventions, duration,	criteria			
		and follow-up				
Schomer et	Design: RCT	Randomized N: 22	Inclusion: Age ≥18 years;	Mean (SD) age: 58.1 (7.31)	Main outcomes: The median	Moderate
al. (2020)	Setting: ICU	Analyzed N: 20	critically ill who previously	Female %: 31.8	number of delirium-free days	
	Country: U.S.	Intervention 1 (N=11):	received benzodiazepines	Race %: NR	alive without coma within 14	
		Flumazenil 0.1 mg IV,	while in the ICU and had	Delirium %: 100	days of enrollment was similar	

Author	Study	Study protocol including	Study population including	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	main inclusion and exclusion		outcomes and attrition rates	Bias
name		interventions, duration,	criteria			
		and follow-up				
	Funding:	titrated up every 5	hypoactive delirium	Mean (SD) Charlson	between the 2 groups (12.7 vs	
	University	minutes by 0.1 mg	associated with	Comorbidity Index: 5 (3)	9.2, p=0.19). There was no	
		increments to a maximum	benzodiazepine exposure	Dementia %: NR	difference in the probability of	
		dose of 2 mg	Exclusion: Those with an	Postop %: 4.5 (1/22)	delirium resolution within the	
		Intervention 2 (N=11):	alternate explanation for	Cancer %: NR	first 14 days with 90% vs. 70% in	
		Placebo	altered mental status, acute	Mean (SD) time since last	the flumazenil and placebo	
		Duration: During ICU stay	brain injury, and/or history of	benzodiazepine, hours: 49	groups, respectively (p=0.2).	
		Follow-up (days): Until	seizures	(30.8)	There was no statistical	
		discharge		Benzodiazepine indication:	difference (OR 0.17, 95% CI	
				-Ventilator asynchrony %: 50	0.022 to 1.23, p=0.079) in	
				-Alcohol withdrawal	delirium- and coma-free days at	
				syndrome %: 50	the end of the study drug	
					infusion.	
					Attrition: 9% vs. 9%	

CI=confidence interval; ICU=intensive care unit; IV=intravenous; N=number; NR=not reported; OR=odds ratio; postop=post-operative; RCT=randomized controlled trial; SD=standard deviation.

Additional Medications

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
name		interventions, duration,				
		and follow-up				
Atalan et al.	Design: RCT	Randomized N: 53	Inclusion: Cardiac surgery patients	Mean (SD) age: 65.87	Main outcomes: Target	High
(2013)	Setting: Postop,	Analyzed N: 53	with hyperactive-type delirium	(9.03)	Richmond RASS scores	
	cardiac	Intervention 1 (N=27):	Exclusion: Patients with dementia,	Female %: 26	percentages in the morphine	
	Country: Turkey	Morphine sulfate 5 mg	abnormal level of consciousness,	Race %: NR	group were statistically higher	
	Funding:	intramuscularly*	recent seizures, or hypoactive-	Delirium %: 3.0 vs. 2.9	than the haloperidol group	
	Unclear	Intervention 2 (N=26):	type delirium patients	(RASS score)	(p=0.042 and p=0.028,	
		Haloperidol 5 mg		APACHE II: 6.33 vs. 5.69	respectively). The number of	
		intramuscularly*		Dementia %: 0	patients requiring additive	
		*Patients still agitated		Postop %: 100 cardiac	sedatives was significantly more	
		after administration of 20		surgeries	in the haloperidol group when	
		mg/day of		Cancer %: NR	compared with the morphine	
l		morphine/haloperidol		Hepatic or renal	group (p=0.011).	

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
name		interventions, duration,				
		and follow-up				
		also received 2.5 mg of		impairment:	Attrition: NR	
		lorazepam perorally,		NR		
		twice a day.		Alcohol use %: 19 vs. 4		
		Duration: Postop, up to 10		Drug use %: 4 vs. 12		
		days		Medications taken at		
		Follow-up (days): 10,		baseline %: psychotropic		
		every 12 hours until		drugs 4 vs. 12		
		discharge or 10 days				
Bakri et al.	Design: RCT	Randomized N: 96	Inclusion: Patients who screened	Mean (SD) age: 31 (5.5)	Main outcomes: At the end of	Moderate
(2015)	Setting: Postop,	Analyzed N: 96	positive for delirium within the	Female %: 9	the study, the number of	
	mixed	Intervention 1 (N=32):	first 3 days of ICU admission	Race %: NR	remaining delirious patients was	
	Country: Saudi	Dexmedetomidine	Exclusion: Severely injured, deeply	Delirium %: 100 (required)	3, 6, and 2 in the	
	Arabia	continuous IV infusion of	comatose, moribund patients,	Functioning scale: NR	dexmedetomidine,	
	Funding: None	1 μg/kg; twice a day	underlying neurological diseases,	Dementia %: NR	ondansetron, and haloperidol	
		Intervention 2 (N=32):	significant hearing loss,	Postop %: 100	groups, respectively, without	
		Ondansetron continuous	intracranial injury, or	Cancer %: NR	statistical significance. During	
		IV infusion 4 mg; twice a	ischemic/hemorrhagic stroke	Mean (SD) duration of	the study period, no significant	
		day		surgery, minutes: 211 (34)	difference was found in the	
		Intervention 3 (N=32):		Mean (SEM) Injury	number of patients who needed	
		Haloperidol continuous IV		Severity Score: 25.4 (2.9)	"rescue haloperidol" between	
		infusion 5 mg; twice a day		Patients on MV on ICU	the dexmedetomidine and	
		Duration: 3 days		admission %: 27	haloperidol groups (5 vs. 3,	
		Follow-up (days): POD 3			p=0.7), but the difference was	
					significantly higher in the	
					ondansetron and haloperidol	
					groups (11 vs. 3, p=0.03). The	
					mean total "rescue haloperidol"	
					dose was significantly higher in	
					the ondansetron group than the	
					haloperidol group (p<0.001),	
					but there was no difference	
					between the dexmedetomidine	

Author (year); trial name	Study characteristics	Study protocol including numbers of participants, interventions, duration, and follow-up	Study population including main inclusion and exclusion criteria	Sample demographics	Results including main outcomes and attrition rates	Risk of Bias
					and haloperidol groups (p=0.07). Attrition: NR	
Furuya et al. (2015)	Design: Retrospective cohort Setting: Inpatient Country: Japan Funding: NR	Analyzed N: 32 Intervention 1 (N=19 analyzed): No ramelteon* Intervention 2 (N=13 analyzed): Ramelteon* *Both groups received antipsychotics (risperidone, quetiapine, perospirone [not available in U.S.], haloperidol, or chlorpromazine) Duration: NR Follow-up (days): NR	Inclusion: Patients diagnosed with delirium using the DSM-IV-TR by psychiatric specialists Exclusion: Severe liver dysfunction or use of fluvoxamine	Mean age: 80 vs. 78 Female %: 63 vs. 46 Race: NR Delirium %: 100 Baseline scale of function: NR Dementia %: NR Postop %: 68 vs. 69 Cancer %: NR	Main outcomes: Duration of delirium in the ramelteon group was significantly less than that in the no ramelteon group: mean (SEM) 6.6 days (1.0) vs 9.9 days (1.3) (p=0.048). Dose of antipsychotics in the ramelteon group was significantly smaller than that in the no ramelteon group: mean (SEM) 444.5 mg (95.7) vs. 833.4 mg (137.9) (p=0.044). Attrition: NR	High
Hov et al. (2019); LUCID	Design: RCT Setting: Inpatient Country: Norway Funding: Mixed	Randomized N: 20 Analyzed N: 20 Intervention 1 (N=10): Clonidine 75 µg loading dose of 1 capsule every third hour up to 4 doses then twice daily until delirium-free for 2 days, discharge, or a maximum of 7 days of treatment Intervention 2 (N=10): Placebo; loading placebo dose given but other details of dosing unclear Duration: Until delirium- free for 2 days, discharge,	Inclusion: Age ≥65 years who were acutely admitted with delirium or subsyndromal delirium Exclusion: Bradycardia, bradycardia due to sick-sinus- syndrome, second- or third- degree atrioventricular block (if not treated with pacemaker), or any other reason causing heart rate <50 bpm; hypotension or orthostatic hypotension or a systolic blood pressure <120 mmHg; ischemic stroke or critical peripheral ischemia; acute coronary syndrome, unstable or	Mean (SD) age: 86.5 Female %: 65 Race %: NR Delirium or subsyndromal Delirium %: 100 ADL independent %: 25 Cognitive Impairment %: 58 (IQCODE ≥3.82) Postop %: NR Cancer %: NR	Main outcomes: There was no difference in time to first day without delirium (3 days vs. 3 days, p=0.59) or in final delirium resolution (5 days vs. 8 days, p=0.40); this study was underpowered. Overall attrition: 0%	Low

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
name		interventions, duration,				
		and follow-up				
		or a maximum of 7 days	severe coronary heart disease,			
		Follow-up (days): Until 7	and moderate to severe heart			
		days or discharge	failure; polyneuropathy,			
			phaeochromocytoma, or renal			
			insufficiency; body weight <45 kg;			
			considered as moribund on			
			admission; unstable to take oral			
			medications; use of tricyclic			
			antidepressants, monoamine			
			reuptake inhibitors, or ciclosporin;			
			previously included in the study;			
			adverse reactions to clonidine or			
			excipients (lactose, saccharose);			
			no speaking or reading			
			Norwegian; other conditions;			
			admission to ICU			
Liu et al.	Design: RCT	Randomized N: 100	Inclusion: Ages 20-40 years	Mean (SD) age: 30.95	Main outcomes:	Low
(2018)	Setting: Postop,	Analyzed N: 100	scheduled for general anesthesia	(4.87)	Dexmedetomidine and	
	mixed	Intervention 1 (N=25):	Exclusion: Delirium preop	Female %: 46	sufentanil decreased the	
	Country: China	Dexmedetomidine IV 0.2		Race %: NR	duration of POD through 8	
	Funding:	µg/kg bolus followed by		Delirium %: 100	hours postop, but more	
	Nonprofit	0.6 μg/kg/hour		ASA I, II %: 100	individuals had delirium in the	
		Intervention 2 (N=25):		Dementia %: NR	dexmedetomidine group at 8	
		Sufentanil IV 0.2 μg/kg		Postop %: 100	hours than the other 3 groups	
		bolus followed by 0.2		Cancer %: NR	(36% vs. 8% to 16%, p<0.05).	
		µg/kg/hour			Overall attrition: 0%	
		Intervention 3 (N=25):				
		Sufentanil IV 0.2 μg/kg				
		bolus followed by				
		combined				
		dexmedetomidine 0.6				
		µg/kg/hour and sufentanil				

Author	Study	Study protocol including	Study population including main	Sample demographics	Results including main	Risk of
(year); trial	characteristics	numbers of participants,	inclusion and exclusion criteria		outcomes and attrition rates	Bias
name		interventions, duration,				
		and follow-up				
		0.2 μg/kg/hour				
		Intervention 4 (N=25):				
		Sufentanil IV 0.2 µg/kg				
		bolus followed by				
		combined				
		dexmedetomidine 0.3				
		µg/kg/hour and sufentanil				
		0.1 μg/kg/hour				
		Duration: Postop				
		Follow-up (days): Through				
		8 hours				
Tagarakis et	Design: RCT	Randomized N: 80	Inclusion: Developed delirium	Mean (SD) age: 71	Main outcomes: A statistically	High
al. (2012)	Setting: Postop,	Analyzed N: 80	post on-pump heart surgery,	Female %: 34	significant improvement was	
	cardiac	Intervention 1 (N=40):	using a 4-point scale (threshold	Race %: NR	shown after the administration	
	Country: Greece	Ondansetron 8 mg IV	for delirium NR)	Delirium %: NR	of both ondansetron	
	Funding: NR	Intervention 2 (N=40):	Exclusion: History of severe	Baseline scale of function:	(percentage improvement	
		Haloperidol 5 mg IV	psychiatric disease	NR	61.29%, p<0.01) and haloperidol	
		Duration: Once for 10		Dementia %: NR	(percentage improvement	
		minutes		Postop %: 100	58.06%, p<0.01), but no	
		Follow-up (days): 1		Cancer %: NR	between group differences	
					were found.	
					Attrition: NR	

ADL=Activities of Daily Living; APACHE II=Acute Physiology and Chronic Health Evaluation II; ASA=American Society of Anesthesiologists; DSM-IV-TR=*Diagnostic and Statistical Manual of Mental Disorders*, Fourth Edition, Text Revision; ICU=intensive care unit; IQCODE=Informant Questionnaire on Cognitive Decline in the Elderly; IV=intravenous; MV=medical ventilation; N=number; NR=not reported; OR=odds ratio; POD=post-operative delirium; postop=post-operative; preop=pre-operative; RASS=Richmond Agitation Sedation Scale; RCT=randomized controlled trial; SD=standard deviation; SEM=standard error of the mean.

Appendix I. Considerations in the Use of Guidelines to Enhance the Quality of Care

Clinical practice guidelines can help enhance quality by synthesizing available research evidence and delineating recommendations for care on the basis of the available evidence. In some circumstances, practice guideline recommendations will be appropriate to use in developing quality measures. Guideline statements can also be used in other ways, such as educational activities or electronic decision support, to enhance the quality of care that patients receive. Furthermore, when availability of services is a major barrier to implementing guideline recommendations, improved tracking of service availability and program development initiatives may need to be implemented by health organizations, health insurance plans, federal or state agencies, or other regulatory programs.

Discussing quality measures as part of this practice guideline can alert clinicians and potential policy makers to factors that may be relevant when incorporating guideline recommendations into fully specified measures, quality improvement initiatives, or electronic record decision supports aimed at enhancing the quality of patient care.

Typically, guideline recommendations that are chosen for development into quality measures will advance one or more aims of the Institute of Medicine's (2001) report Crossing the Quality Chasm by facilitating care that is safe, effective, patient-centered, timely, efficient, and equitable. To achieve these aims, quality measures (Watkins et al. 2015) are needed that span the continuum of care (e.g., prevention, screening, assessment, treatment, continuing care), address the different levels of the health system hierarchy (e.g., system-wide, organization, program/department, individual clinicians), and include measures of different types (e.g., process, outcome, patient-centered experience). Emphasis is also needed on factors that influence the dissemination and adoption of evidence-based practices (Drake et al. 2008; Greenhalgh et al. 2004; Horvitz-Lennon et al. 2009a).

Often, quality measures will focus on gaps in care or on care processes and outcomes that have significant variability across specialties, health care settings, geographical areas, or patients' demographic characteristics. Administrative databases, registries, and data from electronic health record (EHR) systems can help to identify gaps in care and key domains that would benefit from performance improvements (Acevedo et al. 2015; Patel et al. 2015; Watkins et al. 2016). Nevertheless, for some guideline statements, evidence of practice gaps or variability will be based on anecdotal observations if the typical practices of psychiatrists and other health professionals are unknown. Variability in the use of guideline-recommended approaches may reflect appropriate differences that are tailored to the patient's preferences, treatment of co-occurring illnesses, or other clinical circumstances that may not have been studied in the available research. On the other hand, variability may indicate a need to strengthen clinician knowledge or to address other barriers to adopting best practices (Drake et al. 2008; Greenhalgh et al. 2004; Horvitz-Lennon et al. 2009a). When performance is compared among organizations, variability may reflect a need for quality improvement initiatives to improve overall outcomes but could also reflect case-mix differences such as socioeconomic factors or the prevalence of co-occurring illnesses.

Conceptually, quality measures can be developed for purposes of accountability, for internal or health system—based quality improvement, or both. Accountability measures require clinicians to report their

rate of performance of a specified process, intermediate outcome, or outcome in a specified group of patients. Because these data are used to determine financial incentives or penalties based on performance, accountability measures must be scientifically validated, have a strong evidence base, fill gaps in care, and be broadly relevant and meaningful to patients, clinicians, and policy makers. Development of such measures is complex and requires development of the measure specification and pilot testing (Center for Health Policy/Center for Primary Care and Outcomes Research and Battelle Memorial Institute 2011; Fernandes-Taylor and Harris 2012; Iyer et al. 2016; Pincus et al. 2016; Watkins et al. 2011). The purpose of the measure specification is to create detailed, clearly written, and precise instructions on the calculation of the measure so that, when implemented, the measure will be consistent, reliable, and effective in addressing quality in a specific target population (Centers for Medicare and Medicaid Services 2023). In contrast, internal or health system-based quality improvement measures are typically designed by and for individual providers, health systems, or payers. They typically focus on measurements that can suggest ways for clinicians or administrators to improve efficiency and delivery of services within a particular setting. Internal or health system-based quality improvement programs may or may not link performance with payment, and, in general, these measures are not subject to strict testing and validation requirements.

Regardless of the purpose of the quality measure, it must be possible to define the applicable patient group (i.e., the denominator) and the clinical action or outcome of interest that is measured (i.e., the numerator) in validated, clear, and quantifiable terms. The measure also needs to be feasible. More specifically, the health system's or clinician's performance on the measure must be readily ascertained from chart review, patient-reported outcome measures, registries, or administrative data. Although it is possible that greater use of standardized assessments (Fortney et al. 2017) and advances in natural language processing technology may permit better capture of quality related data, recommendations related to patient assessment or treatment selection may still require clinical judgment to determine whether the clinician has addressed the factors that merit emphasis for an individual patient. In addition, use of the measure should yield improvements in quality of care to justify any clinician burden (e.g., documentation burden; Johnson et al. 2021) or related administrative costs (e.g., for manual extraction of data from charts, for modifications of EHRs to capture required data elements). Finally, with any development of quality related measures, possible unintended consequences of the measure would need to be assessed in testing measure specifications within a variety of practice settings.

Quality Related Considerations for Individual Guideline Statements

For each guideline statement, the types of approaches that might be used to improve the care of patients with delirium are shown in Table I-1. For statements that are suggestions, rather than recommendations, incorporation of content into quality initiatives will not typically be indicated. However, educational materials might be provided to clinicians, patients, or others via electronic links.

Explore the Use of Existing Measures

Key elements of this guideline recommendation are already incorporated into a number of performance-based measures. For example, obtaining an accurate medication list and reviewing medications as part of medication reconciliation are part of The Joint Commission's requirements at the time of hospital admission (The Joint Commission 2023). A measure for "Documentation of Current

Medications in the Medical Record" is also part of the Merit-Based Incentive Payment System Program, among other programs (Centers for Medicare and Medicaid Services 2022). Other available measures include a process measure for "Use of High-Risk Medications in Older Adults" (Centers for Medicare and Medicaid Services 2021b). A performance-based process measure also exists for "Medication Reconciliation Post-Discharge" (Centers for Medicare and Medicaid Services 2021a). In addition, regulatory policy and hospital conditions of participation already include requirements for monitoring and reporting related to use of physical restraints (Code of Federal Regulations 2019).

Develop Fully-Specified Measures

Although the majority of these recommendations are not suitable for development into a performancebased measure, the availability of delirium specific screening tools could permit screening rates to be determined in high-risk patient populations. Categories of high-risk individuals could be based on factors such as situational context (e.g., post-operative patients, ICU patients), demographic factors (e.g., age), and co-occurring diagnoses (e.g., dementia). A performance-based measure could also be specified at easily defined transitions or time points (e.g., admission, discharge, admission to or discharge from intensive care, specified number of days after surgery). For individuals with a diagnosis of delirium, a performance-based measure could determine whether the patient was reassessed for resolution of delirium at specific time points (e.g., at discharge, 30 days post-discharge).

Table I-1. Quality	related consid	erations for i	individual	guideline statements
Table I-1. Quality	related consid		inuiviuuai	guidenne statements

Statement	Торіс	Explore use	Fully specified	Local quality	EHR decision	Will likely	As a
		of existing	measure	improvement	support	depend on NLP	suggestion,
		measures	development	or utilization		advances to	not
				tracking		assess complex	applicable to
						free text	majority of
						documentation	patients
1	Structured Assessments for		X	Х	X		
	Delirium						
2	Determination of Baseline				Х	Х	
	Neurocognitive Status						
3	Review for Predisposing or				Х	Х	
	Contributing Factors						
4	Review of Medications	Х		Х	Х		
5	Use of Restraints	Х		Х			
6	Person-Centered Treatment				Х	Х	
	Planning						
7	Multi-Component			Х	Х	Х	
	Nonpharmacological						
	Interventions						
8	Principles of Medication				Х	Х	
	Use						
9	Antipsychotic Agents			Х	Х		
10	Benzodiazepines			Х	Х		
11	Dexmedetomidine to						Х
	Prevent Delirium						

Statement	Торіс	Explore use	Fully specified	Local quality	EHR decision	Will likely	As a
		of existing	measure	improvement	support	depend on NLP	suggestion,
		measures	development	or utilization		advances to	not
				tracking		assess complex	applicable to
						free text	majority of
						documentation	patients
12	Dexmedetomidine in						Х
12							~
	Patients with Delirium						
13	Melatonin and Ramelteon						Х
14	Medication Review at	Х		Х	Х		
	Transitions of Care						
15	Follow-up Planning at	Х		Х	Х		
	Transitions of Care						

Engage in Local Quality Improvement Initiatives

Local quality improvement initiatives can focus on rates of screening of high-risk individuals for delirium, as described above. If more frequent assessments are being done, such as for patients in intensive care, quality improvement activities could also examine the proportion of days with a delirium assessment. Local initiatives could also identify the proportion of patients who were reassessed for resolution of delirium at specific time points (e.g., at discharge, 30 days post-discharge).

Data from regulatory and performance-based metrics on restraint use and medication reconciliation adherence (e.g., on admission, at in-hospital transitions of care, at discharge) can be incorporated into local quality improvement initiatives in patients with a diagnosis of delirium or significant risk factors for delirium including pre-existing cognitive impairment.

Local quality improvement activities could also be developed to assess adherence with individual aspects of the multi-component bundle such as early mobility or use of both spontaneous awakening and spontaneous breathing trials.

For recommendations that address medication use, local quality improvement initiatives could examine rates of antipsychotic or benzodiazepine use in patients with delirium or at risk for delirium, with goals of using nonpharmacological treatments and limiting the duration of medication use, whenever possible.

Provide EHR Decision Support

Within the EHR, many approaches exist for assisting clinicians with decision making and these options can be developed to support the care of patients with delirium or at risk for delirium. For example, many EHRs already incorporate decision support alerts related to prescriptions, such as antipsychotic medications and benzodiazepines, that confer increased risk for delirium in older individuals (e.g., using the Beers criteria; American Geriatrics Society Beers Criteria[®] Update Expert Panel 2023).

If a delirium screening tool suggests the presence of delirium, an active or passive EHR alert could prompt clinicians to conduct a detailed diagnostic evaluation for delirium, determine the patient's neurocognitive status, or conduct a thorough assessment for delirium risk factors. Delirium-specific order sets could also suggest laboratory tests, imaging studies, or other evaluations aimed at identifying predisposing or contributing factors for delirium. EHR decision support could also include documentation templates that are specific to delirium, rounding checklists to assess fidelity to multicomponent bundle implementation, or easy access to detailed reference information on delirium (King et al. 2023a, 2023b; Stollings et al. 2020).

Information for patients and their care partners can be included in EHRs to assist with psychoeducation and can leverage existing EHR features that suggest patient education materials based on diagnosis.

Incorporate Analysis of Free Text Documentation

As technical aspects of natural language processing and machine learning evolve, information that is currently documented in free text will become more amenable to use in quality improvement initiatives. These approaches may eventually be useful in assessing adherence to guideline recommendations on

topics such as assessing the patient's baseline neurocognitive status, identifying predisposing or contributing factors to delirium, developing a treatment plan, or implementing multi-component nonpharmacological interventions.

References

Abbasi S, Farsaei S, Ghasemi D, et al: Potential role of exogenous melatonin supplement in delirium prevention in critically ill patients: a double-blind randomized pilot study. Iran. 17(4):1571-1580, 2018 30568713

Abbasinia M, Babaii A, Nadali Z, et al: The effects of a tailored postoperative delirium prevention intervention after coronary artery bypass graft: a randomized controlled trial. Nursing Practice Today 8(3):226-233, 2021

Abdelgalel EF: Dexmedetomidine versus haloperidol for prevention of delirium during non-invasive mechanical ventilation. Egyptian Journal of Anaesthesia 32(4):473-481, 2016

Abraham MP, Hinds M, Tayidi I, et al: Quetiapine for delirium prophylaxis in high-risk critically ill patients. Surgeon 19(2):65-71, 2021 32213291

Abraham J, Hirt J, Richter C, et al: Interventions for preventing and reducing the use of physical restraints of older people in general hospital settings. Cochrane Database Syst Rev 8(8):CD012476, 2022 36004796

Acevedo A, Garnick DW, Dunigan R, et al: Performance measures and racial/ethnic disparities in the treatment of substance use disorders. J Stud Alcohol Drugs 76(1):57–67, 2015 25486394

Adeola M, Azad R, Kassie GM, et al: Multicomponent interventions reduce high-risk medications for delirium in hospitalized older adults. J Am Geriatr Soc 66:1638-1645, 2018 30035315

Agar MR, Lawlor PG, Quinn S, et al: Efficacy of oral risperidone, haloperidol, or placebo for symptoms of delirium among patients in palliative care: a randomized clinical trial. JAMA Intern Med 177(1):34-42, 2017 27918778

Aizawa K, Kanai T, Saikawa Y, et al: A novel approach to the prevention of postoperative delirium in the elderly after gastrointestinal surgery. Surg Today 32(4):310-314, 2002 12027195

Aldecoa C, Bettelli G, Bilotta F, et al: European Society of Anaesthesiology evidence-based and consensus-based guideline on postoperative delirium. Eur J Anaesthesiol 34(4):192-214, 2017 28187050

Al Tmimi L, Verbrugghe P, Van de Velde M, et al: Intraoperative xenon for prevention of delirium after on-pump cardiac surgery: a randomised, observer-blind, controlled clinical trial. Br J Anaesth 28:28, 2020 32005514

Aloisi G, Marengoni A, Morandi A, et al: Drug prescription and delirium in older inpatients: results from the nationwide multicenter Italian Delirium Day 2015-2016. J Clin Psychiatry 80(2):18m12430, 2019 30901165

Al-Qadheeb NS, Skrobik Y, Schumaker G, et al: Preventing ICU subsyndromal delirium conversion to delirium with low-dose IV haloperidol: a double-blind, placebo-controlled pilot study. Crit Care Med 44(3):583-591, 2016 26540397

Alvarez EA, Garrido MA, Tobar EA, et al: Occupational therapy for delirium management in elderly patients without mechanical ventilation in an intensive care unit: a pilot randomized clinical trial. J Crit Care 37:85-90, 2017 27660922

American College of Emergency Physicians: Geriatric emergency department guidelines. Ann Emerg Med 63(5):e7-25, 2014 24746437

American Geriatrics Society Beers Criteria[®] Update Expert Panel: American Geriatrics Society 2023 updated AGS Beers Criteria[®] for potentially inappropriate medication use in older adults. J Am Geriatr Soc, 2023 37139824<<Epub ahead of print>>

American Geriatrics Society Expert Panel on Postoperative Delirium in Older Adults: American Geriatrics Society abstracted clinical practice guideline for postoperative delirium in older adults. J Am Geriatr Soc 63(1):142-150, 2015 25495432

American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders, 5th Edition, Text Revision. Washington, DC, American Psychiatric Association, 2022

Andersen-Ranberg NC, Poulsen LM, Perner A, et al: Haloperidol for the treatment of delirium in ICU patients. N Engl J Med 387(26):2425-2435, 2022 36286254

Arttawejkul P, Reutrakul S, Muntham D, et al: Effect of nighttime earplugs and eye masks on sleep quality in intensive care unit patients. Indian J 24(1):6-10, 2020 32148342

Atalan N, Efe Sevim M, Akgun S, et al: Morphine is a reasonable alternative to haloperidol in the treatment of postoperative hyperactive-type delirium after cardiac surgery. J Cardiothorac Vasc Anesth 27(5):933-938, 2013 23791495

Avendano-Cespedes A, Garcia-Cantos N, Gonzalez-Teruel Mdel M, et al: Pilot study of a preventive multicomponent nurse intervention to reduce the incidence and severity of delirium in hospitalized older adults: MID-Nurse-P. Maturitas 86:86-94, 2016 26921934

Avidan MS, Maybrier HR, Abdallah AB, et al: Intraoperative ketamine for prevention of postoperative delirium or pain after major surgery in older adults: an international, multicentre, double-blind, randomised clinical trial. Lancet 390(10091):267-275, 2017 28576285

Azuma K, Takaesu Y, Soeda H, et al: Ability of suvorexant to prevent delirium in patients in the intensive care unit: a randomized controlled trial. Acute Med Surg 5(4):362-368, 2018 30338083

Bakri MH, Ismail EA, Ibrahim A: Comparison of dexmedetomidine or ondansetron with haloperidol for treatment of postoperative delirium in trauma patients admitted to intensive care unit: randomized controlled trial. Anaesthesia, Pain and Intensive Care 19(2):118-123, 2015

Balas MC, Tan A, Pun BT, et al: Effects of a national quality improvement collaborative on ABCDEF bundle implementation. Am J Crit Care 31(1):54-64, 2022 34972842

Barnes-Daly MA, Phillips G, Ely EW: Improving hospital survival and reducing brain dysfunction at seven California community hospitals: implementing PAD guidelines via the ABCDEF bundle in 6,064 patients. Crit Care Med 45(2):171-178, 2017 27861180

Battle CE, James K, Bromfield T, Temblett P: Predictors of post-traumatic stress disorder following critical illness: a mixed methods study. J Intensive Care Soc 18(4):289-293, 2017 29123558

BC Centre for Palliative Care: B.C. Inter-professional Palliative Symptom Management Guidelines. 2017a. Available at: https://bc-cpc.ca/wp-content/uploads/2018/09/SMGs-interactive-final-Nov-30compressed.pdf. Accessed December 5, 2023.

BC Centre for Palliative Care: Palliative Care for the Patient with Incurable Cancer or Advanced Disease Part 2: Pain and Symptom Management. 2017b. Available at: https://www2.gov.bc.ca/assets/gov/health/practitioner-pro/bc-guidelines/palliative2.pdf. Accessed December 5, 2023.

Beach SR, Gross AF, Hartney KE, et al: Intravenous haloperidol: a systematic review of side effects and recommendations for clinical use. Gen Hosp Psychiatry 67:42-50, 2020 32979582

Beaucage-Charron J, Rinfret J, Coveney R, Williamson D: Melatonin and ramelteon for the treatment of delirium: A systematic review and meta-analysis. J Psychosom Res 170:111345, 2023 37150157

Beaussier M, Weickmans H, Parc Y, et al: Postoperative analgesia and recovery course after major colorectal surgery in elderly patients: a randomized comparison between intrathecal morphine and intravenous PCA morphine. Reg Anesth Pain Med 31(6):531-538, 2006 17138196

Bellapart J, Appadurai V, Lassig-Smith M, et al: Effect of exogenous melatonin administration in critically ill patients on delirium and sleep: a randomized controlled trial. Crit Care Res Pract 2020:3951828, 2020 33029397

Berkman ND, Lohr KN, Ansari MT, et al: Grading the strength of a body of evidence when assessing health care interventions: an EPC update. J Clin Epidemiol 68(11):1312-1324, 2015 25721570

Bielza R, Llorente J, Thuissard IJ, et al: Effect of intravenous iron on functional outcomes in hip fracture: a randomised controlled trial. Age Ageing 15:15, 2020 32542370

Blandfort S, Gregersen M, Borris LC, et al: Blood transfusion strategy and risk of postoperative delirium in nursing homes residents with hip fracture. a post hoc analysis based on the TRIFE randomized controlled trial. Aging-Clinical & Experimental Research 29(3):459-466, 2017 27251666

Boettger S, Breitbart W, Passik S: Haloperidol and risperidone in the treatment of delirium and its subtypes. European Journal of Psychiatry 25(2):59-67, 2011

Boettger S, Jenewein J, Breitbart W: Haloperidol, risperidone, olanzapine and aripiprazole in the management of delirium: a comparison of efficacy, safety, and side effects. Palliat Support Care 13(4):1079-1085, 2015 25191793

Bolton C, Thilges S, Lane C, et al: Post-traumatic stress disorder following acute delirium. J Clin Psychol Med Settings 28(1):31-39, 2021 31823162

Boncyk CS, Farrin E, Stollings JL, et al: Pharmacologic management of intensive care unit delirium: clinical prescribing practices and outcomes in more than 8500 patient encounters. Anesth Analg 133:713-722, 2021 33433117

Boockvar KS, Judon KM, Eimicke JP, et al: Hospital Elder Life Program in Long-Term Care (HELP-LTC): a cluster randomized controlled trial. J Am Geriatr Soc 68(10):2329-2335, 2020 32710658

Boustani MA, Campbell NL, Khan BA, et al: Enhancing care for hospitalized older adults with cognitive impairment: a randomized controlled trial. J Gen Intern Med 27(5):561-567, 2012 22302355

Breitbart W, Marotta R, Platt MM, et al: A double-blind trial of haloperidol, chlorpromazine, and lorazepam in the treatment of deliriu^m in hospitalized AIDS patients. Am J Psychiatry 153(2):231-237, 1996 8561204

Brown CH 4th, Neufeld KJ, Tian J, et al: Effect of targeting mean arterial pressure during cardiopulmonary bypass by monitoring cerebral autoregulation on postsurgical delirium among older patients: a nested randomized clinical trial. JAMA Surg 154(9):819-826, 2019 31116358

Browning SG, Watters R, Thomson-Smith C: Impact of therapeutic music listening on intensive care unit patients: a pilot study. Nurs Clin North Am 55(4):557-569, 2020 33131632

Bruera E, Hui D, Dalal S, et al: Parenteral hydration in patients with advanced cancer: a multicenter, double-blind, placebo-controlled randomized trial. J Clin Oncol 31(1):111-118, 2013 23169523

Brummel NE, Girard TD, Ely EW, et al: Feasibility and safety of early combined cognitive and physical therapy for critically ill medical and surgical patients: the Activity and Cognitive Therapy in ICU (ACT-ICU) trial. Intensive Care Med 40(3):370-379, 2014 24257969

Bulic D, Bennett M, Georgousopoulou EN, et al: Cognitive and psychosocial outcomes of mechanically ventilated intensive care patients with and without delirium. Ann Intensive Care 10(1):104, 2020 32748298

Burry LD, Williamson DR, Mehta S, et al: Delirium and exposure to psychoactive medications in critically ill adults: a multi-centre observational study. J Crit Care 42:268-274, 2017 28806561

Burton JK, Craig L, Yong SQ, et al: Non-pharmacological interventions for preventing delirium in hospitalised non-ICU patients. Cochrane Database Syst Rev 11:Cd013307, 2021 34826144

Bush SH, Tierney S, Lawlor PG: Clinical assessment and management of delirium in the palliative care setting. Drugs 77(15):1623-1643, 2017 28864877

Bush SH, Lawlor PG, Ryan K, et al: Delirium in adult cancer patients: ESMO Clinical Practice Guidelines. Ann Oncol 29(Suppl 4):iv143-iv165, 2018 29992308 Campbell NL, Perkins AJ, Khan BA, et al: Deprescribing in the pharmacologic management of delirium: a randomized trial in the intensive care unit. J Am Geriatr Soc 67(4):695-702, 2019 30664239

Cancer Care Ontario: Symptom Management Guide-to-Practice: Delirium. Ontario, Cancer Care Ontario (CCO). 2010. Available at: https://www.cancercareontario.ca/en/symptom-management/3136. Accessed December 5, 2023.

Caplan GA, Coconis J, Board N, et al: Does home treatment affect delirium? a randomised controlled trial of rehabilitation of elderly and care at home or usual treatment (The REACH-OUT trial). Age Ageing 35(1):53-60, 2006 16239239

Carpenter CR, Hammouda N, Linton EA, et al: Delirium prevention, detection, and treatment in emergency medicine settings: a geriatric emergency care applied research (GEAR) network scoping review and consensus statement. Acad Emerg Med 28(1):19-35, 2021 33135274

Carreras Tartak JA, Brisbon N, Wilkie S, et al: Racial and ethnic disparities in emergency department restraint use: a multicenter retrospective analysis. Acad Emerg Med 28(9):957-965, 2021 34533261

Center for Health Policy/Center for Primary Care and Outcomes Research and Battelle Memorial Institute: Quality Indicator Measure Development, Implementation, Maintenance, and Retirement. Contract No 290-04-0020. Rockville, MD, Agency for Healthcare Research and Quality, May 2011. Available at:

https://qualityindicators.ahrq.gov/downloads/resources/publications/2011/qi_measure_development_i mplementation_maintenance_retirement_full_5-3-11.pdf. Accessed December 31, 2023.

Centers for Medicare and Medicaid Services: Measures Inventory Tool: Medication Reconciliation Post-Discharge. January 29, 2021a. Available at:

https://cmit.cms.gov/cmit/#/MeasureView?variantId=245§ionNumber=1. Accessed on December 28, 2023.

Centers for Medicare and Medicaid Services: Measures Inventory Tool: Use of High-Risk Medications in Older Adults. October 8, 2021b. Available at:

https://cmit.cms.gov/cmit/#/MeasureView?variantId=4782§ionNumber=1. Accessed on December 28, 2023.

Centers for Medicare and Medicaid Services: Measures Inventory Tool: Documentation of Current Medications in the Medical Record. December 12, 2022. Available at:

https://cmit.cms.gov/cmit/#/MeasureView?variantId=410§ionNumber=1. Accessed on December 28, 2023.

Chaiwat O, Chanidnuan M, Pancharoen W, et al: Postoperative delirium in critically ill surgical patients: incidence, risk factors, and predictive scores. BMC Anesthesiol 19:39, 2019 30894129

Chan MT, Gin T: Delirium and cognitive decline after surgery: a randomised controlled trial of anaesthetic management to improve postoperative mental health outcome. Hong Kong Med 20 Suppl 7:28-29, 2014 25647822

Chan MT, Cheng BC, Lee TM, et al: BIS-guided anesthesia decreases postoperative delirium and cognitive decline. J Neurosurg Anesthesiol 25(1):33-42, 2013 23027226

Chang YF, Chao A, Shih PY, et al: Comparison of dexmedetomidine versus propofol on hemodynamics in surgical critically ill patients. J Surg Res 228:194-200, 2018 29907211

Chen ZF: Clinical studies on the relationship of the short duration of use of midazolam with the occurrence of delirium in ICU patients with mechanical ventilation. Farmacia 68(1):164-169, 2020

Chen CC, Lin MT, Tien YW, et al: Modified hospital elder life program: effects on abdominal surgery patients. J Am Coll Surg 213(2):245-252, 2011 21641835

Chen CC, Li HC, Liang JT, et al: Effect of a modified Hospital Elder Life Program on delirium and length of hospital stay in patients undergoing abdominal surgery: a cluster randomized clinical trial. JAMA Surg 152(9):827-834, 2017 28538964

Chen PH, Tsuang FY, Lee CT, et al: Neuroprotective effects of intraoperative dexmedetomidine versus saline infusion combined with goal-directed haemodynamic therapy for patients undergoing cranial surgery: a randomised controlled trial. Eur J Anaesthesiol 38(12):1262-1271, 2021 34101714

Chevillon C, Hellyar M, Madani C, et al: Preoperative education on postoperative delirium, anxiety, and knowledge in pulmonary thromboendarterectomy patients. Am J Crit Care 24(2):164-171, 2015 25727277

Choosing Wisely: American Geriatrics Society: Ten Things Clinicians and Patients Should Question, 2021. Available at: https://www.choosingwisely.org/societies/american-geriatrics-society/ Accessed on May 10, 2023.

Chow WB, Rosenthal RA, Merkow RP, et al: Optimal preoperative assessment of the geriatric surgical patient: a best practices guideline from the American College of Surgeons National Surgical Quality Improvement Program and the American Geriatrics Society. J Am Coll Surg 215(4):453-466, 2012 22917646

Chuen VL, Chan ACH, Ma J, et al: The frequency and quality of delirium documentation in discharge summaries. BMC Geriatr 21:307, 2021 33980170

Clarke HA, Katz J, McCartney CJ, et al: Perioperative gabapentin reduces 24 h opioid consumption and improves in-hospital rehabilitation but not post-discharge outcomes after total knee arthroplasty with peripheral nerve block. Br J Anaesth 113(5):855-864, 2014 24980426

Clarke H, Pagé GM, McCartney CJ, et al: Pregabalin reduces postoperative opioid consumption and pain for 1 week after hospital discharge, but does not affect function at 6 weeks or 3 months after total hip arthroplasty. Br J Anaesth 115(6):903-911, 2015 26582851

Clemmesen CG, Lunn TH, Kristensen MT, et al: Effect of a single pre-operative 125 mg dose of methylprednisolone on postoperative delirium in hip fracture patients: a randomised, double-blind, placebo-controlled trial. Anaesthesia 73(11):1353-1360, 2018 30151823

Coburn M, Sanders RD, Maze M, et al: The hip fracture surgery in elderly patients (HIPELD) study to evaluate xenon anaesthesia for the prevention of postoperative delirium: a multicentre, randomized clinical trial. Br J Anaesth 120(1):127-137, 2018 29397119

Code of Federal Regulations: Part 482-Conditions Of Participation for Hospitals. As amended Sept. 30, 2019. Available at: https://www.ecfr.gov/current/title-42/chapter-IV/subchapter-G/part-482. Accessed on December 22, 2023.

Cole MG, McCusker J: Delirium in older adults: a chronic cognitive disorder? Int Psychogeriatr 28:1229-1233, 2016 27246118

Cole MG, Primeau FJ, Bailey RF, et al: Systematic intervention for elderly inpatients with delirium: a randomized trial. CMAJ 151(7):965-970, 1994 7922932

Cole MG, McCusker J, Bellavance F, et al: Systematic detection and multidisciplinary care of delirium in older medical inpatients: a randomized trial. CMAJ 167(7):753-759, 2002 12389836

Cole MG, McCusker J, Bailey R, et al: Partial and no recovery from delirium after hospital discharge predict increased adverse events. Age Ageing 46(1):90-95, 2017 28181649

Cotae AM, Tiglis M, Cobilinschi C, et al: The impact of monitoring depth of anesthesia and nociception on postoperative cognitive function in adult multiple trauma patients. Medicina 57(5):23, 2021 33922552

Conteh E, Alorda A, Lebowitz D, MacIntosh T: Disparities in the use of chemical and physical restraints in the emergency department by race/ethnicity. J Racial Ethn Health Disparities, 2023 36622570 << Epub ahead of print>>

Ćurković M, Dodig-Ćurković K, Erić AP, Kralik K, Pivac N. Psychotropic medications in older adults: a review. Psychiatr Danub 28(1):13-24, 2016 26938816

Dai H, Liu X, Feng D, et al: Evidence-based nursing combined with cognitive function training can reduce the incidence of delirium in ICU patients and improve their cognitive function. Am J Transl Res 13(4):3262-3269, 2021 34017497

Dang V, Mansukhani MP, Wang Z, et al: Prophylactic use of ramelteon for delirium in hospitalized patients: a systematic review and meta-analyses. J Acad Consult Liaison Psychiatry 64(1):65-72, 2023 35718086

D'Angelo RG, Rincavage M, Tata AL, et al: Impact of an antipsychotic discontinuation bundle during transitions of care in critically ill patients. J Intensive Care Med 34:40-47, 2019 28049388

Danish Health Authority: National clinical guideline for the prevention and treatment of organic delirium Quick Guide. 2021. Available at: https://www.sst.dk/-/media/Udgivelser/2021/NKR-delirium/Eng-quick-guide_Forebyggelse-og-behandling-af-organisk-delirium.ashx. Accessed December 5, 2023.

Davis DHJ, Skelly DT, Murray C, et al: Worsening cognitive impairment and neurodegenerative pathology progressively increase risk for delirium. Am J Geriatr Psychiatry 23(4):403-415, 2015 25239680

de Jonghe A, van Munster BC, van Oosten HE, et al: The effects of melatonin versus placebo on delirium in hip fracture patients: study protocol of a randomised, placebo-controlled, double blind trial. BMC Geriatr 11:34, 2011 21729284

de Jonghe A, van Munster BC, Goslings JC, et al: Effect of melatonin on incidence of delirium among patients with hip fracture: a multicentre, double-blind randomized controlled trial. CMAJ 186(14):E547-E556, 2014 25183726

Deng Y, Wang R, Li S, et al: Methylene blue reduces incidence of early postoperative cognitive disorders in elderly patients undergoing major non-cardiac surgery: an open-label randomized controlled clinical trial. J Clin Anesth 68:110108, 2020 33091706

Devlin JW, Fong JJ, Schumaker G, et al: Use of a validated delirium assessment tool improves the ability of physicians to identify delirium in medical intensive care unit patients. Crit Care Med 35(12):2721-2724, 2007 18074477

Devlin JW, Roberts RJ, Fong JJ, et al: Efficacy and safety of quetiapine in critically ill patients with delirium: a prospective, multicenter, randomized, double-blind, placebo-controlled pilot study. Crit Care Med 38(2):419-427, 2010 19915454

Devlin JW, Skrobik Y, Gélinas C, et al: Clinical practice guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit Care Med 46(9):e825-e873, 2018 30113379

Dieleman JM, Nierich AP, Rosseel PM, et al: Intraoperative high-dose dexamethasone for cardiac surgery: a randomized controlled trial. JAMA 308(17):1761-1767, 2012 23117776

Dighe K, Clarke H, McCartney CJ, et al: Perioperative gabapentin and delirium following total knee arthroplasty: a post-hoc analysis of a double-blind randomized placebo-controlled trial. Can J Anaesth 61(12):1136-1137, 2014 25216631

Dixit D, Barbarello Andrews L, Radparvar S, et al: Descriptive analysis of the unwarranted continuation of antipsychotics for the management of ICU delirium during transitions of care: a multicenter evaluation across New Jersey. Am J Health Syst Pharm 78:1385-1394, 2021 33895793

Djaiani G, Silverton N, Fedorko L, et al: Dexmedetomidine versus propofol sedation reduces delirium after cardiac surgery: a randomized controlled trial. Anesthesiology 124(2):362-368, 2016 26575144

Dong Z, Song J, Ge M, et al: Effectiveness of a multidisciplinary comprehensive intervention model based on the Hospital Elderly Life Program to prevent delirium in patients with severe acute pancreatitis. Ann Palliat Med 9(4):2221-2228, 2020 32692240

Drake R, Skinner J, Goldman HH: What explains the diffusion of treatments for mental illness? Am J Psychiatry 165(11):1385-1392, 2008 18981070

Drewas L, Ghadir H, Neef R, et al: Individual Pharmacotherapy Management (IPM) - I: a group-matched retrospective controlled clinical study on prevention of complicating delirium in the elderly trauma patients and identification of associated factors. BMC Geriatr 22:29, 2022 34991474

Duggan MC, Van J, Ely EW: Delirium assessment in critically ill older adults: considerations during the COVID-19 pandemic. Crit Care Clin 37(1):175-190, 2021 33190768

Duprey MS, Dijkstra-Kersten SMA, Zaal IJ, et al: Opioid use increases the risk of delirium in critically ill adults independently of pain. Am J Respir Crit Care Med 204(5):566-572, 2021 33835902

Duprey MS, Devlin JW, Griffith JL, et al: Association between perioperative medication use and postoperative delirium and cognition in older adults undergoing elective noncardiac surgery. Anesth Analg 134(6):1154-1163, 2022 35202006

Eghbali-Babadi M, Shokrollahi N, Mehrabi T: Effect of family-patient communication on the incidence of delirium in hospitalized patients in cardiovascular surgery ICU. Iran J Nurs Midwifery Res 22(4):327-331, 2017 28904548

Ertuğrul B, Özden D: The effect of physical restraint on neurovascular complications in intensive care units. Aust Crit Care 33:30-38, 2020 31079994

Evrard P, Pétein C, Beuscart JB, Spinewine A: Barriers and enablers for deprescribing benzodiazepine receptor agonists in older adults: a systematic review of qualitative and quantitative studies using the theoretical domains framework. Implement Sci 17(1):41, 2022 35804428

Fahimi K, Abbasi A, Zahedi M, et al: The effects of multimedia education on postoperative delirium in patients undergoing coronary artery bypass graft: a randomized clinical trial. Nurs Crit Care 25(6):346-352, 2020 31532055

Farlinger C, Clarke H, Wong CL: Perioperative pregabalin and delirium following total hip arthroplasty: a post hoc analysis of a double-blind randomized placebo-controlled trial. Can J Anaesth 65(11):1269-1270, 2018 30084031

Fazlollah A, Babatabar Darzi H, Heidaranlu E, et al: The effect of foot reflexology massage on delirium and sleep quality following cardiac surgery: a randomized clinical trial. Complement Ther Med 60:102738, 2021 34029674

Featherstone I, Sheldon T, Johnson M, et al: Risk factors for delirium in adult patients receiving specialist palliative care: a systematic review and meta-analysis. Palliat Med 36:254-267, 2022 34930056

Fernandes-Taylor S, Harris AH: Comparing alternative specifications of quality measures: access to pharmacotherapy for alcohol use disorders. J Subst Abuse Treat 42(1):102–107, 2012 21839604

Flaherty JH, Little MO: Matching the environment to patients with delirium: lessons learned from the delirium room, a restraint-free environment for older hospitalized adults with delirium. J Am Geriatr Soc 59 Suppl 2:S295-300, 2011 22091576

Flurie RW, Gonzales JP, Tata AL, et al: Hospital delirium treatment: continuation of antipsychotic therapy from the intensive care unit to discharge. Am J Health Syst Pharm 72:S133-139, 2015 26582298

Fong TG, Inouye SK: The inter-relationship between delirium and dementia: the importance of delirium prevention. Nat Rev Neurol 18(10):579-596, 2022 36028563

Ford AH, Flicker L, Kelly R, et al: The Healthy Heart-Mind Trial: randomized controlled trial of melatonin for prevention of delirium. J Am Geriatr Soc 68(1):112-119, 2020 31595489

Fortney JC, Unützer J, Wrenn G, et al: A tipping point for measurement-based care. Psychiatr Serv 68(2):179-188, 2017 27582237

Fox MA, Elefritz JL, Huang BM, Hunley C: Comparison of lurasidone versus quetiapine for the treatment of delirium in critically ill patients. J Intensive Care Med 35(4):394-399, 2020 29357776

Francis-Coad J, Hill AM, Jacques A, et al: Association between characteristics of injurious falls and fall preventive interventions in acute medical and surgical units. J Gerontol A Biol Sci Med Sci 75(10):e152-e158, 2020 31996903

Franks ZM, Alcock JA, Lam T, et al: Physical restraints and post-traumatic stress disorder in survivors of critical illness: a systematic review and meta-analysis. Ann Am Thorac Soc 18(4):689-697, 2021 33075240

Friberg K, Hofsø K, Ræder J, et al: Prevalence of and predictive factors associated with high levels of post-traumatic stress symptoms 3 months after intensive care unit admission: a prospective study. Aust Crit Care 2023 37455211<<Epub ahead of print>>

Fu R, Zou L, Song XC, et al: Therapeutic effect of perioperative mild hypothermia on postoperative neurological outcomes in patients with acute Stanford type A aortic dissection. Heart Surg Forum 23(6):815-820, 2020 33234219

Fukata S, Kawabata Y, Fujisiro K, et al: Haloperidol prophylaxis does not prevent postoperative delirium in elderly patients: a randomized, open-label prospective trial. Surg Today 44(12):2305-2313, 2014 24532143

Fukata S, Kawabata Y, Fujishiro K, et al: Haloperidol prophylaxis for preventing aggravation of postoperative delirium in elderly patients: a randomized, open-label prospective trial. Surg Today 47(7):815-826, 2017 27830365

Furlan AD, Malmivaara A, Chou R, et al. 2015 updated method guideline for systematic reviews in the Cochrane Back and Neck Group. Spine (Phila Pa 1976) 40(21):1660-1673, 2015 26208232

Furuya M, Miyaoka T, Yasuda H, et al: Ramelteon as adjunctive therapy for delirium referred to a consultation-liaison psychiatry service: a retrospective analysis. Int J Geriatr Psychiatry 30(9):994-995, 2015 26220878

Gage L, Hogan DB: 2014 CCSMH Guideline Update: The Assessment and Treatment of Delirium. Toronto, Canada, Canadian Coalition for Seniors' Mental Health (CCSMH), 2014. Available at: www.ccsmh.ca. Accessed December 5, 2023.

Gamberini M, Bolliger D, Lurati Buse GA, et al: Rivastigmine for the prevention of postoperative delirium in elderly patients undergoing elective cardiac surgery--a randomized controlled trial. Crit Care Med 37(5):1762-1768, 2009 19325490

Gandolfi JV, Di Bernardo APA, Chanes DAV, et al: The effects of melatonin supplementation on sleep quality and assessment of the serum melatonin in ICU Patients: a randomized controlled trial. Crit Care Med 13:13, 2020 33048904

Gao F, Zhang Q, Li Y, et al: Transcutaneous electrical acupoint stimulation for prevention of postoperative delirium in geriatric patients with silent lacunar infarction: a preliminary study. Clin Interv Aging 13:2127-2134, 2018 30425466

Geriatric Medicine Research Collaborative: Delirium is prevalent in older hospital inpatients and associated with adverse outcomes: results of a prospective multi-centre study on World Delirium Awareness Day. BMC medicine 17: 1-11, 2019

Girard TD, Kress JP, Fuchs BD, et al: Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (Awakening and Breathing Controlled trial): a randomised controlled trial. Lancet 371(9607):126-134, 2008 18191684

Girard TD, Exline MC, Carson SS, et al: Haloperidol and ziprasidone for treatment of delirium in critical illness. N Engl J Med 379(26):2506-2516, 2018 30346242

Giraud K, Pontin M, Sharples LD, et al: Use of a structured mirrors intervention does not reduce delirium incidence but may improve factual memory encoding in cardiac surgical ICU patients aged over 70 years: a pilot time-cluster randomized controlled trial. Front Aging Neurosci 8:228, 2016 27733826

Goldberg TE, Chen C, Wang Y, et al: Association of delirium with long-term cognitive decline: a metaanalysis. JAMA Neurol 77(11):1373-1381, 2020 32658246 Greenhalgh T, Robert G, Macfarlane F, et al: Diffusion of innovations in service organizations: systematic review and recommendations. Milbank Q 82(4):581-629, ,2004 15595944

Gregersen M, Damsgaard EM, Borris LC: Blood transfusion and risk of infection in frail elderly after hip fracture surgery: the TRIFE randomized controlled trial. Eur J Orthop Surg Traumatol 25(6):1031-1038, 2015 25690514

Griffin TT, Bhave V, McNulty J, et al: Delirium and previous psychiatric history independently predict poststroke posttraumatic stress disorder. Neurologist 28(6):362-366, 2023 37083500

Grossmann FF, Hasemann W, Graber A, et al: Screening, detection and management of delirium in the emergency department - a pilot study on the feasibility of a new algorithm for use in older emergency department patients: the modified Confusion Assessment Method for the Emergency Department (mCAM-ED). Scand J Trauma Resusc Emerg Med 22:19, 2014 24625212

Grover S, Kate N: Assessment scales for delirium: a review. World J Psychiatry 2(4):58-70, 2012 24175169

Grover S, Kumar V, Chakrabarti S: Comparative efficacy study of haloperidol, olanzapine and risperidone in delirium. J Psychosom Res 71(4):277-281, 2011 21911107

Grover S, Mahajan S, Chakrabarti S, Avasthi A: Comparative effectiveness of quetiapine and haloperidol in delirium: A single blind randomized controlled study. World J Psychiatry 6(3):365-371, 2016 27679777

Gruber-Baldini AL, Marcantonio E, Orwig D, et al: Delirium outcomes in a randomized trial of blood transfusion thresholds in hospitalized older adults with hip fracture. J Am Geriatr Soc 61(8):1286-1295, 2013 23898894

Guo Y, Sun L, Li L, et al: Impact of multicomponent, nonpharmacologic interventions on perioperative cortisol and melatonin levels and postoperative delirium in elderly oral cancer patients. Arch Gerontol Geriatr 62:112-117, 2016 26547518

Gupta PK, Verma R, Kohli M, et al: The effect of ramelteon on postoperative delirium in elderly patients: a randomised double-blind study. J Clin Diagn Res 13(12):UC15-UC19, 2019

Guthrie PF, Rayborn S, Butcher HK: Evidence-based practice guideline: delirium. J Gerontol Nurs 44:14-24, 2018 29378075

Hamzehpour H, Valiee S, Majedi MA, et al: The effect of care plan based on roy adaptation model on the incidence and severity of delirium in intensive care unit patients: a randomised controlled trial. Journal of Clinical and Diagnostic Research 12(11): LC21-LC25, 2018

Han CS, Kim YK: A double-blind trial of risperidone and haloperidol for the treatment of delirium. Psychosomatics 45(4):297-301, 2004 15232043

Hardy RJ, Thompson SG: A likelihood approach to meta-analysis with random effects. Stat Med 15(6):619-629, 1996 8731004

Harris RP, Helfand M, Woolf SH, et al: Current methods of the US Preventive Services Task Force: a review of the process. Am J Prev Med 20(3 Suppl):21-35, 2001 11306229

Hatchett C, Langley G, Schmollgruber S: Psychological sequelae following ICU admission at a level 1 academic South African hospital. South Afr J Crit Care 26:52–58, 2010

Hassan S, Hasnain Z, Awan K, et al. Effect of peri-operative dexmedetomidine on incidence of delirium in elderly patients after cardiac surgery. Med Forum 32(2):142-146, 2021

Hatta K, Kishi Y, Wada K, et al: Antipsychotics for delirium in the general hospital setting in consecutive 2453 inpatients: a prospective observational study. Int J Geriatr Psychiatry 29(3):253-262, 2014a 23801358

Hatta K, Kishi Y, Wada K, et al: Preventive effects of ramelteon on delirium: a randomized placebocontrolled trial. JAMA Psychiatry 71(4):397-403, 2014b 24554232

Hatta K, Kishi Y, Wada K, et al: Preventive effects of suvorexant on delirium: A randomized placebocontrolled trial. J Clin Psychiatry 78(8):e970-e979, 2017 28767209

He F, Shen L, Zhong J: A study of dexmedetomidine in the prevention of postoperative delirium in elderly patients after vertebral osteotomy. Int J Clin Exp Med11(5):4984-4990, 2018

Hempenius L, Slaets JP, van Asselt D, et al: Outcomes of a geriatric liaison intervention to prevent the development of postoperative delirium in frail elderly cancer patients: report on a multicentre, randomized, controlled trial. PLoS ONE 8(6):e64834, 2013 23840308

Hempenius L, Slaets JP, van Asselt D, et al: Long term outcomes of a geriatric liaison intervention in frail elderly cancer patients. PLoS ONE 11(2):e0143364, 2016 26901417

Higgins JP, Thompson SG: Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539-1558, 2002 12111919

Higgins JPT, Savović J, Page MJ, et al: Chapter 8: Assessing risk of bias in a randomized trial. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.4 (updated August 2023). Cochrane, 2023. Available from www.training.cochrane.org/handbook. Accessed on January 4, 2024.

Holdstock L, de Wit H: Individual differences in the biphasic effects of ethanol. Alcohol Clin Exp Res 22(9):1903-1911, 1998 9884132

Hollinger A, Rüst CA, Riegger H, et al: Ketamine vs. haloperidol for prevention of cognitive dysfunction and postoperative delirium: a phase IV multicentre randomised placebo-controlled double-blind clinical trial. J Clin Anesth 68:110099, 2021 33120302 Horvitz-Lennon M, Donohue JM, Domino ME, Normand SL: Improving quality and diffusing best practices: the case of schizophrenia. Health Aff (Millwood) 28(3):701–712, 2009 19414878

Hosie A, Phillips J, Lam L, et al: A multicomponent nonpharmacological intervention to prevent delirium for hospitalized people with advanced cancer: a phase ii cluster randomized waitlist controlled trial (The PRESERVE Pilot Study). Journal of Palliative Medicine 23(10):1314-1322, 2020 32343634

Hov KR, Neerland BE, Undseth Ø, et al: The Oslo Study of Clonidine in Elderly Patients with Delirium; LUCID: a randomised placebo-controlled trial. Int J Geriatr Psychiatry 34(7):974-981, 2019 30901487

Hshieh TT, Yang T, Gartaganis SL, et al: Hospital Elder Life Program: systematic review and meta-analysis of effectiveness. Am J Geriatr Psychiatry 26(10):1015-1033, 2018 30076080

Hu J, Zhu M, Gao Z, et al: Dexmedetomidine for prevention of postoperative delirium in older adults undergoing oesophagectomy with total intravenous anaesthesia: a double-blind, randomised clinical trial. Eur J Anaesthesiol 28:28, 2020 33122571

Hu AM, Qiu Y, Zhang P, et al: Higher versus lower mean arterial pressure target management in older patients having non-cardiothoracic surgery: a prospective randomized controlled trial. J Clin Anesth 69:110150, 2021 33418429

Hudetz JA, Patterson KM, Iqbal Z, et al: Ketamine attenuates delirium after cardiac surgery with cardiopulmonary bypass. J Cardiothorac Vasc Anesth 23(5):651-657, 2009 19231245

Hui D, Frisbee-Hume S, Wilson A, et al: Effect of lorazepam with haloperidol vs haloperidol alone on agitated delirium in patients with advanced cancer receiving palliative care: a randomized clinical trial. JAMA 318(11):1047-1056, 2017 28975307

Humeidan ML, Reyes JC, Mavarez-Martinez A, et al: Effect of cognitive prehabilitation on the incidence of postoperative delirium among older adults undergoing major noncardiac surgery: the neurobics randomized clinical trial. JAMA Surg 156(2):148-156, 2021 33175114

Huyan T, Hu X, Peng H, et al: Perioperative dexmedetomidine reduces delirium in elderly patients after lung cancer surgery. Psychiatria Danubina 31(1):95-101, 2019

lamaroon A, Wongviriyawong T, Sura-Arunsumrit P, et al: Incidence of and risk factors for postoperative delirium in older adult patients undergoing noncardiac surgery: a prospective study. BMC Geriatr 20:40, 2020 32013872

Inouye SK, Bogardus ST Jr, Baker DI, et al: The Hospital Elder Life Program: a model of care to prevent cognitive and functional decline in older hospitalized patients. Hospital Elder Life Program. J Am Geriatr Soc 48(12):1697-1706, 2000 11129764

Institute of Medicine; Committee on Quality of Health Care in America: Crossing the Quality Chasm: A New Health System for the 21st Century. Washington, DC, National Academies Press, 2001

Ishii K, Makita T, Yamashita H, et al: Total intravenous anesthesia with propofol is associated with a lower rate of postoperative delirium in comparison with sevoflurane anesthesia in elderly patients. J Clin Anesth 33:428-431, 2016 27555205

Iyer SP, Spaeth-Rublee B, Pincus HA: Challenges in the operationalization of mental health quality measures: an assessment of alternatives. Psychiatr Serv 67(10):1057–1059, 2016

Jain R, Arun P, Sidana A, et al: Comparison of efficacy of haloperidol and olanzapine in the treatment of delirium. Indian J Psychiatry 59(4):451-456, 2017 29497187

Jaiswal SJ, McCarthy TJ, Wineinger NE, et al: Melatonin and sleep in preventing hospitalized delirium: a randomized clinical trial. Am J Med 131(9):1110-1117, 2018 29729237

Jaiswal SJ, Vyas AD, Heisel AJ, et al: Ramelteon for prevention of postoperative delirium: a randomized controlled trial in patients undergoing elective pulmonary thromboendarterectomy. Crit Care Med 47(12):1751-1758, 2019 31567351

Jakob SM, Ruokonen E, Grounds R, et al: Dexmedetomidine vs midazolam or propofol for sedation during prolonged mechanical ventilation: two randomized controlled trials. JAMA 307(11):1151-1160, 2012 22436955

Javaherforoosh Zadeh F, Janatmakan F, Shafaeebejestan E, Jorairahmadi S: Effect of melatonin on delirium after on-pump coronary artery bypass graft surgery: a randomized clinical trial. Iran J Med Sci 46(2):120-127, 2021 33753956

Jaworksa N, Moss SJ, Krewulak KD, et al: A scoping review of perceptions from healthcare professionals on antipsychotic prescribing practices in acute care settings. BMC Health Serv Res 22:1272, 2022 36271347

Jeffs KJ, Berlowitz DJ, Grant S, et al: An enhanced exercise and cognitive programme does not appear to reduce incident delirium in hospitalised patients: a randomised controlled trial. BMJ Open 3(6):20, 2013 23794558

Jia Y, Jin G, Guo S, et al: Fast-track surgery decreases the incidence of postoperative delirium and other complications in elderly patients with colorectal carcinoma. Langenbecks Arch Surg 399(1):77-84, 2014 24337734

Jin L, Yao R, Heng L, et al: Ultrasound-guided continuous thoracic paravertebral block alleviates postoperative delirium in elderly patients undergoing esophagectomy: a randomized controlled trial. Medicine (Baltimore) 99(17):e19896, 2020 32332664

Jin Z, Hu J, Ma D: Postoperative delirium: perioperative assessment, risk reduction, and management. Br J Anaesth 125(4):492-504, 2020 32798069

Johnson KG, Fashoyin A, Madden-Fuentes R, et al: Discharge plans for geriatric inpatients with delirium: A plan to stop antipsychotics? J Am Geriatr Soc 65(10):2278-2281, 2017 28856665

Johnson K, Fleury J, McClain D: Music intervention to prevent delirium among older patients admitted to a trauma intensive care unit and a trauma orthopaedic unit. Intensive Crit Care Nurs 47:7-14, 2018 29735284

Johnson KB, Neuss MJ, Detmer DE: Electronic health records and clinician burnout: a story of three eras. J Am Med Inform Assoc 28(5):967–973, 2021

Jones C, Bäckman C, Capuzzo M, et al: Precipitants of post-traumatic stress disorder following intensive care: a hypothesis generating study of diversity in care. Intensive Care Med 33:978-985, 2007 17384929

Kalisvaart KJ, de Jonghe JF, Bogaards MJ, et al: Haloperidol prophylaxis for elderly hip-surgery patients at risk for delirium: a randomized placebo-controlled study. J Am Geriatr Soc 53(10):1658-1666, 2005 16181163

Kang SY, Seo SW, Kim JY: Comprehensive risk factor evaluation of postoperative delirium following major surgery: clinical data warehouse analysis. Neurol Sci 40:793-800, 2019 30675675

Karadas C, Ozdemir L: The effect of range of motion exercises on delirium prevention among patients aged 65 and over in intensive care units. Geriatr Nurs 37(3):180-185, 2016 26763172

Kassie GM, Nguyen TA, Kalisch Ellett LM, et al: Preoperative medication use and postoperative delirium: a systematic review. BMC Geriatr 17(1):298, 2017 29284416

Kennedy M, Koehl J, Gao J, et al:Use of antipsychotic and sedative medications in older patients in the emergency department. J Am Geriatr Soc 70(3):731-742, 2022 34820831

Khalifezadeh A, Safazadeh S, Mehrabi T, et al: Reviewing the effect of nursing interventions on delirious patients admitted to intensive care unit of neurosurgery ward in Al-Zahra Hospital, Isfahan University of Medical Sciences. Iran J Nurs Midwifery Res 16(1):106-112, 2011 22039387

Khan BA, Calvo-Ayala E, Campbell N, et al: Clinical decision support system and incidence of delirium in cognitively impaired older adults transferred to intensive care. Am J Crit Care 22(3):257-262, 2013 23635936

Khan BA, Perkins AJ, Campbell NL, et al: Preventing postoperative delirium after major noncardiac thoracic surgery-a randomized clinical trial. J Am Geriatr Soc 66(12):2289-2297, 2018 30460981

Khan BA, Perkins AJ, Campbell NL, et al: Pharmacological management of delirium in the intensive care unit: a randomized pragmatic clinical trial. J Am Geriatr Soc 67(5):1057-1065, 2019 30681720

Khan SH, Xu C, Purpura R, et al: Decreasing delirium through music: a randomized pilot trial. Am J Crit Care 29(2):e31-e38, 2020 32114612

Khan A, Uribe-Cano D, Klumph M, et al: An innovative post-hospital model of care (DDEFY Delirium): a pilot randomized trial. J Am Geriatr Soc. 70(5):1570-1573, 2022 35084044

Khera T, Murugappan KR, Leibowitz A, et al: Ultrasound-guided pecto-intercostal fascial block for postoperative pain management in cardiac surgery: a prospective, randomized, placebo-controlled trial. J Cardiothorac Vasc Anesth 35(3):896-903, 2021 32798172

Kim KY, McCartney JR, Kaye W, et al: The effect of cimetidine and ranitidine on cognitive function in postoperative cardiac surgical patients. Int J Psychiatry Med 26(3):295-307, 1996 8976470

Kim SW, Yoo JA, Lee SY, et al: Risperidone versus olanzapine for the treatment of delirium. Hum Psychopharmacol 25(4):298-302, 2010 20521319

Kim JA, Ahn HJ, Yang M, et al: Intraoperative use of dexmedetomidine for the prevention of emergence agitation and postoperative delirium in thoracic surgery: a randomized-controlled trial. Can J Anaesth66(4):371-379, 2019 30710258

Kim Y, Kim HS, Park JS, et al: Efficacy of low-dose prophylactic quetiapine on delirium prevention in critically ill patients: a prospective, randomized, double-blind, placebo-controlled study. J Clin Med 9(1):27, 2019 31892105

King AJ, Angus DC, Cooper GF, et al: A voice-based digital assistant for intelligent prompting of evidencebased practices during ICU rounds. J Biomed Inform 146:104483, 2023a 37657712

King AJ, Potter KM, Seaman JB, et al: Measuring performance on the ABCDEF bundle during interprofessional rounds via a nurse-based assessment tool. Am J Crit Care 32(2):92-99, 2023b 36854912

Kinouchi M, Mihara T, Taguri M, Ogura M: The efficacy of ramelteon to prevent postoperative delirium after general anesthesia in the elderly: a double-blind, randomized, placebo-controlled trial. Am J Geriatr Psychiatry 31(12):1178-1189, 2023 37567839

Kluger MT, Skarin M, Collier J, et al: Steroids to reduce the impact on delirium (STRIDE): a double-blind, randomised, placebo-controlled feasibility trial of pre-operative dexamethasone in people with hip fracture. Anaesthesia 76(8):1031-1041, 2021 33899214

Kolanowski AM, Fick DM, Clare L, et al: Pilot study of a nonpharmacological intervention for delirium superimposed on dementia. Res Gerontol Nurs 4(3):161-167, 2011 21053841

Kolanowski A, Fick D, Litaker M, et al: Effect of cognitively stimulating activities on symptom management of delirium superimposed on dementia: a randomized controlled trial. J Am Geriatr Soc 64(12):2424-2432, 2016 27861718

Kotfis K, Marra A, Ely EW. ICU delirium - a diagnostic and therapeutic challenge in the intensive care unit. Anaesthesiol Intensive Ther 50(2):160-167, 2018 29882581

Kram BL, Schultheis JM, Kram SJ, Cox CE: a pharmacy-based electronic handoff tool to reduce discharge prescribing of atypical antipsychotics initiated in the intensive care unit: a quality improvement initiative. J Pharm Pract 32:434-441, 2019 29486664

Kukreja D, Günther U, Popp J: Delirium in the elderly: current problems with increasing geriatric age. Indian J Med Res 142(6):655-662, 2015 26831414

Kunst G, Gauge N, Salaunkey K, et al: Intraoperative optimization of both depth of anesthesia and cerebral oxygenation in elderly patients undergoing coronary artery bypass graft surgery-a randomized controlled pilot trial. J Cardiothorac Vasc Anesth 34(5):1172-1181, 2020 31882381

Kurhekar P, Vinod K, Rajarathinam B, et al: Randomized comparison between dexmedetomidine and midazolam for prevention of emergence agitation after nasal surgeries. Saudi J Anaesth 12(1):61-66, 2018 29416458

Lambert J, Vermassen J, Fierens J, et al: Discharge from hospital with newly administered antipsychotics after intensive care unit delirium - Incidence and contributing factors. J Crit Care 61:162-167, 2021 33171333

Lange PW, Clayton-Chubb DI, Watson R, Maier AB: Results from a double blinded, randomised, placebocontrolled, feasibility trial of melatonin for the treatment of delirium in older medical inpatients. Intern Med J 51(1):33-41, 2021 31985112

Lange PW, Turbić A, Soh CH, et al: Melatonin does not reduce delirium severity in hospitalized older adults: results of a randomized placebo-controlled trial. J Am Geriatr Soc 72(6):1802-1809, 2024 38438279

Lapane KL, Hughes CM, Daiello LA, et al: Effect of a pharmacist-led multicomponent intervention focusing on the medication monitoring phase to prevent potential adverse drug events in nursing homes. J Am Geriatr Soc 59(7):1238-1245, 2011 21649623

Larsen KA, Kelly SE, Stern TA, et al: Administration of olanzapine to prevent postoperative delirium in elderly joint-replacement patients: a randomized, controlled trial. Psychosomatics 51(5):409-418, 2010 20833940

Lawlor PG, McNamara-Kilian MT, MacDonald AR, et al: Melatonin to prevent delirium in patients with advanced cancer: a double blind, parallel, randomized, controlled, feasibility trial. BMC Palliat Care 19(1):163, 2020 33087111

Lee KU, Won WY, Lee HK, et al: Amisulpride versus quetiapine for the treatment of delirium: a randomized, open prospective study. Int Clin Psychopharmacol 20(6):311-314, 2005 16192839

Lee C, Lee CH, Lee G, et al: The effect of the timing and dose of dexmedetomidine on postoperative delirium in elderly patients after laparoscopic major non-cardiac surgery: a double blind randomized controlled study. J Clin Anesth 47:27-32, 2018 29549829

Lee H, Yang SM, Chung J, et al: Effect of perioperative low-dose dexmedetomidine on postoperative delirium after living-donor liver transplantation: a randomized controlled trial. Transplant Proc 26:26, 2019 31883766

Lee S, Chen H, Hibino S, et al: Can we improve delirium prevention and treatment in the emergency department? a systematic review. J Am Geriatr Soc 70(6):1838-1849, 2022 35274738

Lei L, Katznelson R, Fedorko L, et al: Cerebral oximetry and postoperative delirium after cardiac surgery: a randomised, controlled trial. Anaesthesia 72(12):1456-1466, 2017 28940368

Leinert C, Brefka S, Braisch U, et al: A complex intervention to promote prevention of delirium in older adults by targeting caregiver's participation during and after hospital discharge - study protocol of the TRAnsport and DElirium in older people (TRADE) project. BMC Geriatr 21(1):646, 2021 34784883

Leong RW, Davies LJ, Fook-Chong S, et al: Effect of the use of earplugs and eye masks on the quality of sleep after major abdominal surgery: a randomised controlled trial. Anaesthesia 76(11):1482-1491, 2021 33881774

Leung JM, Sands LP, Rico M, et al: Pilot clinical trial of gabapentin to decrease postoperative delirium in older patients. Neurology 67(7):1251-1253, 2006 16914695

Leung JM, Sands LP, Chen N, et al: Perioperative gabapentin does not reduce postoperative delirium in older surgical patients: a randomized clinical trial. Anesthesiology 127(4):633-644, 2017 28727581

Levy I, Gavrieli S, Hefer T, et al: Acupuncture treatment of delirium in older adults hospitalized in internal medicine departments: an open-label pragmatic randomized-controlled trial. J Geriatr Psychiatry Neurol 35(3):333-343, 2022 33685268

Li X, Yang J, Nie XL, et al: Impact of dexmedetomidine on the incidence of delirium in elderly patients after cardiac surgery: a randomized controlled trial. PLoS ONE 12(2):e0170757, 2017 28182690

Li YN, Zhang Q, Yin CP, et al: Effects of nimodipine on postoperative delirium in elderly under general anesthesia: A prospective, randomized, controlled clinical trial. Medicine (Baltimore) 96(19):e6849, 2017 28489775

Li Y, Yu ZX, Ji MS, et al: A pilot study of the use of dexmedetomidine for the control of delirium by reducing the serum concentrations of brain-derived neurotrophic factor, neuron-specific enolase, and S100B in polytrauma patients. J Intensive Care Med 34(8):674-681, 2019 28569132

Li CJ, Wang BJ, Mu DL, et al: Randomized clinical trial of intraoperative dexmedetomidine to prevent delirium in the elderly undergoing major non-cardiac surgery. Br J Surg 107(2):e123-e132, 2020 31903588

Li YW, Li HJ, Li HJ, et al: Delirium in older patients after combined epidural-general anesthesia or general anesthesia for major surgery: a randomized trial. Anesthesiology 135(2):218-232, 2021 34195765

Likhvantsev VV, Landoni G, Grebenchikov OA, et al. Perioperative dexmedetomidine supplement decreases delirium incidence after adult cardiac surgery: a randomized, double-blind, controlled study. J Cardiothorac Vasc Anesth 35(2):449-457, 2021 32265083

Lin CJ, Sun FJ, Fang CK, et al: An open trial comparing haloperidol with olanzapine for the treatment of delirium in palliative and hospice center cancer patients. Journal of Internal Medicine of Taiwan 19(4):346-354, 2008

Liu CY, Juang YY, Liang HY, et al: Efficacy of risperidone in treating the hyperactive symptoms of delirium. Int Clin Psychopharmacol 19(3):165-168, 2004 15107660

Liu X, Zhang K, Wang W, et al: Dexmedetomidine versus propofol sedation improves sublingual microcirculation after cardiac surgery: a randomized controlled trial. J Cardiothorac Vasc Anesth 30(6):1509-1515, 2016 27590460

Liu Y, Ma L, Gao M, et al: Dexmedetomidine reduces postoperative delirium after joint replacement in elderly patients with mild cognitive impairment. Aging Clin Exp Res 28(4):729-736, 2016 26559412

Liu D, Lyu J, Zhao H, et al: The influence of analgesic-based sedation protocols on delirium and outcomes in critically ill patients: a randomized controlled trial. PLoS ONE 12(9):e0184310, 2017 28910303

Liu L, Yuan Q, Wang Y, et al: Effects of dexmedetomidine combined with sufentanil on postoperative delirium in young patients after general anesthesia. Med Sci Monit 24:8925-8932, 2018 30531676

Liu S, Zhao R, Yang R, et al: Are dexmedetomidine and olanzapine suitable to control delirium in critically ill elderly patients? A retrospective cohort study. Biomed Pharmacother 139:111617, 2021 33915500

Luccarelli J, Sacks CA, Snydeman C, et al: Coding for physical restraint status among hospitalized patients: a 2019 national inpatient sample analysis. J Gen Intern Med 31:1-9, 2023 37002459<<Epub ahead of print.>>

Lundström M, Edlund A, Karlsson S, et al: A multifactorial intervention program reduces the duration of delirium, length of hospitalization, and mortality in delirious patients. J Am Geriatr Soc 53(4):622-628, 2005 15817008

Lundström M, Olofsson B, Stenvall M, Karlsson S, Nyberg L, Englund U, Borssén B, Svensson O, Gustafson Y. Postoperative delirium in old patients with femoral neck fracture: a randomized intervention study. Aging Clin Exp Res 19(3):178-186, 2007 17607084

Luo J, Wang MY, Liang BM, et al: Initial synchronized intermittent mandatory ventilation versus assist/control ventilation in treatment of moderate acute respiratory distress syndrome: a prospective randomized controlled trial. J Thorac Dis 7(12):2262-2273, 2015 26793348

Lurati Buse GA, Schumacher P, Seeberger E, et al: Randomized comparison of sevoflurane versus propofol to reduce perioperative myocardial ischemia in patients undergoing noncardiac surgery. Circulation 126(23):2696-2704, 2012 23136158

MacLaren R, Preslaski CR, Mueller SW, et al: A randomized, double-blind pilot study of dexmedetomidine versus midazolam for intensive care unit sedation: patient recall of their experiences and short-term psychological outcomes. J Intensive Care Med 30(3):167-75, 2015 24227448

Mahrose R, ElSerwi H, Maurice A, et al. Postoperative delirium after coronary artery bypass graft surgery: dexmedetomidine infusion alone or with the addition of oral melatonin. Egyptian Journal of Anaesthesia 37(1):62-68, 2021

Mailhot T, Cossette S, Côté J, et al: A post cardiac surgery intervention to manage delirium involving families: a randomized pilot study. Nurs Crit Care 22(4):221-228, 2017 28371230

Makinian M, Mirzaei T, Ravari A: The effects of head and face massage on delirium among elderly women hospitalized in coronary care units. Iran J Crit Care Nurs 8(3):125-132, 2015

Maldonado JR: Acute brain failure: pathophysiology, diagnosis, management, and sequelae of delirium. Crit Care Clin 33(3):461-519, 2017 28601132

Maldonado JR, Wysong A, van der Starre PJ, et al: Dexmedetomidine and the reduction of postoperative delirium after cardiac surgery. Psychosomatics 50(3):206-217, 2009 19567759

Maneeton B, Maneeton N, Srisurapanont M, et al: Quetiapine versus haloperidol in the treatment of delirium: a double-blind, randomized, controlled trial. Drug Des Devel Ther 7:657-667, 2013 23926422

Mann C, Pouzeratte Y, Boccara G, et al: Comparison of intravenous or epidural patient-controlled analgesia in the elderly after major abdominal surgery. Anesthesiology 92(2):433-441, 2000 10691230

Marcantonio ER, Flacker JM, Wright RJ, Resnick NM: Reducing delirium after hip fracture: a randomized trial. J Am Geriatr Soc 49(5):516-522, 2001 11380742

Marcantonio ER, Bergmann MA, Kiely DK, et al: Randomized trial of a delirium abatement program for postacute skilled nursing facilities. J Am Geriatr Soc 58(6):1019-1026, 2010 20487083

Mardani D, Bigdelian H: The effect of dexamethasone prophylaxis on postoperative delirium after cardiac surgery: a randomized trial. Journal of Research in Medical Sciences 17(1 SPL.1):S113-S119, 2012

Markota M, Rummans TA, Bostwick JM, Lapid MI: Benzodiazepine use in older adults: dangers, management, and alternative therapies. Mayo Clin Proc 91(11):1632-1639, 2016 27814838

Marquetand J, Gehrke S, Bode L, et al: Delirium in trauma patients: a 1-year prospective cohort study of 2026 patients. Eur J Trauma Emerg Surg 48:1017-1024, 2022 33538844

Marra A, Ely EW, Pandharipande PP, Patel MB: The ABCDEF bundle in critical care. Crit Care Clin 33:225-243, 2017 28284292

Mart MF, Brummel NE, Ely EW: The ABCDEF bundle for the respiratory therapist. Respir Care 64(12):1561-1573, 2019 31690615

Mart MF, Williams Roberson S, Salas B, et al: Prevention and management of delirium in the intensive care unit. Semin Respir Crit Care Med 42(1):112-126, 2021 32746469

Martin J, Heymann A, Bäsell K, et al: Evidence and consensus-based German guidelines for the management of analgesia, sedation and delirium in intensive care--short version. Ger Med Sci 8:Doc02, 2010 20200655

Martinez FT, Tobar C, Beddings CI, et al: Preventing delirium in an acute hospital using a non-pharmacological intervention. Age Ageing 41(5):629-634, 2012 22589080

Martinez-Velilla N, Casas-Herrero A, Zambom-Ferraresi F, et al: Effect of exercise intervention on functional decline in very elderly patients during acute hospitalization: a randomized clinical trial. JAMA Intern Med 179(1):28-36, 2019 30419096

Massoumi G, Mansouri M, Khamesipour S: Comparison of the incidence and severity of delirium and biochemical factors after coronary artery bypass grafting with dexmedetomidine: a randomized double-blind placebo-controlled clinical trial study. ARYA Atheroscler 15(1):14-21, 2019 31440280

Mattison MLP: Delirium. Ann Intern Med 173:Itc49-itc64, 2020 33017552

McDonald EG, Wu PE, Rashidi B, et al: The MedSafer study-electronic decision support for deprescribing in hospitalized older adults: a cluster randomized clinical trial. JAMA Intern Med 182(3):265-273, 2022 35040926

McKenzie J, Joy A: Family intervention improves outcomes for patients with delirium: systematic review and meta-analysis. Australas J Ageing 39(1):21-30, 2020 31250961

McPherson JA, Wagner CE, Boehm LM, et al: Delirium in the cardiovascular ICU: exploring modifiable risk factors. Crit Care Med 41(2):405-413, 2013 23263581

Meagher D, Leonard M: The active management of delirium: improving detection and treatment. Advances in Psychiatric Treatment 14(4):292-301, 2008

Mehta S, Burry L, Cook D, et al: Daily sedation interruption in mechanically ventilated critically ill patients cared for with a sedation protocol: a randomized controlled trial. JAMA 308(19):1985-1992, 2012 23180503

Mehta S, Cook D, Devlin JW, et al: Prevalence, risk factors, and outcomes of delirium in mechanically ventilated adults. Crit Care Med 43(3):557-566, 2015 25493968

Mei B, Meng G, Xu G, et al: Intraoperative sedation with dexmedetomidine is superior to propofol for elderly patients undergoing hip arthroplasty: a prospective randomized controlled study. Clin J Pain 34(9):811-817, 2018 29528863

Mei B, Xu G, Han W, et al: The benefit of dexmedetomidine on postoperative cognitive function is unrelated to the modulation on peripheral inflammation: a single-center, prospective, randomized study. Clin J Pain36(2):88-95, 2020 31714323

Mei X, Zheng HL, Li C, et al: The effects of propofol and sevoflurane on postoperative delirium in older patients: a randomized clinical trial study. J Alzheimers Dis 76(4):1627-1636, 2020 32651322

Mikkelsen ME, Still M, Anderson BJ, et al: Society of Critical Care Medicine's international consensus conference on prediction and identification of long-term impairments after critical illness. Crit Care Med 48(11):1670-1679, 2020 32947467

Mitchell ML, Kean S, Rattray JE, et al: A family intervention to reduce delirium in hospitalised ICU patients: A feasibility randomised controlled trial. Intensive Crit Care Nurs 40:77-84, 2017 28254205

Mohammadi M, Ahmadi M, Khalili H, et al: Cyproheptadine for the prevention of postoperative delirium: a pilot study. Ann Pharmacother 50(3):180-187, 2016 26706862

Mohanty S, Rosenthal RA, Russell MM, et al: Optimal perioperative management of the geriatric patient: a best practices guideline from the American College of Surgeons NSQIP and the American Geriatrics Society. J Am Coll Surg 222(5):930-947, 2016 27049783

Mokhtari M, Farasatinasab M, Jafarpour Machian M, et al: Aripiprazole for prevention of delirium in the neurosurgical intensive care unit: a double-blind, randomized, placebo-controlled study. Eur J Clin Pharmacol 76(4):491-499, 2020 31900543

Momeni M, Khalifa C, Lemaire G, et al: Propofol plus low-dose dexmedetomidine infusion and postoperative delirium in older patients undergoing cardiac surgery. Br J Anaesth126(3):665-673, 2021 33358336

Moon KJ, Lee SM: The effects of a tailored intensive care unit delirium prevention protocol: a randomized controlled trial. Int J Nurs Stud 52(9):1423-432, 2015 26032729

Morris PE, Berry MJ, Files DC, et al: Standardized rehabilitation and hospital length of stay among patients with acute respiratory failure: a randomized clinical trial. JAMA 315(24):2694-702, 2016 27367766

Mortensen CB, Andersen-Ranberg NC, Poulsen LM, et al: Long-term outcomes with haloperidol versus placebo in acutely admitted adult ICU patients with delirium. Intensive Care Med 50(1):103-113, 2024 38170227

Moslemi R, Khalili H, Mohammadi M, et al: Thiamine for prevention of postoperative delirium in patients undergoing gastrointestinal surgery: a randomized clinical trial. J Res Pharm Pract 9(1):30-35, 2020 32489958

Mouzopoulos G, Vasiliadis G, Lasanianos N, et al: Fascia iliaca block prophylaxis for hip fracture patients at risk for delirium: a randomized placebo-controlled study. J Orthop Traumatol 10(3):127-133, 2009 19690943

Munro CL, Cairns P, Ji M, et al: Delirium prevention in critically ill adults through an automated reorientation intervention - a pilot randomized controlled trial. Heart Lung 46(4):234-238, 2017 28606450

Nadler JW, Evans JL, Fang E, et al: A randomised trial of peri-operative positive airway pressure for postoperative delirium in patients at risk for obstructive sleep apnoea after regional anaesthesia with sedation or general anaesthesia for joint arthroplasty. Anaesthesia 72(6):729-736, 2017 28251606

Nakamura ZM, Deal AM, Park EM, et al: A randomized double-blind placebo-controlled trial of intravenous thiamine for prevention of delirium following allogeneic hematopoietic stem cell transplantation. J Psychosom Res 146:110503, 2021 33945982

Nassar Junior AP, Park M: Daily sedative interruption versus intermittent sedation in mechanically ventilated critically ill patients: a randomized trial. Ann Intensive Care 4:14, 2014 24900938

National Institute for Health and Care Excellence: Delirium: prevention, diagnosis and management in hospital and long-term care. 2023. Available at:

https://www.nice.org.uk/guidance/cg103/resources/delirium-prevention-diagnosis-and-managementin-hospital-and-longterm-care-pdf-35109327290821. Accessed December 5, 2023.

Neufeld KJ, Yue J, Robinson TN, et al: Antipsychotic medication for prevention and treatment of delirium in hospitalized adults: a systematic review and meta-analysis. J Am Geriatr Soc 64(4):705-714, 2016 27004732

Nikooie R, Neufeld KJ, Oh ES, et al: Antipsychotics for treating delirium in hospitalized adults: a systematic review. Ann Intern Med 171(7):485-495, 2019 31476770

Nishikawa K, Nakayama M, Omote K, et al: Recovery characteristics and post-operative delirium after long-duration laparoscope-assisted surgery in elderly patients: propofol-based vs. sevoflurane-based anesthesia. Acta Anaesthesiol Scand 48(2):162-168, 2004 14995937

Nishikimi M, Numaguchi A, Takahashi K, et al: Effect of administration of ramelteon, a melatonin receptor agonist, on the duration of stay in the ICU: a single-center randomized placebo-controlled trial. Crit Care Med 46(7):1099-1105, 2018 29595562

Nydahl P, Günther U, Diers A, et al: PROtocol-based MObilizaTION on intensive care units: steppedwedge, cluster-randomized pilot study (Pro-Motion). Nurs Crit Care 25(6):368-375, 2020 31125163

Nydahl P, McWilliams D, Weiler N, et al: Mobilization in the evening to prevent delirium: A pilot randomized trial. Nurs Crit Care 27(4):519-527, 2022 33946128

Obanor OO, McBroom MM, Elia JM, et al: The impact of earplugs and eye masks on sleep quality in surgical ICU patients at risk for frequent awakenings. Crit Care Med 49(2):822-832, 2021 33870919

O'Gara BP, Mueller A, Gasangwa DVI, et al: Prevention of early postoperative decline: a randomized, controlled feasibility trial of perioperative cognitive training. Anesth Analg 130(3):586-595, 2020 31569161

Oh ST, Park JY: Postoperative delirium. Korean J Anesthesiol 72:4-12, 2019 30139213

Oh ES, Fong TG, Hshieh TT, Inouye SK: Delirium in older persons: advances in diagnosis and treatment. JAMA 318:1161-1174, 2017 28973626

Oh CS, Lim HY, Jeon HJ, et al: Effect of deep neuromuscular blockade on serum cytokines and postoperative delirium in elderly patients undergoing total hip replacement: a prospective single-blind randomised controlled trial. Eur J Anaesthesiol 38(Suppl 1):58-66, 2021 33399376

Oh ES, Leoutsakos JM, Rosenberg PB, et al: Effects of ramelteon on the prevention of postoperative delirium in older patients undergoing orthopedic surgery: the RECOVER randomized controlled trial. Am J Geriatr Psychiatry 29(1):90-100, 2021 32532654

O'Hanlon S, O'Regan N, Maclullich AM, et al: Improving delirium care through early intervention: from bench to bedside to boardroom. J Neurol Neurosurg Psychiatry 85(2):207-213, 2014 23355807

Olsen HT, Nedergaard HK, Strom T, et al: Nonsedation or light sedation in critically ill, mechanically ventilated patients. N Engl J Med 382(12):1103-1111, 2020 32068366

O'Neal J, Dighe S, Gray K, et al: The use of dexmedetomidine and intravenous acetaminophen for the prevention of postoperative delirium in cardiac surgery patients over 60 years of age: a pilot study. Anesthesia and Analgesia 120(3):S411, 2015

Ono H, Taguchi T, Kido Y, et al: The usefulness of bright light therapy for patients after oesophagectomy. Intensive Crit Care Nurs 27(3):158-166, 2011 21511473

Ormseth CH, LaHue SC, Oldham MA, et al: Predisposing and precipitating factors associated with delirium: a systematic review. JAMA Netw Open 6(1):e2249950, 2023 36607634

O'Rourke G, Parker D, Anderson R, et al: Interventions to support recovery following an episode of delirium: a realist synthesis. Aging Ment Health 25:1769-1785, 2021 32734773

Ospina JP, King IV F, Madva E, Celano CM: Epidemiology, mechanisms, diagnosis, and treatment of delirium: a narrative review. Clinical Medicine and Therapeutics (CMT) 1(1):3, 2018

Overshott R, Vernon M, Morris J, Burns A: Rivastigmine in the treatment of delirium in older people: a pilot study. Int Psychogeriatr 22(5):812-818, 2010 20353624

Pan Y, Jiang Z, Yuan C, et al: Influence of physical restraint on delirium of adult patients in ICU: a nested case-control study. J Clin Nurs 27(9-10):1950-1957, 2018 29495083

Pandhal JK, Van Der Wardt V: Exploring perceptions regarding family-based delirium management in the intensive care unit. J Intensive Care Soc 23(4):447-452, 2022 36751350

Pandharipande PP, Girard TD, Jackson JC, et al: Long-term cognitive impairment after critical illness. N Engl J Med 369(14):1306-1316, 2013 24088092

Papadopoulos G, Pouangare M, Papathanakos G, et al: The effect of ondansetron on postoperative delirium and cognitive function in aged orthopedic patients. Minerva Anestesiol 80(4):444-451, 2014 24193238

Papaioannou A, Fraidakis O, Michaloudis D, et al: The impact of the type of anaesthesia on cognitive status and delirium during the first postoperative days in elderly patients. Eur J Anaesthesiol 22(7):492-499, 2005 16045136

Park JB, Bang SH, Chee HK, et al: Efficacy and safety of dexmedetomidine for postoperative delirium in adult cardiac surgery on cardiopulmonary bypass. Korean J Thorac Cardiovasc Surg 47(3):249-254, 2014 25207222

Patel MM, Brown JD, Croake S, et al: The current state of behavioral health quality measures: where are the gaps? Psychiatr Serv 66(8):865–871, 2015 26073415

Patel BK, Wolfe KS, Patel SB, et al: Effect of early mobilisation on long-term cognitive impairment in critical illness in the USA: a randomised controlled trial. Lancet Respir Med 11(6):563-572, 2023 36693400

Pereira JV, Aung Thein MZ, Nitchingham A, Caplan GA: Delirium in older adults is associated with development of new dementia: a systematic review and meta-analysis. Int J Geriatr Psychiatry 36(7):993-1003, 2021 33638566

Perez D, Peters K, Wilkes L, Murphy G: Physical restraints in intensive care-an integrative review. Aust Crit Care 32:165-174, 2019 29559190

Picton JD, Marino AB, Nealy KL: Benzodiazepine use and cognitive decline in the elderly. Am J Health Syst Pharm 75(1):e6-e12, 2018 29273607

Pincus HA, Scholle SH, Spaeth-Rublee B, et al: Quality measures for mental health and substance use: gaps, opportunities, and challenges. Health Aff (Millwood) 35(6):1000–1008, 2016 27269015

Pitkälä KH, Laurila JV, Strandberg TE, Tilvis RS: Multicomponent geriatric intervention for elderly inpatients with delirium: a randomized, controlled trial. J Gerontol A Biol Sci Med Sci 61(2):176-181, 2006 16510862

Pitkälä KH, Laurila JV, Strandberg TE, et al: Multicomponent geriatric intervention for elderly inpatients with delirium: effects on costs and health-related quality of life. J Gerontol A Biol Sci Med Sci 63(1):56-61, 2008 18245761

Potharajaroen S, Tangwongchai S, Tayjasanant T, et al: Bright light and oxygen therapies decrease delirium risk in critically ill surgical patients by targeting sleep and acid-base disturbances. Psychiatry Res 261:21-27, 2018 29276990

Potter J, George J, Guideline Development Group: The prevention, diagnosis and management of delirium in older people: concise guidelines. Clin Med (Lond) 6(3):303-308, 2006 16826866

Prakanrattana U, Prapaitrakool S: Efficacy of risperidone for prevention of postoperative delirium in cardiac surgery. Anaesth Intensive Care 35(5):714-719, 2007 17933157

Prendergast NT, Tiberio PJ, Girard TD: Treatment of delirium during critical illness. Annu Rev Med 73:407-421, 2022 34752706

Pun BT, Balas MC, Barnes-Daly MA, et al: Caring for critically ill patients with the ABCDEF bundle: results of the ICU Liberation Collaborative in over 15,000 adults. Crit Care Med 47:3-14, 2019 30339549

Pun BT, Badenes R, Heras La Calle G, et al: Prevalence and risk factors for delirium in critically ill patients with COVID-19 (COVID-D): a multicentre cohort study. Lancet Respir Med 9(3):239-250, 2021 33428871

Radtke FM, Franck M, Lendner J, et al: Monitoring depth of anaesthesia in a randomized trial decreases the rate of postoperative delirium but not postoperative cognitive dysfunction. Br J Anaesth 110 Suppl 1:i98-i105, 2013 23539235

Ramnarain D, Pouwels S, Fernández-Gonzalo S, et al: Delirium-related psychiatric and neurocognitive impairment and the association with post-intensive care syndrome-a narrative review. Acta Psychiatr Scand 147(5):460-474, 2023 36744298

Reade MC, Eastwood GM, Bellomo R, et al: Effect of dexmedetomidine added to standard care on ventilator-free time in patients with agitated delirium: a randomized clinical trial. JAMA 315(14):1460-1468, 2016 26975647

Redmond P, Grimes TC, McDonnell R, et al: Impact of medication reconciliation for improving transitions of care. Cochrane Database Syst Rev 8(8):CD010791, 2018 30136718

Registered Nurses' Association of Ontario: Delirium, Dementia, and Depression in Older Adults: Assessment and Care, 2nd Edition. Toronto, ON, Canada, Registered Nurses' Association of Ontario, 2016. Available at: https://rnao.ca/bpg/guidelines/assessment-and-care-older-adults-deliriumdementia-and-depression. Accessed December 5, 2023.

Reisinger M, Reininghaus EZ, Biasi J, et al: Delirium-associated medication in people at risk: a systematic update review, meta-analyses, and GRADE-profiles. Acta Psychiatr Scand 147(1):16-42, 2023 36168988

Rengel KF, Hayhurst CJ, Jackson JC, et al: Motoric subtypes of delirium and long-term functional and mental health outcomes in adults after critical illness. Crit Care Med 49(5):e521-e532, 2021 33729717

Reppas-Rindlisbacher C, Shin S, Purohit U, et al: Association between non-English language and use of physical and chemical restraints among medical inpatients with delirium. J Am Geriatr Soc 70(12):3640-3643, 2022 35932190

Rice KL, Bennett MJ, Berger L, et al: A pilot randomized controlled trial of the feasibility of a multicomponent delirium prevention intervention versus usual care in acute stroke. J Cardiovasc Nurs 32(1):E1-E10, 2017 27306854

Rigor J, Rueff Rato I, Ferreira PM, et al: Prehospital anticholinergic burden is associated with delirium but not with mortality in a population of acutely ill medical patients. J Am Med Dir Assoc 21(4):481-485, 2020 31983551

Robinson TN, Dunn CL, Adams JC, et al: Tryptophan supplementation and postoperative delirium--a randomized controlled trial. J Am Geriatr Soc 62(9):1764-1771, 2014 25112175

Rood PJT, Zegers M, Slooter AJC, et al: Prophylactic haloperidol effects on long-term quality of life in critically ill patients at high risk for delirium: results of the REDUCE study. Anesthesiology 131(2):328-335, 2019 31246603

Rood PJT, Zegers M, Ramnarain D, et al: The impact of nursing delirium preventive interventions in the icu: a multicenter cluster-randomized controlled clinical trial. Am J Respir Crit Care Med 204(6):682-691, 2021 34170798

Rosa RG, Falavigna M, da Silva DB, et al: Effect of flexible family visitation on delirium among patients in the intensive care unit: the ICU visits randomized clinical trial. JAMA 322(3):216-228, 2019 31310297

Rose L, Burry L, Mallick R, et al: Prevalence, risk factors, and outcomes associated with physical restraint use in mechanically ventilated adults. J Crit Care 31:31-35, 2016 26489482

Royse CF, Saager L, Whitlock R, et al: Impact of methylprednisolone on postoperative quality of recovery and delirium in the steroids in cardiac surgery trial: a randomized, double-blind, placebo-controlled substudy. Anesthesiology 126(2):223-233, 2017 27775998

Rubino AS, Onorati F, Caroleo S, et al: Impact of clonidine administration on delirium and related respiratory weaning after surgical correction of acute type-A aortic dissection: results of a pilot study. Interact Cardiovasc Thorac Surg 10(1):58-62, 2010 19854793.

Ruokonen E, Parviainen I, Jakob SM, et al: Dexmedetomidine versus propofol/midazolam for long-term sedation during mechanical ventilation. Intensive Care Med 35(2):282-290, 2009 18795253

Saager L, Duncan AE, Yared JP, et al: Intraoperative tight glucose control using hyperinsulinemic normoglycemia increases delirium after cardiac surgery. Anesthesiology 122(6):1214-1223, 2015 25992877

Saljuqi AT, Hanna K, Asmar S, et al: Prospective evaluation of delirium in geriatric patients undergoing emergency general surgery. J Am Coll Surg 230:758-765, 2020 32088308

Sampson EL, Raven PR, Ndhlovu PN, et al: A randomized, double-blind, placebo-controlled trial of donepezil hydrochloride (Aricept) for reducing the incidence of postoperative delirium after elective total hip replacement. Int J Geriatr Psychiatry 22(4):343-349, 2007 17006875

Sauer AM, Slooter AJ, Veldhuijzen DS, et al: Intraoperative dexamethasone and delirium after cardiac surgery: a randomized clinical trial. Anesth Analg 119(5):1046-1052, 2014 24810262

Schnitzer K, Merideth F, Macias-Konstantopoulos W, et al: Disparities in care: the role of race on the utilization of physical restraints in the emergency setting. Acad Emerg Med 27(10):943-950, 2020 32691509

Schofield-Robinson OJ, Lewis SR, Smith AF, et al: Follow-up services for improving long-term outcomes in intensive care unit (ICU) survivors. Cochrane Database Syst Rev 11(11):CD012701, 2018 30388297

Schomer KJ, Duby JJ, Firestone RL, et al: Effect of flumazenil on hypoactive delirium in the icu: a doubleblind, placebo-controlled pilot study. Crit Care Explor 2(3):e0085, 2020 32259108

Schrijver EJM, de Vries OJ, van de Ven PM, et al: Haloperidol versus placebo for delirium prevention in acutely hospitalised older at risk patients: a multi-centre double-blind randomised controlled clinical trial. Age Ageing 47(1):48-55, 2018 28985255

Schweickert WD, Pohlman MC, Pohlman AS, et al: Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet 373(9678):1874-1882, 2009 19446324

Scottish Intercollegiate Guidelines Network: The Scottish Intercollegiate Guidelines Network (SIGN) 157: Guidelines on Risk Reduction and Management of Delirium. 2019. Available at: https://www.sign.ac.uk/media/1423/sign157.pdf. Accessed December 5, 2023.

Sharaf SI, Nasr El-Din DA, Mahran MG, et al: A study of the prophylactic and curative effect of melatonin on postoperative delirium after coronary artery bypass grafting surgery in elderly patients. The Egyptian Journal of Hospital Medicine 72(7):4919-4926, 2018

Sharifi A, Arsalani N, Fallahi-Khoshknab M, Mohammadi-Shahbolaghi F: The principles of physical restraint use for hospitalized elderly people: an integrated literature review. Syst Rev 10:129, 2021 33931096

Shehabi Y, Grant P, Wolfenden H, et al: Prevalence of delirium with dexmedetomidine compared with morphine based therapy after cardiac surgery: a randomized controlled trial (DEXmedetomidine COmpared to Morphine-DEXCOM Study). Anesthesiology 111(5):1075-1084, 2009 19786862

Sheikh TA, Dar BA, Akhter N, Ahmad N: A comparative study evaluating effects of intravenous sedation by dexmedetomidine and propofol on patient hemodynamics and postoperative outcomes in cardiac surgery. Anesth Essays Res 12(2):555-560, 2018 29962634

Shi C, Jin J, Qiao L, et al: Effect of perioperative administration of dexmedetomidine on delirium after cardiac surgery in elderly patients: a double-blinded, multi-center, randomized study. Clin Interv Aging 14:571-575, 2019 30936687

Shi H, Du X, Wu F, et al: Dexmedetomidine improves early postoperative neurocognitive disorder in elderly male patients undergoing thoracoscopic lobectomy. Exp Ther Med 20(4):3868-3877, 2020 32855737

Shi HJ, Yuan RX, Zhang JZ, et al: Effect of midazolam on delirium in critically ill patients: a propensity score analysis. J Int Med Res 50(4):3000605221088695, 2022 35466751

Shirvani F, Naji SA, Davari E, Sedighi M: Early mobilization reduces delirium after coronary artery bypass graft surgery. Asian Cardiovasc Thorac Ann 28(9):566-571, 2020 32757652

Shokri H, Ali I: A randomized control trial comparing prophylactic dexmedetomidine versus clonidine on rates and duration of delirium in older adult patients undergoing coronary artery bypass grafting. J Clin Anesth 61:109622, 2020 31668468

Shorr RI, Guillen MK, Rosenblatt LC, et al: Restraint use, restraint orders, and the risk of falls in hospitalized patients. J Am Geriatr Soc 50(3):526-529, 2002 11943051

Shrestha P, Fick DM: Family caregiver's experience of caring for an older adult with delirium: a systematic review. Int J Older People Nurs 15:e12321, 2020 32374518

Shu A, Liu X, Wang Q, et al: Study on cerebral protective effect of dexmedetomidine during anesthesia in cardiac valve replacement surgery. Int J Clin Exp Med 10(1):1066-1072, 2017

Shu A, Fu Y, Luo Y, et al. An investigation on delirium and hemodynamics influenced by dexmedetomidine for sedating elderly patients in mechanical ventilation. Int J Clin Exp Med 12(2):1942-1946, 2019

Siddiqi N, Cheater F, Collinson M, et al: The PiTSTOP study: a feasibility cluster randomized trial of delirium prevention in care homes for older people. Age Ageing 45(5):652-661, 2016 27207749

Sieber FE, Zakriya KJ, Gottschalk A, et al: Sedation depth during spinal anesthesia and the development of postoperative delirium in elderly patients undergoing hip fracture repair. Mayo Clin Proc 85(1):18-26, 2010 20042557

Sieber FE, Neufeld KJ, Gottschalk A, et al: Effect of depth of sedation in older patients undergoing hip fracture repair on postoperative delirium: the STRIDE randomized clinical trial. JAMA Surg 153(11):987-995, 2018 30090923

Sieber F, Neufeld KJ, Gottschalk A, et al: Depth of sedation as an interventional target to reduce postoperative delirium: mortality and functional outcomes of the Strategy to Reduce the Incidence of Postoperative Delirium in Elderly Patients randomised clinical trial. Br J Anaesth 122(4):480-489, 2019 30857604

Siegrist-Dreier S, Thomann S, Barbezat I, et al: Experience of patients with restraints in acute care hospitals and the view of their relatives: A qualitative study. Nurs Open 10(11):7224-7232, 2023 37612841

Siepe M, Pfeiffer T, Gieringer A, et al: Increased systemic perfusion pressure during cardiopulmonary bypass is associated with less early postoperative cognitive dysfunction and delirium. Eur J Cardiothorac Surg 40(1):200-207, 2011 21168339

Silva LOJE, Berning MJ, Stanich JA, et al: Risk factors for delirium in older adults in the emergency department: a systematic review and meta-analysis. Ann Emerg Med 78(4):549-565, 2021 34127307

Silva-Jr JM, Katayama HT, Nogueira FAM, et al: Comparison of dexmedetomidine and benzodiazepine for intraoperative sedation in elderly patients: a randomized clinical trial. Reg Anesth Pain Med 44(3):319-324, 2019 30777901

Singh A, Gupta I, Wright SM, Harris CM: Outcomes among hospitalized patients with dementia and behavioral disturbances when physical restraints are introduced. J Am Geriatr Soc May 26, 2023 37235512<<Epub ahead of print>>

Simons KS, Laheij RJ, van den Boogaard M, et al: Dynamic light application therapy to reduce the incidence and duration of delirium in intensive-care patients: a randomised controlled trial. Lancet Respir Med 4(3):194-202, 2016 26895652

Skrobik YK, Bergeron N, Dumont M, et al: Olanzapine vs haloperidol: treating delirium in a critical care setting. Intensive Care Med 30(3):444-449, 2004 14685663

Skrobik Y, Duprey MS, Hill NS, et al: Low-dose nocturnal dexmedetomidine prevents icu delirium. a randomized, placebo-controlled trial. Am J Respir Crit Care Med 197(9):1147-1156, 2018 29498534

Smit L, Dijkstra-Kersten SMA, Zaal IJ, et al: Haloperidol, clonidine and resolution of delirium in critically ill patients: a prospective cohort study. Intensive Care Med 47(3):316-324, 2021 33591422

Smith CM, Turner NA, Thielman NM, et al: Association of black race with physical and chemical restraint use among patients undergoing emergency psychiatric evaluation. Psychiatr Serv 73(7):730-736, 2022 c34932385

Smithard D, Randhawa R: Physical restraint in the critical care unit: a narrative review. New Bioeth 28:68-82, 2022 35083967

Softy SJ, Rogers J, Voronina M, Brueckner AJ: Deliriogenic medication prescribing and delirium in hospitalized, non-critically ill older people. Sr Care Pharm 38(1):21-28, 2023 36751916.

Soh S, Shim JK, Song JW, et al: Effect of dexmedetomidine on acute kidney injury after aortic surgery: a single-centre, placebo-controlled, randomised controlled trial. Br J Anaesth 2020 32007239 << Epub ahead of print>>

Sosnowski K, Lin F, Chaboyer W, et al: The effect of the ABCDE/ABCDEF bundle on delirium, functional outcomes, and quality of life in critically ill patients: a systematic review and meta-analysis. Int J Nurs Stud 138:104410, 2023 36577261

Spence J, Belley-Cote E, Jacobsohn E, et al: Restricted versus liberal intraoperative benzodiazepine use in cardiac anaesthesia for reducing delirium (B-Free Pilot): a pilot, multicentre, randomised, cluster crossover trial. Br J Anaesth 125(1):38-46, 2020 32416996

Spies CD, Knaak C, Mertens M, et al: Physostigmine for prevention of postoperative delirium and longterm cognitive dysfunction in liver surgery: a double-blinded randomised controlled trial. Eur J Anaesthesiol 38(9):943-956, 2021 33534264

Spronk PE, Riekerk B, Hofhuis J, Rommes JH: Occurrence of delirium is severely underestimated in the ICU during daily care. Intensive Care Med 35(7):1276-1280, 2009 19350214

Stenvall M, Berggren M, Lundström M, et al: A multidisciplinary intervention program improved the outcome after hip fracture for people with dementia--subgroup analyses of a randomized controlled trial. Arch Gerontol Geriatr 54(3):e284-289, 2012 21930310

Stollings JL, Devlin JW, Lin JC, et al: Best practices for conducting interprofessional team rounds to facilitate performance of the ICU liberation (ABCDEF) bundle. Crit Care Med 48(4):562-570, 2020 32205603

Stollings JL, Boncyk CS, Birdrow CI, et al: Antipsychotics and the QTc Interval during delirium in the intensive care unit: a secondary analysis of a randomized clinical trial. JAMA Netw Open 7(1):e2352034, 2024 38252439

Stoppe C, Fahlenkamp AV, Rex S, et al: Feasibility and safety of xenon compared with sevoflurane anaesthesia in coronary surgical patients: a randomized controlled pilot study. Br J Anaesth 111(3):406-416, 2013 23578862

Strike E, Arklina B, Stradins P, et al: Postoperative pain management strategies and delirium after transapical aortic valve replacement: a randomized controlled trial. J Cardiothorac Vasc Anesth 33(6):1668-1672, 2019 30559067

Strøm T, Martinussen T, Toft P: A protocol of no sedation for critically ill patients receiving mechanical ventilation: a randomised trial. Lancet 375(9713):475-480, 2010 20116842

Stuart MM, Smith ZR, Payter KA, et al: Pharmacist-driven discontinuation of antipsychotics for ICU delirium: a quasi-experimental study. Journal of the American College of Clinical Pharmacy 3(6):1009–1014, 2020

Su X, Meng ZT, Wu XH, et al: Dexmedetomidine for prevention of delirium in elderly patients after noncardiac surgery: a randomised, double-blind, placebo-controlled trial. Lancet 388(10054):1893-1902, 2016 27542303

Sultan SS: Assessment of role of perioperative melatonin in prevention and treatment of postoperative delirium after hip arthroplasty under spinal anesthesia in the elderly. Saudi J Anaesth 4(3):169-173, 2010 21189854

Sun Y, Jiang M, Ji Y, et al: Impact of postoperative dexmedetomidine infusion on incidence of delirium in elderly patients undergoing major elective noncardiac surgery: a randomized clinical trial. Drug Des Devel Ther 13:2911-2922, 2019 31695323

Susheela AT, Packiasabapathy S, Gasangwa DV, et al: The use of dexmedetomidine and intravenous acetaminophen for the prevention of postoperative delirium in cardiac surgery patients over 60 years of age: a pilot study. F1000Res 6:1842, 2017 29333240

Szwed K, Pawliszak W, Szwed M, et al: Reducing delirium and cognitive dysfunction after off-pump coronary bypass: a randomized trial. J Thorac Cardiovasc Surg 161(4):1275-1282, 2021 31685272

Tagarakis GI, Voucharas C, Tsolaki F, et al: Ondasetron versus haloperidol for the treatment of postcardiotomy delirium: a prospective, randomized, double-blinded study. J Cardiothorac Surg 7:25, 2012 22436170

Taguchi T, Yano M, Kido Y: Influence of bright light therapy on postoperative patients: a pilot study. Intensive Crit Care Nurs 23(5):289-297, 2007 17692522

Tahir TA, Eeles E, Karapareddy V, et al: A randomized controlled trial of quetiapine versus placebo in the treatment of delirium. J Psychosom Res 69(5):485-490, 2010 20955868

Tamblyn R, Abrahamowicz M, Buckeridge DL, et al: Effect of an electronic medication reconciliation intervention on adverse drug events: a cluster randomized trial. JAMA Netw Open 2(9):e1910756, 2019 31539073

Tanaka P, Goodman S, Sommer BR, et al: The effect of desflurane versus propofol anesthesia on postoperative delirium in elderly obese patients undergoing total knee replacement: a randomized, controlled, double-blinded clinical trial. J Clin Anesth 39:17-22, 2017 28494898

Tang CL, Li J, Zhang ZT, et al: Neuroprotective effect of bispectral index-guided fast-track anesthesia using sevoflurane combined with dexmedetomidine for intracranial aneurysm embolization. Neural Regen Res 13(2):280-288, 2018 29557378

Tang C, Hu Y, Zhang Z, et al: Dexmedetomidine with sufentanil in intravenous patient-controlled analgesia for relief from postoperative pain, inflammation and delirium after esophageal cancer surgery. Biosci Rep 40(5):BSR20193410, 2020 32343308

Tang CJ, Jin Z, Sands LP, et al: ADAPT-2: A randomized clinical trial to reduce intraoperative EEG suppression in older surgical patients undergoing major noncardiac surgery. Anesth Analg 131(4):1228-1236, 2020 32925344

Tang L, Fang P, Fang Y, et al: Comparison of effects between combined lumbar-sacral plexus block plus general anesthesia and unilateral spinal anesthesia in elderly patients undergoing hip fracture surgery: a pilot randomized controlled trial. Evid Based Complement Alternat Med 2021:6685497, 2021 34012474

Taylor-Rowan M, Alharthi AA, Noel-Storr AH, et al: Anticholinergic deprescribing interventions for reducing risk of cognitive decline or dementia in older adults with and without prior cognitive impairment. Cochrane Database Syst Rev 12(12):CD015405, 2023 38063254

Teece A, Baker J, Smith H: Identifying determinants for the application of physical or chemical restraint in the management of psychomotor agitation on the critical care unit. J Clin Nurs 29:5-19, 2020 31495002

Thanapluetiwong S, Ruangritchankul S, Sriwannopas O, et al: Efficacy of quetiapine for delirium prevention in hospitalized older medical patients: a randomized double-blind controlled trial. BMC Geriatr 21(1):215, 2021 33789580

The Joint Commission: National Patient Safety Goals[®] Effective January 2024 for the Hospital Program. 2023. Available at: https://www.jointcommission.org/-/media/tjc/documents/standards/national-patient-safety-goals/2024/npsg_chapter_hap_jan2024.pdf. Accessed on December 26, 2023.

Thom RP, Bui MP, Rosner B, et al: A comparison of early, late, and no treatment of intensive care unit delirium with antipsychotics: a retrospective cohort study. Prim Care Companion CNS Disord 20(6):15, 2018 30476373

Thom R, Bui M, Rosner B, et al: Ramelteon is not associated with improved outcomes among critically ill delirious patients: a single-center retrospective cohort study. Psychosomatics 60(3):289-297, 2019 30193784

Tingleff EB, Bradley SK, Gildberg FA, et al: "Treat me with respect". a systematic review and thematic analysis of psychiatric patients' reported perceptions of the situations associated with the process of coercion. J Psychiatr Ment Health Nurs 24(9-10):681-698, 2017 28665512

Tropea J, Slee JA, Brand CA, et al: Clinical practice guidelines for the management of delirium in older people in Australia. Australas J Ageing 27(3):150-156, 2008 18713175

Tsui A, Searle SD, Bowden H, et al: The effect of baseline cognition and delirium on long-term cognitive impairment and mortality: a prospective population-based study. The Lancet Healthy Longevity 3(4):e232-241, 2022 35382093

Turan A, Duncan A, Leung S, et al: Dexmedetomidine for reduction of atrial fibrillation and delirium after cardiac surgery (DECADE): a randomised placebo-controlled trial. Lancet 396(10245):177-185, 2020 32682483.

Unneby A, Svensson PO, Gustafson PY, et al: Complications with focus on delirium during hospital stay related to femoral nerve block compared to conventional pain management among patients with hip fracture - a randomised controlled trial. Injury 51(7):1634-1641, 2020 32360090

Uysal AI, Altiparmak B, Yasar E, et al: The effects of early femoral nerve block intervention on preoperative pain management and incidence of postoperative delirium geriatric patients undergoing

trochanteric femur fracture surgery: a randomized controlled trial. Ulus Travma Acil Cerrahi Derg 26(1):109-114, 2020 31942744

Vacas S, Grogan T, Cheng D, Hofer I: Risk factor stratification for postoperative delirium: a retrospective database study. Medicine (Baltimore) 101:e31176, 2022 36281117

van den Boogaard M, Schoonhoven L, Evers AW, et al: Delirium in critically ill patients: impact on longterm health-related quality of life and cognitive functioning. Crit Care Med 40(1):112-118, 2012 21926597

van den Boogaard M, Slooter AJC, Brüggemann RJM, et al: Effect of haloperidol on survival among critically ill adults with a high risk of delirium: the REDUCE randomized clinical trial. JAMA 319(7):680-690, 2018 29466591

van der Vorst MJDL, Neefjes ECW, Boddaert MSA, et al: Olanzapine versus haloperidol for treatment of delirium in patients with advanced cancer: a phase III randomized clinical trial. Oncologist 25(3):e570-e577, 2020 32162816

van Eijk MM, Roes KC, Honing ML, et al: Effect of rivastigmine as an adjunct to usual care with haloperidol on duration of delirium and mortality in critically ill patients: a multicentre, double-blind, placebo-controlled randomised trial. Lancet 376(9755):1829-1837, 2010 21056464

van Norden J, Spies CD, Borchers F, et al: The effect of peri-operative dexmedetomidine on the incidence of postoperative delirium in cardiac and non-cardiac surgical patients: a randomised, double-blind placebo-controlled trial. Anaesthesia 76(10):1342-1351, 2021 33960404

Van Rompaey B, Elseviers MM, Van Drom W, et al: The effect of earplugs during the night on the onset of delirium and sleep perception: a randomized controlled trial in intensive care patients. Crit Care 16(3):R73, 2012 22559080

van Velthuijsen EL, Zwakhalen SMG, Pijpers E, et al: Effects of a medication review on delirium in older hospitalised patients: a comparative retrospective cohort study. Drugs Aging 35:153-161, 2018 29396715

Verloo H, Goulet C, Morin D, et al: Effect estimation of an innovative nursing intervention to improve delirium among home-dwelling older adults: a randomized controlled pilot trial. Dement Geriatr Cogn Dis Extra 5(1):176-190, 2015 26034489

Vlisides PE, Das AR, Thompson AM, et al: Home-based cognitive prehabilitation in older surgical patients: a feasibility study. J Neurosurg Anesthesiol 31(2):212-217, 2019 30557230

Walia H, Tucker LS, Manickam RN, et al: Patient and visit characteristics associated with physical restraint use in the emergency department. Perm J 27(1):94-102, 2023 36464780

Wang W, Li HL, Wang DX, et al: Haloperidol prophylaxis decreases delirium incidence in elderly patients after noncardiac surgery: a randomized controlled trial. Crit Care Med 40(3):731-739, 2012 22067628

Wang R, Chen J, Wu G: Variable lung protective mechanical ventilation decreases incidence of postoperative delirium and cognitive dysfunction during open abdominal surgery. Int J Clin Exp Med 8(11):21208-21214, 2015

Wang X, Wang Y, Hu Y, et al: Effect of flurbiprofen axetil on postoperative delirium for elderly patients. Brain Behav 9(6):e01290, 2019 31007001

Wang J, Zhu L, Li Y, et al: The potential role of lung-protective ventilation in preventing postoperative delirium in elderly patients undergoing prone spinal surgery: a preliminary study. Med Sci Monit 26:e926526, 2020 33011734

Wang YY, Yue JR, Xie DM, et al: Effect of the tailored, family-involved hospital elder life program on postoperative delirium and function in older adults: a randomized clinical trial. JAMA Intern Med 180(1):17-25, 2020 31633738

Wang ML, Min J, Sands LP, et al: Midazolam premedication immediately before surgery is not associated with early postoperative delirium. Anesth Analg 133(3):765-771, 2021 33721875

Wang E, Belley-Côté EP, Young J, et al: Effect of perioperative benzodiazepine use on intraoperative awareness and postoperative delirium: a systematic review and meta-analysis of randomised controlled trials and observational studies. Br J Anaesth 131(2):302-313, 2023 36621439

Watkins K, Horvitz-Lennon M, Caldarone LB, et al: Developing medical record-based performance indicators to measure the quality of mental healthcare. J Healthc Qual 33(1):49-66, 2011 21199073

Watkins KE, Farmer CM, De Vries D, Hepner KA: The Affordable Care Act: an opportunity for improving care for substance use disorders? Psychiatr Serv 66(3):310-312, 2015 25727120

Watkins KE, Smith B, Akincigil A, et al: The quality of medication treatment for mental disorders in the Department of Veterans Affairs and in private-sector plans. Psychiatr Serv 67(4):391-396, 2016 26567931

Watne LO, Torbergsen AC, Conroy S, et al: The effect of a pre- and postoperative orthogeriatric service on cognitive function in patients with hip fracture: randomized controlled trial (Oslo Orthogeriatric Trial). BMC Med 12:63, 2014 24735588

Weaver CB, Kane-Gill SL, Gunn SR, et al: A retrospective analysis of the effectiveness of antipsychotics in the treatment of ICU delirium. J Crit Care 41:234-239, 2017 28595082

Weidman K, LaFond E, Hoffman KL, et al: Post-intensive care unit syndrome in a cohort of COVID-19 survivors in New York City. Ann Am Thorac Soc 19(7):1158-1168, 2022 34936536

Welk B, Killin L, Reid JN, et al: Effect of electronic medication reconciliation at the time of hospital discharge on inappropriate medication use in the community: an interrupted time-series analysis. CMAJ Open 9:E1105-E1113, 2021 34848551

Wibrow B, Martinez FE, Myers E, et al: Prophylactic melatonin for delirium in intensive care (Pro-MEDIC): a randomized controlled trial. Intensive Care Med 48(4):414-425, 2022 35220473

Wildes TS, Winter AC, Maybrier HR, et al. Protocol for the Electroencephalography Guidance of Anesthesia to Alleviate Geriatric Syndromes (ENGAGES) study: a pragmatic, randomised clinical trial. BMJ Open 6(6):e011505, 2016 27311914

Wildes TS, Mickle AM, Ben Abdallah A, et al: Effect of electroencephalography-guided anesthetic administration on postoperative delirium among older adults undergoing major surgery: the ENGAGES randomized clinical trial. JAMA 321(5):473-483, 2019 30721296

Williams-Russo P, Sharrock NE, Mattis S, et al: Cognitive effects after epidural vs general anesthesia in older adults. a randomized trial. JAMA 274(1):44-50, 1995 7791257

Wilson JE, Mart MF, Cunningham C, et al: Delirium. Nat Rev Dis Primers 6(1):90, 2020 33184265

Winings NA, Daley BJ, Bollig RW, et al: Dexmedetomidine versus propofol for prolonged sedation in critically ill trauma and surgical patients. Surgeon 19(3):129-134, 2021 32340800

Wolters AE, Peelen LM, Welling MC, et al: Long-term mental health problems after delirium in the ICU. Crit Care Med 44(10):1808-1813, 2016 27513540

Wong AH, Ray JM, Rosenberg A, et al: Experiences of individuals who were physically restrained in the emergency department. JAMA Netw Open 3:e1919381, 2020 31977058

Wong AH, Whitfill T, Ohuabunwa EC, et al: Association of race/ethnicity and other demographic characteristics with use of physical restraints in the emergency department. JAMA Netw Open 4(1):e2035241, 2021 33492372

Wu XH, Cui F, Zhang C, et al: Low-dose dexmedetomidine improves sleep quality pattern in elderly patients after noncardiac surgery in the intensive care unit: a pilot randomized controlled trial. Anesthesiology 125(5):979-991, 2016 27571256

Xin X, Xin F, Chen X, et al: Hypertonic saline for prevention of delirium in geriatric patients who underwent hip surgery. J Neuroinflammation 14(1):221, 2017 29137628

Xin X, Chen J, Hua W, Wang H: Intraoperative dexmedetomidine for prevention of postoperative delirium in elderly patients with mild cognitive impairment. Int J Geriatr Psychiatry 36(1):143-151, 2021 33411362

Xu X, Hu X, Wu Y, et al: Effects of different BP management strategies on postoperative delirium in elderly patients undergoing hip replacement: a single center randomized controlled trial. J Clin Anesth 62:109730, 2020 31982847

Xuan Y, Fan R, Chen J, et al: Effects of dexmedetomidine for postoperative delirium after joint replacement in elderly patients: a randomized, double-blind, and placebo-controlled trial. Int J Clin Exp Med 11(12):13147-13157, 2018

Xue X, Wang P, Wang J, et al: Preoperative individualized education intervention reduces delirium after cardiac surgery: a randomized controlled study. J Thorac Dis 12(5):2188-2196, 2020 32642124

Yang J, Choi W, Ko YH, et al: Bright light therapy as an adjunctive treatment with risperidone in patients with delirium: a randomized, open, parallel group study. Gen Hosp Psychiatry 34(5):546-551, 2012 22717090

Yang X, Li Z, Gao C, et al: Effect of dexmedetomidine on preventing agitation and delirium after microvascular free flap surgery: a randomized, double-blind, control study. J Oral Maxillofac Surg 73(6):1065-1072, 2015 25981836

Yapici N, Coruh T, Kehlibar T, et al: Dexmedetomidine in cardiac surgery patients who fail extubation and present with a delirium state. Heart Surg Forum 14(2):E93-98, 2011 21521683

Yoon HJ, Park KM, Choi WJ, et al: Efficacy and safety of haloperidol versus atypical antipsychotic medications in the treatment of delirium. BMC Psychiatry 13:240, 2013 24074357

Youn YC, Shin HW, Choi BS, et al: Rivastigmine patch reduces the incidence of postoperative delirium in older patients with cognitive impairment. Int J Geriatr Psychiatry 32(10):1079-1084, 2017 27561376

Young J, Green J, Farrin A, et al: A multicentre, pragmatic, cluster randomised, controlled feasibility trial of the POD system of care. Age Ageing 49(4):640-647, 2020 32307515

Yu D-N, Zhu Y, Ma J, Sun Q: Comparison of post-anesthesia delirium in elderly patients treated with dexmedetomidine and midazolam maleate after thoracic surgery. Biomedical Research 28 (15): 6852-6855, 2017

Zghidi M, Saida IB, Kortli S, et al: Risk factors of post-traumatic stress disorder (PTSD) among ICU survivors. Ann Intensive Care 1–153, 2019

Zhang DF, Su X, Meng ZT, et al. Impact of Dexmedetomidine on long-term outcomes after noncardiac surgery in elderly: 3-year follow-up of a randomized controlled trial. Ann Surg 270(2):356-363, 2019

Zhang W, Wang T, Wang G, et al: Effects of dexmedetomidine on postoperative delirium and expression of IL-1beta, IL-6, and TNF-alpha in elderly patients after hip fracture operation. Front Pharmacol 11:678, 2020 32477139

Zhang H, Yuan J, Chen Q, et al: Development and validation of a predictive score for ICU delirium in critically ill patients. BMC Anesthesiol 21:37, 2021 33546592

Zhang KS, Pelleg T, Hussain S, et al: Prospective randomized controlled pilot study of high-intensity lightbox phototherapy to prevent ICU-acquired delirium incidence. Cureus 13(4):e14246, 2021 33959436

Zhao W, Hu Y, Chen H, et al: The effect and optimal dosage of dexmedetomidine plus sufentanil for postoperative analgesia in elderly patients with postoperative delirium and early postoperative cognitive dysfunction: a single-center, prospective, randomized, double-blind, controlled trial. Front 14:549516, 2020 33192244

Zhou Y, Li Y, Wang K: Bispectral index monitoring during anesthesia promotes early postoperative recovery of cognitive function and reduces acute delirium in elderly patients with colon carcinoma: a prospective controlled study using the attention network test. Med Sci Monit 24:7785-7793, 2018 30378591